This is an outdated version published on 2025-07-29. Read the most recent version.

The Role of Geospatial Technology and Landform Mapping for Volcanic Secondary Hazard Anticipation in Semeru Volcano, Indonesia

Authors

  • Syamsul Bachri Department of Geography, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145
    Indonesia
    https://orcid.org/0000-0003-4576-5616
  • Osamu Murao International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Miyagi, 980-8572
    Japan
    https://orcid.org/0000-0002-5696-7857
  • Muhammad Naufal Fathoni Department Science and Geographic Information System, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 0274-6492599
    Indonesia
  • A Riyan Rahman Hakiki Department of Geography Education, Universitas Lambung Mangkurat, Jl. Brigjend H. Hasan Basri, Kalimantan Selatan
    Indonesia
    https://orcid.org/0000-0002-0473-7566

DOI:

https://doi.org/10.23917/forgeo.v39i2.10060

Keywords:

geospatial technology, landform mapping, secondary hazard, semeru volcano Indonesia, geomorphology

Abstract

The combination of geospatial technology and field-based evidence plays an important role and has become a fundamental information system for any disaster-related database, such as a map at the local and regional levels. This research aims to map the geomorphological conditions of the Semeru Volcano after the 2021 eruption and to identify the area of the rain-triggered lahar slide based on the geomorphological conditions. We used remote sensing, geographic information systems, and field surveys. Factors such as morphological condition, lava slide direction, granularity, and thickness were used to predict the secondary hazard zone. The results found that erosion and sedimentation processes of rain-triggered lahar materials dominated 32 landforms from the geomorphological analysis within the study area. The materials were massively distributed in the middle and low-depositional zones located in the Mandalika formation. The inverse distance weighted analysis of lahar materials showed that the distribution of lahar in the range of 0 - 18.5 m was piled up at the bottom of the deposition process. In addition, through granular analysis, fine materials were deposited at the lower zone as a continuous sedimentation process. The lahar direction analysis also shows that the lower zone is a dangerous slide zone with indications of many lava slides. This research proves that the combination of geospatial and field-based evidence can be used to predict the secondary volcano hazard.

Downloads

Download data is not yet available.

References

Adedapo, S. M., & Zurqani, H. A. (2024). Evaluating the performance of various interpolation techniques on digital ele-vation models highly dense forest vegetation environment. Ecological Informatics, 102646.

Aisandy, A. S., & Sukojo, B. M. (2016). Studi Penentuan Aliran Hidrologi Metode Steepest Slope dan Lowest Height Dengan Aster GDEMV2 dan Alos Palsar (Studi Kasus: Gunung Kelud, Jawa Timur). Jurnal Teknik ITS, 5(2). doi: 10.12962/j23373539.v5i2.17162

Akbarurrasyid, M., & Kristiana, I. (2020). Analisis Spasial Multi Kriteria untuk Menentukan Kesesuaian Lahan Tambak Budidaya Udang Vannamei (Litopenaeus vannamei): Biogeofisik dan Kualitas Tanah. Samakia: Jurnal Ilmu Perikanan, 11(2), 79–90.

Anwar, N., Sofyan, A., & Jumaris, J. (2021). Kajian Kesiapsiagaan Masyarakat dalam Menghadapi Bencana Banjir Lahar Dingin di Kelurahan Tubo Kecamatan Ternate Utara Kota Ternate. Pangea: Wahana Informasi Pengembangan Profesi Dan Ilmu Geografi, 3(1), 181–188.

Arisandy, A. S., & Sukojo, B. M. (2016). StudiPenentuanAliran HidrologiMetodeSteepest SlopedanLowest Heightdengan Aster GDEMV2 dan Alos Palsar (StudiKasus: Gunung Kelud, JawaTimur). Jurnal Teknik ITS, 5(2).

Arsyad, S. (2010). Konservasi tanah dan air. IPB Press.

Azpurua, M., & dos Ramos, K. (2010). A comparison of spatial interpolation methods for estimation of average electro-magnetic field magnitude. Progress In Electromagnetics Research M, 14, 135–145. doi: 10.2528/PIERM10083103

Bachri, S., Fathoni, M. N., Masruroh, H., Wibowo, N. A., Khusna, N., Billah, E. N., & Yudha, L. (2023). Geomorpho-logical mapping and landform characterization of Semeru volcano after the eruption in 2021. IOP Conference Series: Earth and Environmental Science, 1180(1), 12004.

Bachri, S., Fathoni, M. N., Sumarmi, Masruroh, H., Wibowo, N. A., Khusna, N., Billah, E. N., & Yudha, L. (2023). Geomorphological mapping and landform characterization of Semeru volcano after the eruption in 2021. IOP Conference Series: Earth and Environmental Science, 1180(1). doi: 10.1088/1755-1315/1180/1/012004

Bachri, S., Irawan, L. Y., Wirawan, R., Nurjanah, A. E., Tyas, L. W. N., Utaya, S., & Sumarmi. (2019). Dynamics of Lahar Material Deposition Post 2014 Kelud Eruption of Bladak River. IOP Conference Series: Earth and Envi-ronmental Science, 256(1). doi: 10.1088/1755-1315/256/1/012021

Bachri, S., Sumarmi, Irawan, L. Y., Fathoni, M. N., Fawaid, A. M., Nuraini, S. G., Utomo, K. S. B., & Aldianto, Y. E. (2021). Developing land capability to reduce land degradation and disaster incident in Bendo Watershed, Ba-nyuwangi. IOP Conference Series: Earth and Environmental Science, 630, 012004. doi: 10.1088/1755-1315/630/1/012004

Barsch, D., Fischer, K., & Stablein, G. (2007). Geomorphological Mapping of High Mountain Relief, Federal Republic of Germany. Mountain Research and Development, 7(4), 361. https://doi.org/10.2307/3673285

Boggs, S. (2012). Principles of sedimentology and stratigraphy. Retrieved from https://www.academia.edu/download/112323865/9781292034515.pdf

Boyong, S., Yogyakarta Verry Octa Kurniawan, D., Tyas Wulan Mei, E., & Sri Hadmoko, D. (2019). Pemodelan aliran lahar Gunung Api Merapi untuk perhitungan risiko kerugian pada penggunaan lahan terdampak di bantaran, 3, 2.

Bronto, S. (2006). Fasies gunung api dan aplikasinya. Indonesian Journal on Geoscience, 1(2), 59–71.

Cando-Jácome, M., & Martínez-Graña, A. (2019). Determination of primary and secondary lahar flow paths of the Fue-go Volcano (Guatemala) using morphometric parameters. Remote Sensing, 11(6). doi: 10.3390/rs11060727

Cooke, R. U., & Doornkamp, J. C. (1990). Geomorphology in Enviromental Managemen: A New Introduction. Cla-rendon Press.

Dana, C. D. P., Sudirman, M. R., Noviana, A., & Hidayat, R. (2016). Analisis Granulometri, Morfologi Butir, dan Ba-tuan Asal pada Endapan Pasir-Kerakal di Sepanjang Aliran Sungai Progo, D.I. Yogyakarta. Seminar Nasional Kebumian Ke-9, 776–786.

Danoedoro, P. (2012). Pengantar Penginderaan Jauh Digital. Andi Publisher.

Desaunettes, J. R. (1977). Catalogue of landforms for Indonesia : examples of a physiographic approach to land evalua-tion for agricultural development : prepared for the Land Capability Appraisal Project at the Soil Research. Insti-tute, Bogor, Indonesia.

Fathoni, M. N., Wicaksono, P., & Bachri, S. (2021). Estimated change in the percentage of vegetation cover after the eruption of Mount Agung, Bali in 2017. Seventh Geoinformation Science Symposium, 12082, 316-326. doi: 10.1117/12.2617334

Gomez, C., & Lavigne, F. (2010). Automated block detection in lahars through 3-bands spectral analysis of video images. Journal of Volcanology and Geothermal Research, 190(3–4), 379–384. doi: 10.1016/j.jvolgeores.2009.11.005

Gomez, C., Lavigne, F., Sri Hadmoko, D., & Wassmer, P. (2018a). Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophy-sics and CFD modelling. Journal of Volcanology and Geothermal Research, 353, 102–113. doi: 10.1016/j.jvolgeores.2018.01.021

Gomez, C., Lavigne, F., Sri Hadmoko, D., & Wassmer, P. (2018b). Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophy-sics and CFD modelling. Journal of Volcanology and Geothermal Research, 353, 102–113. doi: 10.1016/j.jvolgeores.2018.01.021

Hadmoko, D. S., de Belizal, E., Mutaqin, B. W., Dipayana, G. A., Marfai, M. A., Lavigne, F., Sartohadi, J., Worosupro-jo, S., Starheim, C. C. A., & Gomez, C. (2018). Post-eruptive lahars at Kali Putih following the 2010 eruption of Merapi volcano, Indonesia: occurrences and impacts. Natural Hazards, 94(1), 419–444. doi: 10.1007/s11069-018-3396-7

Hart, A. B., & Hearn, G. J. (2018). Mapping geohazards in the watersheds above Leh, Ladakh: The use of publicly-available remote sensing to assist risk management. International Journal of Disaster Risk Reduction, 31, 789–798. doi: 10.1016/j.ijdrr.2018.07.021

Hazbavi, Z. (2018). Importance of Geology and Geomorphology in Watershed Health Assessment. The Journal “Agri-culture and Forestry,” 64(4). doi: 10.17707/AgricultForest.64.4.27

Htun, M. M., Surjono, S. S., & Setyowiyoto, J. (2020a). Granulometry analysis of Ngrayong sandstone, Tempuran Area, Rembang Zone, North East Java Basin. IOP Conference Series: Earth and Environmental Science, 451(1), 012082.

Htun, M. M., Surjono, S. S., & Setyowiyoto, J. (2020b). Granulometry analysis of Ngrayong sandstone, Tempuran Area, Rembang Zone, North East Java Basin. IOP Conference Series: Earth and Environmental Science, 451(1), 012082.

Idjuddin, A. A., Erfandi, D., Soelaeman, Y., Suwanda, M. H., & Suganda, H. (2010). Rehabilitasi dan konservasi tanah pasca-erupsi Gunung Merapi. Kajian Cepat Dampak Erupsi Gunung Merapi.

Jenson, S. K., & Dominque, J. O. (1988). Extracting topographic structure from digital elevation data for geographic in-formation system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.

Joyce, K. E., Samsonov, S., Manville, V., Jongens, R., Graettinger, A., & Cronin, S. J. (2009). Remote sensing data types and techniques for lahar path detection: A case study at Mt Ruapehu, New Zealand. Remote Sensing of Environment, 113(8), 1778–1786. doi: 10.1016/j.rse.2009.04.001

Kaku, K. (2019). Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia. International Journal of Disaster Risk Reduction, 33, 417–432. doi: 10.1016/j.ijdrr.2018.09.015

Kassouk, Z., Thouret, J. C., Gupta, A., Solikhin, A., & Liew, S. C. (2014). Object-oriented classification of a high-spatial resolution SPOT5 image for mapping geology and landforms of active volcanoes: Semeru case study, In-donesia. Geomorphology, 221, 18–33. doi: 10.1016/j.geomorph.2014.04.022

Khodaverdizahraee, N., Rastiveis, H., & Jouybari, A. (2020). Segment-by-segment comparison technique for earthquake-induced building damage map generation using satellite imagery. International Journal of Disaster Risk Reduction, 46, 101505. doi: 10.1016/j.ijdrr.2020.101505

Kurnianto, F. A. (2019). Proses Geomorfologi dan Kaitannya dengan Tipologi Wilayah. Majalah Pembelajaran Geogra-fi, 2(2), 131–147.

Kurniawan, V. O., Mei, E. T. W., & Hadmoko, D. S. (2019). Pemodelan aliran lahar Gunung Api Merapi untuk perhi-tungan risiko kerugian pada penggunaan lahan terdampak di bantaran Sungai Boyong, Pakem, Sleman, DI Yo-gyakarta. Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments), 3(2), 3.

Lavigne, F., & Thouret, J. C. (2000). Lahars: Deposits, origins, and behaviour. Bulletin de La Société Géologique de France, 171(5), 545–557. doi: 10.2113/171.5.545

Lavigne, F., Thouret, J.-C., Hadmoko, D. S., & Sukatja, B. (2016). Lahars in Java: Initiations, Dynamics, Hazard As-sessment And Deposition Processes. Forum Geografi, 21(1), 5–24. doi: 10.23917/forgeo.v21i1.1822

Lee*, S., & Lee, C. (2015). Detection and Hazard Mapping of Lahar and Pyroclastic Flow at Mount Merapi in Indonesia using the LAHARZ Program. Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7-10, 124–126. doi: 10.1190/nsapc2015-032

Lestari, N. K. D. A., Trigunasih, N. M., Dibia, I. N., & Suyarto, R. (2019). Interpretasi Citra untuk Analisis Kapasitas Sungai Unda sebagai Tampungan Lahar Dingin Erupsi Gunung Agung Bali. Jurnal Agroekoteknologi Tropika, 8(2), 222–230.

Masitoh, F., Rusydi, A. N., & Diki Pratama, I. (2019). Kajian hidrogeomorfologi pada DAS orde 0 (nol) di Dusun Brau Batu. Jurnal Pendidikan Geografi, 24(2), 73–84.

Mir, R. A., & Jeelani, G. H. (2015). Textural characteristics of sediments and weathering in the Jhelum River basin lo-cated in Kashmir Valley, western Himalaya. Journal of the Geological Society of India, 86, 445–458.

Munir, M. D., Santoso, F. I., Eka, N. A., & Amanda, A. E. (2024). Lahar flow characteristic of Semeru Volcano based on Flow-R Model and its countermeasure. IOP Conference Series: Earth and Environmental Science, 1343(1), 012032.

Mutaqin, B. W., Amanatulloh, D. A., Waskita, T. B., Marfai, M. A., Isnain, M. N., Alwi, M., & Khomarudin, M. R. (2022). Analisis Geomorfologi dan Oseanografi untuk Identifikasi Tipologi Pulau Kecil: Studi Kasus di Kepu-lauan Maluku Utara dan Karimunjawa. JPG (Jurnal Pendidikan Geografi), 9(1).

Niu, X., Tang, H., & Wu, L. (2018). Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm. International Journal of Disaster Risk Reduction, 28, 813–825. doi: 10.1016/j.ijdrr.2018.02.013

Ohashi, O., & Torgo, L. (2012). Spatial interpolation using multiple regression. 2012 IEEE 12th International Conference on Data Mining, 1044–1049.

Otto, J.-C., & Smith, M. J. (2013). Geomorphological mapping Field Mapping. British Society for Geomorphology, 6, 1–10.

Pasaribu, J. M., & Haryani, N. S. (2012). Perbandingan teknik interpolasi DEM SRTM dengan metode Inverse Distance Weighted (IDW), natural neighbor dan spline (Comparison of DEM SRTM interpolation techniques using In-verse Distance Weighted (IDW), natural neighbor and spline method). Jurnal Penginderaan Jauh Dan Pengo-lahan Data Citra Digital, 9(2).

Pasaribu, J. M., Suryo, N., Pemanfaatan, H. P., & Jauh, P. (2012). Perbandingan Teknik Interpolasi Dem Srtm Dengan Metode Inverse Distance Weighted (Idw), Natural Neighbor dan Spline (Comparison Of Dem Srtm Interpola-tion Techniques Using Inverse Distance Weighted (Idw), Natural Neighbor And Spline Method). Jurnal Pen-ginderaan Jauh, 9, 2.

Pavlopoulos, K., Evelpidou, N., & Vassilopoulos, A. (2009). Mapping Geomorphological Environments. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01950-0

Pramono, G. H. (2008). Accuracy of the IDW and kriging methods for interpolating the suspended sediment distribu-tion in Maros, South Sulawesi. Forum Geografi, 22(1), 145158.

Procter, J., Zernack, A., Mead, S., Morgan, M., & Cronin, S. (2021). A review of lahars; past deposits, historic events and present-day simulations from Mt. Ruapehu and Mt. Taranaki, New Zealand. New Zealand Journal of Geo-logy and Geophysics, 64(2–3), 479–503. doi: 10.1080/00288306.2020.1824999

Putra, D. R. K., Kurniawan, L., Maarif, S., & Widodo, P. (2022). The Role of Lumajang ’ s Regional Disaster Manage-ment Agency Facing of Semeru Volcanic Eruptions. International Journal of Innovative Science and Research Technology, 7(12), 1320–1325.

Putra, P. S., & Nugroho, S. H. (2017). Distribusi Sedimen Permukaan Dasar Laut Perairan Sumba, Nusa Tenggara Timur. OLDI (Oseanologi Dan Limnologi Di Indonesia), 2(3), 49–63.

PVMBG. (2021). Press Release Aktivitas Vulkanik G. Semeru – Jawa Timur 4 Desember 2021.

Qurotulayun, A. A., Haribowo, R., & Sambah, A. B. (2023). The Impact of Mountain Semeru's Eruption on Groundwa-ter Resources in the Rejali Watershed in 2021. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 20(2), 481-493.

Rachman, R. A., Wibowo, M., Wiguna, E. A., Nugroho, S., Madyani, M., & Santoso, B. (2021). Kajian Karakteristik Sedimen Dasar di Perairan Sungailiat untuk Mendukung Pengembangan Pelabuhan Perikanan Nusantara Sungailiat, Kab. Bangka. Buletin Oseanografi Marina, 10(2), 112–122. doi: 10.14710/buloma.v10i2.31662

Rijal, S. S. (2020). Identifikasi Material Piroklastik Pasca Erupsi Gunung Kelud Menggunakan Citra Hyperspektral (Hyperspectral Imagery for Identification of Kelud Volcano Pyroclastic Material). Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 17(1), 1–9. doi: 10.30536/j.pjpdcd.2020.v17.a

Rozamuri, M. F., & Hidayat, R. (2016). Studi Awal Granulometri Pada Sungai Mandeh dan Sungai Nyalo, Teluk Mandeh, Kabupaten Pesisir Selatan, Sumatera Barat. Seminar Nasional Kebumian Ke-9, 754–764.

Sartohadi, J., Sianaturi, R. S., Ramadhana, W., Maritimo, F., Wacano, D., Munawaroh, Suryani, T., & Pratiwi, E. S. (2014). Bentang Sumberdaya Lahan Kawasan Gunungapi Ijen dan Sekiternya (Yogyakarta). Pustaka Pelajar.

Sasmito, K., Rindawati, P. I., Pradana, S. A., & Andika, B. (2018). Analisis Lingkungan Pengendapan Dengan Metode Analisis Granulometri Daerah Tanah Merah Kota Samarinda, Kalimantan Timur. JURNAL TEKNIK GEOLOGI: Jurnal Ilmu Pengetahuan Dan Teknologi, 1(1).

Sayudi, D. S., Wirakusumah, A. D., & Putra, R. (2014). Mekanisme pengendapan lahar sungai boyong di gunung merapi berdasarkan analisa granulometri. Jurnal ESDM, 6(1), 26–34.

Schneiderbauer, S., Calliari, E., Hagenlocher, M., Bonadonna, C., Simmons, D. C., Simmons, D. C., Gowland, R., & King, A. G. (2017). Understanding disaster risk: risk assessment methodologies and examples. Science for disas-ter risk management, 38-130.

Sheets, P. D., & Grayson, D. K. (1979). Volcanic Activity and Human Ecology.

Smith, M. J., Paron, P., & Griffiths, J. S. (2011). GEOMORPHOLOGICAL MAPPING METHODS AND APPLICA-TIONS. Elsevier B.V.

Solikhin, A., Thouret, J. C., Gupta, A., Harris, A. J. L., & Liew, S. C. (2012). Geology, tectonics, and the 2002-2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery. Geomor-phology, 138(1), 364–379. doi: 10.1016/j.geomorph.2011.10.001

Suriani, P. D., Fajar, M. H. M., Ariyanti, N., Ramadhani, A. P., Ulumuddin, F., Rahayu, H. K., Wirayudhatama, M., Al-fany, M. K., Rafi, M. E. D., & Zukhrufah, S. Z. (2024). Sediment Deposits Texture Analysis of Besuk Kobokan River in the Northern Slope Semeru Volcano Lumajang. IOP Conference Series: Earth and Environmental Science, 1307(1), 012025.

Thouret, J. C., Lavigne, F., Suwa, H., Sukatja, B., & Surono. (2007). Volcanic hazards at Mount Semeru, East Java (In-donesia), with emphasis on lahars. Bulletin of Volcanology, 70(2), 221–244. doi: 10.1007/s00445-007-0133-6

Thouret, J. C., Wavelet, E., Taillandier, M., Tjahjono, B., Jenkins, S. F., Azzaoui, N., & Santoni, O. (2022). Defining po-pulation socio-economic characteristics, hazard knowledge and risk perception: The adaptive capacity to persis-tent volcanic threats from Semeru, Indonesia. International Journal of Disaster Risk Reduction, 77. doi: 10.1016/j.ijdrr.2022.103064

Tomaszewski, B. M., Moore, E. A., Parnell, K., Leader, A. M., Armington, W. R., Aponte, O., Brooks, L., Herold, B. K., Meyers, B. S., Ruggero, T., Sutherby, Z., Wolters, M., Wu, S., Szarzynski, J., Greve, K., & Parody, R. (2020). Developing a geographic information capacity (GIC) profile for disaster risk management under United Nations framework commitments. International Journal of Disaster Risk Reduction, 47, 101638. doi: 10.1016/j.ijdrr.2020.101638

Wahyuningtyas, N., Yaniafari, R. P., Rosyida, F., Megasari, R., Dewi, K., & Khotimah, K. (2021). Mapping a Eruption Disaster-Prone Area in The Bromo-Tengger-Semeru National Tourism Strategic (case study of Mount Semeru, Indonesia). Geojournal of Tourism and Geosites, 39(4), 1430–1438. doi: 10.30892/gtg.394spl14-787

Waleed, M., & Sajjad, M. (2023). On the emergence of geospatial cloud-based platforms for disaster risk management: A global scientometric review of google earth engine applications. International Journal of Disaster Risk Re-duction, 97, 104056. doi: 10.1016/j.ijdrr.2023.104056

Widodo, A., Warnana, D. D., GNR, J. P., & Iswahyudi, A. (2018). Pemetaan Kerentanan Tsunami Kabupaten Lumajang Menggunakan Sistem Informasi Geografis. IPTEK Journal of Proceedings Series, 2.

Downloads

Submitted

2025-04-23

Accepted

2025-07-23

Published

2025-07-29

Versions

Issue

Section

Research article