The effects of diffuser profile on the performance of the liquid-gas ejector

Authors

  • Amat Agus Salim 1Department of Mechanical Engineering, Universitas Muhammadiyah Surakarta, Jalan Ahmad Yani, Pabelan, Surakarta, 57102, Indonesia
    Indonesia
  • Daru Sugati Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Jalan Babarsari, Caturtunggal, Depok, Sleman, Yogyakarta 55281, Indonesia
    Indonesia

DOI:

https://doi.org/10.23917/arstech.v4i2.1456

Keywords:

Diffuser, Divergence angle, Liquid-gas ejector, Tiered divergence angle, Nozzle

Abstract

Kinetic energy originating from liquid jets at high speed can be used as an energy source for liquid-gas ejector devices. An ejector is a tool often used to support one of the processes in the industry, such as vacuum process, desalination, distillation, and refrigeration. The ejector consists of several main components: the nozzle, suction chamber, mixing chamber or throat, and diffuser. These components influence each other, so that system performance is sensitive to the performance of these components. The diffuser functions as a dynamic head converter into a static head. Its performance is affected by its dimensions, so it needs to be investigated. This study aims to determine the effect profile of a diffuser with a divergence angle of 2β 7° and a diffuser with a tiered divergence angle of 2β. This study uses an experimental method with a motive flow pressure for the primary fluid of 201.32 kPa. This study found that changes in length and the angle of divergence of the diffuser affect the value of the pressure recovery coefficient and efficiency.

Downloads

Download data is not yet available.

References

J. Haidl, K. Mařík, T. Moucha, F. J. Rejl, L. Valenz, and M. Zednikova, "Hydraulic characteristics of liquid–gas ejector pump with a coherent liquid jet", Chemical Engineering Research and Design, vol. 168, pp. 435–442, 2021. https://doi.org/10.1016/j.cherd.2021.02.022

K. Zhang, X. Zhu, X. Ren, Q. Qiu, and S. Shen, "Numerical investigation on the effect of nozzle position for the design of high-performance ejector", Applied Thermal Engineering, vol. 126, pp. 594–601, 2017.https://doi.org/10.1016/j.applthermaleng.2017.07.085

R.S. Kumar, A. Mani, and S. Kumaraswamy, "Analysis of a jet-pump-assisted vacuum desalination system using power plant waste heat", Desalination, vol. 179, no. 1-3, pp. 345–354, 2005. https://doi.org/10.1016/j.desal.2004.11.081

G. Yuan, L. Zhang, H. Zhang, and Z. Wang, "Numerical and experimental investigation of the performance of the liquid-gas and liquid jet pumps in desalination systems", Desalination, vol. 276, no. 1–3, pp. 89–95, 2011. https://doi.org/10.1016/j.desal.2011.03.029

Y. Jia and C. Wenjian, "Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant", Energy Conversion Management, vol. 53, no. 1, pp. 240–246, 2012. https://doi.org/10.1016/j.enconman.2011.09.002

V.V. Chandra and M.R. Ahmed, "Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors", Energy Conversion Management, vol. 79, pp. 377–386, 2014. https://doi.org/10.1016/j.enconman.2013.12.035

V. Lijo, H.D. Kim, S. Matsuo, and T. Setoguchi, "A study of the supersonic ejector–diffuser system with an inlet orifice", Aerospace Science and Technology, vol. 23, no. 1, pp. 321–329, 2012. https://doi.org/10.1016/j.ast.2011.08.009

G.K. Alexis, "Estimation of ejector's main cross sections in the steam-ejector refrigeration system", Applied Thermal Engineering, vol. 24, no. 17–18, pp. 2657–2663, 2004. https://doi.org/10.1016/j.applthermaleng.2004.03.012

X. Long, N. Han, and Q. Chen, "Influence of nozzle exit tip thickness on the performance and flow field of jet pump", Journal of Mechanical Science and Technology, vol. 22, no. 10, pp. 1959–1965, 2008. https://doi.org/10.1007/s12206-008-0739-4

B.M. Tashtoush, M.A. Al-Nimr, and M.A. Khasawneh, "A comprehensive review of ejector design, performance, and applications", Applied Energy, vol. 240, pp. 138–172, 2019. https://doi.org/10.1016/j.apenergy.2019.01.185

J. Ren, C. Miao, Y. Wu, Q. Li, J. Xu, and L. Zhang, "Geometry dimension optimization of a liquid–gas vacuum ejector for MED-TVC system", Applied Thermal Engineering, vol. 214, p.118907, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118907

F. Kong, Y. Jin, T. Setoguchi, and H.D. Kim, "Numerical analysis of Chevron nozzle effects on the performance of the supersonic ejector-diffuser system", Journal of Thermal Science, vol. 22, no. 5, pp. 459–466, 2013. https://doi.org/10.1007/s11630-013-0648-4

G. Besagni, N. Cristiani, L. Croci, G.R. Guédon, and F. Inzoli, "Computational fluid-dynamics modeling of supersonic ejectors: Screening of modeling approaches, comprehensive validation, and assessment of ejector component efficiencies", Applied Thermal Engineering, vol. 186, 2021. https://doi.org/10.1016/j.applthermaleng.2020.116431

S. Vahaji, A.A. Akbarzadeh, A. Date, S.C.P. Cheung, and J.Y. Tu, "Efficiency of a two-phase nozzle for geothermal power generation", Applied Thermal Engineering, vol. 73, no. 1, pp. 229–237, 2014. https://doi.org/10.1016/j.applthermaleng.2014.07.055

R.L. Yadav and A.W. Patwardhan, "Design aspects of ejectors: Effects of suction chamber geometry", Chemical Engineering Science, vol. 63, no. 15, pp. 3886–3897, 2008. https://doi.org/10.1016/j.ces.2008.04.012

S. Shen, X. Qu, B. Zhang, S. Riffat, and M. Gillott, "Study of a gas-liquid ejector and its application to a solar-powered bi-ejector refrigeration system", Applied Thermal Engineering, vol. 25, no. 17–18, pp. 2891–2902, 2005. https://doi.org/10.1016/j.applthermaleng.2005.02.012

V. Lijo, H.D. Kim, G. Rajesh, and T. Setoguchi, "Numerical simulation of transient flows in a vacuum ejector-diffuser system", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 224, no. 7, pp. 777–786, 2010. https://doi.org/10.1243/09544100JAERO680

F. Kong and H.D. Kim, "Analytical and computational studies on the performance of a two-stage ejector-diffuser system", International Journal of Heat and Mass Transfer, vol. 85, pp. 71–87, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.117

J.J. Wang and F. Chen, "On the start condition of a second-throat ejector-diffuser", The Aeronautical Journal, vol. 100, no. 998, pp. 321–326. 1996. https://doi.org/10.1017/S0001924000067026

E.T.V. Dauricio and C.R. de Andrade, "Numerical analysis of swirl effects on conical diffuser flows", Journal of Aerospace Technology and Management, vol. 9, no. 1, pp. 91–100, 2017. https://doi.org/10.5028/jatm.v9i1.674

B.H. Park, J.H. Lim, and W. Yoon, "Fluid dynamics in starting and terminating transients of zero-secondary flow ejector," International Journal of Heat Fluid Flow, vol. 29, no. 1, pp. 327–339, 2008, https://doi.org/10.1016/j.ijheatfluidflow.2007.06.008

M. Elkady, A, Karameldin, E.S. Negeed, and R. El-Bayoumy, "Experimental investigation of the effect of ejector geometry on its performance", International Journal of Nuclear Desalination, vol. 3, no. 2, pp.215–229, 2008. https://doi.org/10.1504/IJND.2008.020226.

V. Lijo, H.D. Kim, S. Matsuo, and T. Setoguchi, "A study of the supersonic ejector-diffuser system with an inlet orifice", Aerospace Science and Technology, vol. 23, no. 1, pp. 321–329. 2012. https://doi.org/10.1016/j.ast.2011.08.009

K. Chunnanond and S. Aphornratana, "Ejectors: Applications in refrigeration technology", Renewable and Sustainable Energy Reviews, vol. 8, no. 2. pp. 129–155, 2004. https://doi.org/10.1016/j.rser.2003.10.001

F. Kong and H. D. Kim, "Optimization study of a two-stage ejector-diffuser system", International Journal of Heat and Mass Transfer, vol. 101, pp. 1151–1162, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.129

T. Sriveerakul, S. Aphornratana, and K. Chunnanond, "Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries", International Journal of Thermal Sciences, vol. 46, no. 8, pp. 823–833, 2007. https://doi.org/10.1016/j.ijthermalsci.2006.10.012

D. Sugati, I. Indarto, P. Purnomo, and S. Sutrisno, "Performance of conical diffuser on liquid jet gas ejector", Applied Mechanics and Materials, vol. 493, pp. 145–150, 2014. https://doi.org/10.4028/www.scientific.net/AMM.493.145.

R.S. Neve, "Diffuser performance in two-phase jet pumps", International Journal of Multiphase Flow, vol. 17, pp. 267–272, 1991. https://doi.org/10.1016/0301-9322(91)90019-Y

T. Ando, T. Shakouchi, H. Yamamoto, and K. Tsujimoto, "Control of flow separation and drag reduction of abrupt expansion pipe", Nippon Kikai Gakkai Ronbunshu B Hen(Transactions of the Japan Society of Mechanical Engineers Part B), 18(5), pp.1125–1130, 2006. https://doi.org/10.1299/KIKAIB.72.1125

E.M. Sparrow, J.P. Abraham, and W.J. Minkowycz, "Flow separation in a diverging conical duct: Effect of Reynolds number and divergence angle", International Journal of Heat and Mass Transfer, vol. 52, no. 13–14, pp. 3079–3083, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.010

R.K. Dewi and A. Subari, "Rancang bangun aplikasi pengukuran tinggi badan, berat badan, suhu tubuh, dan tekanan darah berbasis miktrokontroler ATMEGA16", Gema Teknologi, vol. 17, no. 1, p. 43–52, 2012. https://doi.org/10.14710/gt.v17i1.8916

D. Sugati, I. Indarto, P. Purnomo, and S. Sutrisno, "Kinerja liquid-gas ejector: efek dari diffuser ratio", Proceedings of Seminar Nasional Tahunan Teknik Mesin XIII (SNTTM XIII), 2014. http://prosiding.bkstm.org/prosiding/2014/EC-36.pdf

R.¬G. Cunningham, "Liquid jet pumps for two-phase flows", Journal Fluids Engineering, vol. 117, pp 309–316, 1995. https://doi.org/10.1115/1.2817147.

Downloads

Published

2023-11-29

How to Cite

Salim, A. A., & Sugati, D. (2023). The effects of diffuser profile on the performance of the liquid-gas ejector. Applied Research and Smart Technology (ARSTech), 4(2), 64–71. https://doi.org/10.23917/arstech.v4i2.1456