An experimental study of the dynamic properties of smart composite magnetorheological materials

Authors

  • Salah Aguib The Laboratory of Dynamic Motors and Vibroacoustic, Department of Mechanical Engineering, University of Boumerdes. Algeria.
  • Salah Roubah Laboratory of Studies and Research in Industrial Technology, University of Saad Dahleb Blida 1, Algeria
  • Mohamed Hadji Laboratory of Studies and Research in Industrial Technology, University of Saad Dahleb Blida 1, Algeria
  • Lallia Kobzili The Laboratory of Dynamic Motors and Vibroacoustic, University of Boumerdes. Algeria.
  • Chikh Noureddine The Laboratory of Dynamic Motors and Vibroacoustic, University of Boumerdes. Algeria.
  • Toufik Djedid The Laboratory of Dynamic Motors and Vibroacoustic, University of Boumerdes. Algeria.

DOI:

https://doi.org/10.23917/arstech.v2i1.218

Keywords:

Dynamic properties, Loss factor , Magnetic field intensity, Magnetorheological materials, Rigidity

Abstract

A magnetorheological is a new generation of smart materials in active mechanical vibration and shock control applications. This article is based on a comparative experimental study of the dynamic properties of magnetorheological elastomers (MRE) and magnetorheological fluids (MRF), whose damping and stiffness are controlled simultaneously by applying magnetic field intensity. The dynamic visco-analyser and rheometer were used to test the behaviour of MRE and MRF. The response of both materials depends on the amplitude due to shear strain. The experimental results clearly show the difference between the dynamic properties of MRE and MRF. More specifically, MFRs have high damping with low stiffness; on the other hand, the MRE has average damping with outstanding rigidity. These results help designers achieve more efficient and reliable structures in various engineering fields, such as buildings and mechanical applications.

Downloads

Download data is not yet available.

References

M. Ghatee, A.H. Dorostia, and M. Norouzi, ‘Preparation and characterisation of water-based magnetorheological fluid using worm-like surfactant micelles‘, Journal of Magnetism and Magnetic Materials, Vol. 498, 2020, https://doi.org/10.1016/j.jmmm.2019.166193.

S.G.E. Lampaert, and R.A.J. Van Ostayen, ‘Experimental results on a hydrostatic bearing lubricated with a magnetorheological fluid‘, Current Applied Physics, Vol. 19, pp. 1441-1448, 2019, https://doi.org/10.1016/j.cap.2019.09.004.

Z. Jian-Feng, T. Feng, S. Chun-Lei, W. Hong-Bo, and H. Liang, ‘Effective recovery of oil slick using the prepared high hydrophobic and oleophilic Fe3O4 magnetorheological fluid‘, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 591, 2020, https://doi.org/10.1016/j.colsurfa.2020.124531.

V.I. Vishnyakov, S.M. Vishnyakova, P.V. Druzhinin, and L.D. Pokrovskii, ‘Unsteady Flow of an Electrically Conducting Bingham Fluid in a Plane Magnetohydrodynamic Channel‘, Journal of Applied Mechanics and Technical Physics, Vol. 60, pp. 432–437, 2019, https://doi.org/10.1134/S0021894419030040.

SK. Mangal, and K. Ashwani, ‘Experimental and Numerical Studies of Magnetorheological (MR) Damper‘, Chinese Journal of Engineering, 2014, https://doi.org/10.1155/2014/915694.

D. Xufeng, Z. Wanning, H. Hao, and Q. Min, ‘Iron nanoparticles-based magnetorheological fluids: A balance between MR effect and sedimentation stability‘, Journal of Magnetism and Magnetic Materials, Vol. 491, 2019, https://doi.org/10.1016/j.jmmm.2019.165556.

B. Sahoo, AV Anupama, and V. Kumaran, ‘Application of Ni-Zn ferrite powders with polydisperse spherical particles in magnetorheological fluids‘, Powder Technology, Vol. 338, pp. 190-196, 2018, https://doi.org/10.1016/j.powtec.2018.07.008.

R.P. Pant, J. Noor, P. Saurabh, and J. Komal, ‘Enchancment in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid‘, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 529, pp. 88-94, 2017, https://doi.org/10.1016/j.colsurfa.2017.05.057.

W. Zhong-jin, Z. Rui, Y. Chao, and L, Xiao, ‘The numerical analysis of the magnetorheological elastomer bulging for sheet metal‘, Procedia Manufacturing, Vol. 50, pp. 110-113, 2020, https://doi.org/10.1016/j.promfg.2020.08.020.

Y. Tong, D. Xufeng and Q. Min, ‘Payne effect and damping properties of flower-like cobalt particles-based magnetorheological elastomers‘, Composites Communications, Vol. 15, pp. 120-128, 2019, https://doi.org/10.1016/j.coco.2019.07.007.

M. Schümann, and S. Odenbach, ‘In-situ observation of the particle microstructure of magnetorheological elastomers in presence of mechanical strain and magnetic fields‘, Journal of Magnetism and Magnetic Materials, Vol. 441, pp. 88–923, 2017, https://doi.org/10.1016/j.jmmm.2017.05.024.

T. Van Manen, S. Janbaz, and A.A. Zadpoor, ‘Programming the shape-shifting of flat soft matter‘, Materials Today, Vol. 21, pp. 144–163, 2018, https://doi.org/10.1016/j.mattod.2017.08.026.

T. Van Manen, S. Janbaz, and A.A. Zadpoor, ‘Programming 2D/3D shape-shifting with hobbyist 3D printers‘, Materials Horizon, Vol. 4, pp. 1064–1069, 2017, https://doi.org/10.1039/C7MH00269F.

M. S. Michal, L. Petr, E. Petr, L. C. Hiep, K. Vladimír, V.S. Le, V. Lukáš, B. Elif, and B. Totka, ‘Evaluation of Mechanical Properties of Composite Geopolymer Blocks Reinforced with Basalt Fibres‘, Manufacturing Technology, Vol. 18(5), pp. 861-865, 2018, https://doi.org/10.21062/ujep/191.2018/a/1213-2489/MT/18/5/861.

A.V. Bodnaruk, A. Brunhuber, V.M. Kalita, M.K. Mykola, K. Peter, A.S. Andrei, F.L. Albert, M.R. Sergey, and S. Mikhail, ‘Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity‘, Polymer, Vol. 16 (2), pp. 63-72, 2019, https://doi.org/10.1016/j.polymer.2018.12.027.

I. Agirre-Olabide, P. Kuzhir, and M.J. Elejabarrieta, ‘Linear magneto-viscoelastic model based on magnetic permeability components for anisotropic magnetorheological elastomers‘, Journal of Magnetism and Magnetic Materials, Vol. 446, pp. 155–161, 2018, https://doi.org/10.1016/j.jmmm.2017.09.017.

G. Zuzana, Š. Pavol, and B. Alena, ‘Microstructure and Selected Properties of Si3N4+SiC Composite‘, Manufacturing Technology, Vol. 20(3), pp. 293-299, 2020, https://doi.org/10.21062/mft.2020.056.

A. Nedjar, S. Aguib, T. Djedid, A. Nour, A. Settet and M. Tourab, ‘Analysis of the Dynamic Behavior of Magnetorheological Elastomer Composite: Elaboration and Identification of Rheological Properties‘, Silicon, Vol. 11, pp. 1287–1293, 2019, https://doi.org/10.1007/s12633-018-9921-1.

V. Kumar and D-J. Lee, ‘Mechanical properties and magnetic effect of new magnetorheological elastomers filled with multi-wall carbon nanotubes and iron particles‘, Journal of Magnetism and Magnetic Materials, Vol. 482, pp. 329–335, 2019, https://doi.org/j.jmmm.2019.03.075

Y. Wan, Y. Xiong, and S. Zhang , ‘Temperature dependent dynamic mechanical properties of Magnetorheological elastomers: Experiment and modeling‘, Composite Structures, Vol. 202, pp. 768–773, 2018, https://doi.org/j.compstruct.2018.04.010.

F. Wang, Y. Ma, H. Zhang, J. Gu, J. Yin, X. Jia, H. Zhang, Y. Wang, X. Fu, R. Yu, Z. Wang, S. Han, and G. Wang, ‘Rheological properties and sedimentation stability of magnetorheological fluid based on multi-walled carbon nanotubes/cobalt ferrite nanocomposites‘, Journal of Molecular Liquids, Vol. 324, 2021, https://doi.org/10.1016/j.molliq.2020.115103.

J. S. Kumar, D. G. Alex, and P. P. Sam, ‘Synthesis of Magnetorheological fluid Compositions for Valve Mode Operation‘, Materials Today: Proceedings, Vol. 22, pp. 1870-1877, 2020, https://doi.org/10.1016/j.matpr.2020.03.086.

J. Niu, J. Hou, Y. Shen, and S. Yang, ‘Dynamic analysis and vibration control of nonlinear boring bar with fractional-order model of magnetorheological fluid‘, International Journal of Non-Linear Mechanics, Vol. 121, 2020, https://doi.org/10.1016/j.ijnonlinmec.2020.103459

R. Zhang, C. Yin, X. Luo, and Z. Wang, ‘The numerical analysis of the magnetorheological elastomer bulging for sheet metal‘, Procedia Manufacturing, Vol. 50, pp. 110-113, 2020, https://doi.org/10.1016/j.promfg.2020.08.020.

M. Janbaz, and H.S. Googarchin, ‘Experimental and numerical analysis on magneto-hyper-viscoelastic constitutive responses of magnetorheological elastomers: A characterisation procedure‘, Mechanics of Materials, Vol. 154, 2021, https://doi.org/10.1016/j.mechmat.2020.103712.

T.H. Nam, I. Petríkova, and B. Marvalova, ‘Experimental characterisation and viscoelastic modeling of isotropic and anisotropic magnetorheological elastomers‘, Polymer Testing, Vol. 81, pp. 1062-1072, 2020, https://doi.org/10.1016/j.polymertesting.2019.106272.

Downloads

Published

2021-06-22

How to Cite

Aguib, S., Roubah, S. ., Hadji, M., Kobzili, L., Noureddine, C., & Djedid, T. (2021). An experimental study of the dynamic properties of smart composite magnetorheological materials. Applied Research and Smart Technology (ARSTech), 2(1), 27–33. https://doi.org/10.23917/arstech.v2i1.218