Effects of heat treatment on microstructure and hardness of D2 tools


  • Hariningsih Hariningsih Department of Foundry Engineering, Politeknik Manufaktur Ceper, Klaten. 57465. Indonesia.
  • Lutiyatmi Lutiyatmi Department of Foundry Engineering, Politeknik Manufaktur Ceper, Klaten. 57465. Indonesia.
  • Tri Daryanto Department of Foundry Engineering, Politeknik Manufaktur Ceper, Klaten. 57465. Indonesia.




Chromium tool, Heat treatment , Hardness, Microstructure, Tool steel


D2 high chromium tool steel is widely used to produce tools and components that work at significant dynamic loads, such as dies, punches and rollers. The steel must have a good combination of strength and toughness, which heat treatment can obtain. Therefore, this study discusses the effect of normalising, hardening, and tempering on the microstructure and hardness of D2 tools. Normalising and hardening were carried out respectively at 1020°C for 30 minutes, followed by rapid cooling using oil. Tempering was realised by reheating the quenched sample at 250°C and 400°C with variations in holding time of 15 minutes, 30 minutes, and 45 minutes. The hardness of the specimens was measured using a Rockwell hardness tester, whereas the microstructure was observed with an optical microscope. The results indicated that the microstructure changes to martensite and carbide after quenching, while the microstructure becomes tempered martensite and carbide after tempering. Normalising and hardening have almost no impact on hardness, and the increase in temperature and holding time causes a decrease in hardness. The reduction in hardness is noticeable for steels tempered to 400 °C and held for 45 minutes.


Download data is not yet available.


M. Algarni, "Mechanical properties and microstructure characterisation of AISI "D2" and "O1" coldwork tool steels", Metals, vol. 9, no. 11, pp. 1–10, 2019. https://doi.org/10.3390/met9111169.

M.A.S. bin Abdul Rahim, M. bin Minhat, N.I.S.B. Hussein, and M.S. bin Salleh, "A comprehensive review on cold work of AISI D2 tool steel", Metallurgical Research Technology, vol. 104, pp. 1–12, 2017. https://doi.org/10.1051/metal/2017048.

D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, K.E. Grinkevych, and I.V. Tkachenko, "Laser-hardened and ultrasonically peened surface layers on tool steel AISI D2: Correlation of the bearing curves' parameters, hardness and wear", Journal of Materials Engineering and Performance, vol. 27, no. 2, pp. 764–776, 2018. https://doi.org/10.1007/s11665-017-3107-7.

S. Al-Qawabah, A. Mostafa, A. Al-Rawajfeh, and U. Al-Qawabeha, "Effect of heat treatment on the grain size, microhardness and corrosion behavior of the cold-working tool steels AISI D2 and AISI O1", Materiali in Tehnologije, vol. 54, no. 6, pp. 785–790, 2020. https://doi.org/10.17222/mit.2020.035.

J. Valloton, D.M. Herlach, and H. Henein, "Effect of convection on the dendrite growth kinetics in undercooled melts of D2 tool steels", IOP Conference Series: Materials Science and Engineering, vol. 117, no. 1, 2016. https://doi.org/10.1088/1757-899X/117/1/012058.

W. Ming, G. Liu, and M. Chen, "Experimental study on the hardened surface layer of grinding SKD-11 hardened steel", Key Engineering Materials Vols., vol. 360, pp. 224–228, 2008. https://doi.org/10.4028/www.scientific.net/KEM.359-360.224.

M. Chen, X.K. Li, and P. Yang, "Study on surface grind-hardening of SKD-11 hardened steel," International Journal of Manufacturing Technology and Management, vol. 12, pp. 236–245, 2007. https://dx.doi.org/10.1504/IJMTM.2007.014152.

F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, and M. Pellizzari, "Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing", Materials Science and Engineering A, vol. 753, pp. 109–121, 2019. https://doi.org/10.1016/j.msea.2019.03.027.

T.V. Pirtovšek, G. Kugler, and M. Ter?elj, "The behaviour of the carbides of ledeburitic AISI D2 tool steel during multiple hot deformation cycles", Materials Characterisation, vol. 83, pp. 97–108, 2013. https://doi.org/10.1016/j.matchar.2013.06.008.

C.H. Surberg, P. Stratton, and K. Lingenhole, "The effect of some heat treatment parameters on the dimensional stability of AISI D2", Cryogenics, vol. 48, pp. 42–47, 2008. https://doi.org/10.1016/j.cryogenics.2007.10.002.

K. Kubota, T. Ohba, and S. Morito, "Frictional properties of new developed cold work tool steel for high tensile strength steel forming die", Wear, vol. 271, no. 11–12, pp. 2884–2889, 2011. https://doi.org/10.1016/j.wear.2011.06.007.

D. Bombac, M. Fazarinc, A.S. Podder, and G. Kugler, "Study of carbide evolution during thermo-mechanical processing of AISI D2 tool steel", Journal of Materials Engineering and Performance, vol. 22, no. 3, pp. 742–747, 2013. https://doi.org/10.1007/s11665-012-0340-y.

S. Kheirandish, H. Saghafian, J. Hedjazi, and M. Momeni, "Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel", Journal of Iron and Steel Research International, vol. 17, no. 9, pp. 40–45, 2010. https://doi.org/10.1016/S1006-706X(10)60140-9.

H.G. Nanesa, J. Boulgakoff, and M. Jahazi, "Influence of prior cold deformation on microstructure evolution of AISI D2 tool steel after hardening heat treatment", Journal of Manufacturing Processes, vol. 22, pp. 115–119, 2016. https://doi.org/10.1016/j.jmapro.2016.02.002.

C. Højerslev, “Tool steels,” in Risø National Laboratory, Risoe-R No.1244, Denmark: Forskningscenter Risoe, 2001, pp. 651–694.

D. Das, A.K. Dutta, and K.K. Ray, "On the enhancement of wear resistance of tool steels by cryogenic treatment", Philosophical Magazine Letters, vol. 88, no. 11, pp. 801–811, 2008. https://doi.org/10.1080/09500830802380788.

A. Rajasekhar, and G.M. Reddy, "The effect of single and double austenitisation temperatures on the microstructure , mechanical properties and pitting corrosion of AISI 431 electron beam welds", Materials: Design and Applications, vol. 224, pp. 9–18, 2009. https://doi.org/10.1243/14644207JMDA279.

H.G. Nanesa, and M. Jahazi, "Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel", Materials Science and Engineering A, vol. 598, pp. 413–419, 2014. https://doi.org/10.1016/j.msea.2014.01.065

N. Pillai, and R. Karthikeyan, "Prediction of ttt curves of cold working tool steels using support vector machine model," IOP Conference Series: Materials Science and Engineering, vol. 346, no. 1, 2018. https://doi.org/10.1088/1757-899X/346/1/012067.

H. Hariningsih, and T.W.B. Riyadi, "Effect of hardening and tempering on the microstructure and mechanical properties of the tapered-forged leaf spring steel", Materials Science Forum, vol. 1029, pp. 25–32, 2021. https://doi.org/10.4028/www.scientific.net%2FMSF.1029.25.

D.V Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, "Quenching and Partitioning Martensite — A Novel Steel Heat Treatment", vol. 440, pp. 25–34, 2006. https://doi.org/10.1016/j.msea.2006.02.133.

H. Hariningsih, S. Sumpena, and H. Sukarja, "The effectivity of used-oil as quenching medium of 42-CrMo4 steel for automotive materials", Applied Research and Smart Technology, vol. 1, pp. 28–34, 2020. https://doi.org/10.23917/arstech.v1i1.11.

H. Torkamani, S. Raygan, and J. Rassizadehghani, "Comparing Microstructure and Mechanical Properties of AISI D2 Steel After Bright Hardening and Oil Quenching", Materials and Design, vol. 54, pp. 1049–1055, 2014. https://doi.org/10.1016/j.matdes.2013.09.043.

A. Awale, and K. Inamdar, "Multi-objective optimisation of high-speed turning parameters for hardened AISI S7 tool steel using grey relational analysis", Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 7, 2020. https://doi.org/10.1007/s40430-020-02433-z.

S. Dewangan, S. Behera, and M.K. Chowrasia, "Comparative analysis into mechanical properties and microstructural attributes of quenched and tempered 0.2%-C steel", World Journal of Engineering, vol. 17, no. 1, pp. 127–133, 2020. https://doi.org/10.1108/WJE-11-2019-0327.

M. Villa, and M.A.J. Somers, "Cryogenic treatment of an AISI D2 steel: The role of isothermal martensite formation and martensite conditioning", Cryogenics, vol. 110, p. 103131, 2020. https://doi.org/10.1016/j.cryogenics.2020.103131.

D.N. Korade, K.V. Ramana, K.R. Jagtap, and N.B. Dhokey, "Effect of deep cryogenic treatment on tribological behaviour of D2 tool steel - An experimental investigation", Materials Today: Proceedings, vol. 4, no. 8, pp. 7665–7673, 2017. https://doi.org/10.1016/j.matpr.2017.07.100.

P. Taylor, D. Das, A.K. Dutta, V. Toppo, and K.K. Ray, "Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel", Materials and Manufacturing Processes, pp. 37–41, 2014. https://doi.org/10.1080/10426910701235934.

J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke, and T.E. Mitchell, "Microstructure of cryogenic treated M2 tool steel", Materials Science & Engineering A, vol. 339, pp. 241–244, 2003. https://doi.org/10.1016/S0921-5093(02)00165-X.

A. Bensely, A. Prabhakaran, D.M. Lal, and G. Nagarajan, "Enhancing the wear resistance of case carburised steel (EN 353) by cryogenic treatment", Cryogenics, vol. 45, pp. 747–754, 2006. https://doi.org/10.1016/j.cryogenics.2005.10.004.

Y. Rhyim, S. Han, Y. Na, and J. Lee, "Effect of deep cryogenic treatment on carbide precipitation and mechanical properties of tool steel", Solid State Phenomena, vol. 118, pp. 9–14, 2006. https://doi.org/10.4028/www.scientific.net/SSP.118.9.

D.M. Lal, S. Renganarayanan, and A. Kalanidhi, "Cryogenic treatment to augment wear resistance of tool and die steels", Cryogenics, vol. 41, pp. 149–155, 2001. https://doi.org/10.1016/S0011-2275(01)00065-0.

D. Das, A.K. Dutta, and K.K. Ray, "Sub-zero treatments of AISI D2 steel: Part II. wear behavior", Materials Science and Engineering A, vol. 527, no. 9, pp. 2194–2206, 2010. https://doi.org/10.1016/j.msea.2009.10.071.

D. Das, A.K. Dutta, and K.K. Ray, "Sub-zero treatments of AISI D2 steel: Part I. microstructure and hardness", Materials Science and Engineering A, vol. 527, no. 9, pp. 2182–2193, 2010. https://doi.org/10.1016/j.msea.2009.10.070.

P. Muro, S. Gimenez, and I. Iturriza, "Sintering behaviour and fracture toughness characterisation of D2 matrix tool steel, comparison with wrought and PM D2", Scripta Materialia, vol. 46, no. 5, pp. 369–373, 2002. https://doi.org/10.1016/S1359-6462(01)01253-2.

D. Das, A.K. Dutta, and K.K. Ray, "On the refinement of carbide precipitates by cryotreatment in AISI D2 steel", Philosophical Magazine, vol. 89, no. 1, pp. 55–76, 2009. https://doi.org/10.1080/14786430802534552.

A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K.H. Stiasny, "Effect of deep cryogenic treatment on the mechanical properties of tool steels", Journal of Materials Processing Technology, vol. 118, no. 1, pp. 350–355, 2001. https://doi.org/10.1016/S0924-0136(01)00973-6.

ASTM Standard, ASTM E407-99 standard practice for microetching metals and alloys. West Conshohecken: ASTM International, 1999.

ASTM Standard, ASTM E18-97a standard test methods for rockwell hardness and rockwell superficial hardness of metallic materials. West Conshohecken, 1998.

K. Singh, R.K. Khatirkar, and S.G. Sapate, "Microstructure evolution and abrasive wear behavior of D2 steel," Wear, vol. 328–329, pp. 206–216, 2015. https://doi.org/10.1016/j.wear.2015.02.019.

E. Kaya, K. K?l?çay, and M. Ulutan, "Microstructure and tribological properties of tool steel AISI O2 after thorough cryogenic heat treatment", Metal Science and Heat Treatment, vol. 62, no. 5, pp. 399–404, 2020. https://doi.org/10.1007/s11041-020-00574-5.

H. Demir, S. Gündüz, and M.A. Erden, "Influence of the heat treatment on the microstructure and machinability of AISI H13 hot work tool steel", International Journal of Advanced Manufacturing Technology, vol. 95, no. 5, pp. 2951–2958, 2018. https://doi.org/10.1007/s00170-017-1426-3.

W.N. Putra, P. Pramaditya, P. Pramuka, and M.A. Mochtar, "Effect of sub-zero treatment on microstructures, mechanical properties, and dimensional stability of AISI D2 cold work tool steel", Materials Science Forum, vol. 929 MSF, pp. 136–141, 2018. https://doi.org/10.4028/www.scientific.net/MSF.929.136.

T. Nishibata, and N. Kojima, "Effect of quenching rate on hardness and microstructure of hot-stamped steel", Journal of Alloys and Compounds, pp. 1–6, 2012. https://doi.org/10.1016/j.jallcom.2011.12.154.

Y.W. Luo, H.J. Guo, X.L. Sun, J. Guo, and F. Wang, "Influence of tempering time on the microstructure and mechanical properties of AISI M42 high-speed steel", Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 49, no. 12, pp. 5976–5986, 2018. https://doi.org/10.1007/s11661-018-4924-5.




How to Cite

Hariningsih, H., Lutiyatmi, L., & Daryanto, T. (2022). Effects of heat treatment on microstructure and hardness of D2 tools . Applied Research and Smart Technology (ARSTech), 3(1), 29–37. https://doi.org/10.23917/arstech.v3i1.761

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.