Assessing Spatiotemporal Dynamics of AI-based Land Use and Land Cover through Sentinel-2 Time-Series Imagery: A Case Study of the Shimbay District, Republic of Karakalpakstan, Uzbekistan
DOI:
https://doi.org/10.23917/forgeo.8724Keywords:
Land Cover, Land Use, GIS, Remote sensing, Sentinel-2, Accuracy assessment, ShimbayAbstract
Land use and land cover (LULC) change is a vital indicator of environmental transformation and sustainable land management, particularly in arid and semi-arid regions such as Karakalpakstan. Although several studies have explored LULC dynamics across Central Asia, most have focused on large-scale or regional assessments, leaving a gap in district-level analyses that capture localized land transformation processes. This study addresses this gap by examining the temporal dynamics of LULC in the Shimbay district, one of the most populous districts in the northern part of the Republic of Karakalpakstan, Uzbekistan. The research aims to identify changes in LULC using Sentinel-2 satellite imagery over 6 years, from 2017 to 2022. The study area was selected based on 10 years of government “Land Fund” data, indicating significant changes in bare land. The satellite images and field measurements were analyzed using ArcGIS 10.4.1. LULC was categorized into five classes: water bodies; vegetation and agricultural land (including flooded mangroves, emergent vegetation, paddy fields, irrigated agricultural lands, cereals, grasses, and non-tree crops); built-up areas; saline land; and bare land. Following classification, 100 random sample points were generated in ArcGIS and verified using Google Earth Pro to ensure classification accuracy. The results showed that the overall accuracy of the LULC classification was 81% (Kappa coefficient= 0.74) in 2017 and 71% (Kappa coefficient= 0.66) in 2022, both considered within the “substantial” agreement range. The most significant change occurred in vegetation and agricultural lands, with 13,183.38 ha (9.4% of the study area) converted into bare land. These findings provide a detailed understanding of landscape transformation in the Shimbay district and offer policymakers and planners valuable insights to enhance sustainable land management and prevent further land degradation.
Downloads
References
Acar, R.U., Zengi̇N, E. (2023). Performance assessment of Landsat 8 and Sentinel-2 satellite images for the production of time series land use/land cover (LULC) maps. J. Sci. Rep.-Rep. -A, 1–15. doi: 10.59313/jsr-a.1213548
Aslanov, I., Jumaniyazov, I., Embergenov, N., Allanazarov, K., Khodjaeva, G., Joldasov, A., Alimova, S. (2023). Re-mote Sensing for Land Use Monitoring in the Suburban Areas of Tashkent, Uzbekistan, XV International Scientific Conference “INTERAGROMASH 2022, Lecture Notes in Networks and Systems. Springer Interna-tional Publishing, Cham, 1899–1907. doi: 10.1007/978-3-031-21219-2_211
Aziz, G., Minallah, N., Saeed, A., Frnda, J., Khan, W., (2024). Remote sensing basedsensing-based forest cover classifi-cation using machine learning. Sci. Rep. 14, 69. doi: 10.1038/s41598-023-50863-1
Bekanov, K., Safarov, E., Prenov, S., Uvraimov, S., & Yusupov, B. (2020). Creating land use/land cover map using methods gis and remote sensing (on the example the chimbay district of the karakalpakstan republic). Interna-tional Journal of Pharmaceutical Research, 12(3), 1704-1708. doi: 10.31838/ijpr/2020.12.03.231
Bekanov, K., Safarov, E., Prenov, Sh., Uvraimov, S., Yusupov, B. (2020). Creating land use / land cover map using methods gis and remote sensing (on the example the chimbay district of the karakalpakstan republic). Int. J. Pharm. Res. 9(3), 12. doi: 10.31838/ijpr/2020.12.03.231
Blanka, V., Par Johan, A., (2015). New sensors benchmark report on Sentinel-2A. Commission of the European Union. Joint Research Centre. Institute for the Protection and the Security of the Citizen..Citizen. Publications Office, LU.
City Population. (2025). Uzbekistan: Administrative Division. Retrieved from https://www.citypopulation.de/en/uzbekistan/admin/
Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ, 37, 35–46. doi: 10.1016/0034-4257(91)90048-B
Deb, D.S.K., Nathr, R.K. (2012). Land use/cover classification- An introduction review and comparison. Retrieved from https://globaljournals.org/GJRE_Volume12/2-Land-usecover-classification-An-introduction-review.pdf
Delwart, S. (2015). ESA Standard Document.
Dhakal, S., Kandel, S., Puri, L., Shrestha, S. (2022). Assessment on Land Use Land Cover Mapping:Mapping : Sentinel-2 Versus Landsat-9. For. J. Inst. For. Nepal, 19, 56–63. doi: 10.3126/forestry.v19i01.55704
Esri. (2025). Sentinel-2 10m Land Use/Land Cover Time Series [ArcGIS Online dataset]. Retrieved from https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d
Fatima, N., Javed, A. (2021). Assessment of Land Use Land Cover Change Detection Using Geospatial Techniques in Southeast Rajasthan. Journal of Geoscience and Environment Protection, 09(12), 299–319. doi : 10.4236/gep.2021.912018
Foody, G.M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the ac-curacy of thematic maps obtained by image classification. Remote Sens. Environ, 239, 111630. doi: 10.1016/j.rse.2019.111630
Gebeyehu, A.E., Chunju, Z., Yihong, Z. (2019). Assessment and Mapping of Land Use Change by Remote Sensing and GIS:GIS : A Case Study of Abaya Chamo Sub-basin, Ethiopia. Nat. Environ. Pollut. Technol., 18.
He, H., Yan, J., Liang, D., Sun, Z., Li, J., Wang, L., (2024). Time-series land cover change detection using deep learning-based temporal semantic segmentation. Remote Sens. Environ, 305, 114101. doi: 10.1016/j.rse.2024.114101
Htitiou, A., Boudhar, A., Chehbouni, A., Benabdelouahab, T. (2021). National-Scale Cropland Mapping Based on Phe-nological Metrics, Environmental Covariates, and Machine Learning on Google Earth Engine. Remote Sensing, 13(21), 4378. doi: 10.3390/rs13214378
Islami, F.A., Tarigan, S.D., Wahjunie, E.D., Dasanto, B.D. (2022). Accuracy Assessment of Land Use Change Analysis Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conf. Ser. Earth Environ. Sci., 950, 012091. doi: 10.1088/1755-1315/950/1/012091
Juliev, M., Pulatov, A., Fuchs, S., Hübl, J., (2019). Analysis of Land Use Land Cover Change Detection of Bostanlik Dis-trict, Uzbekistan. Pol. J. Environ. Stud., 28, 3235–3242. doi: 10.15244/pjoes/94216
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel 2 and deep learning. In 2021 IEEE international geoscience and remote sensing symposium IGARSS. IEEE, 4704-4707.
Kumari, A., Karthikeyan, S. (2023). Sentinel-2 Data for Land Use/Land Cover Mapping:Mapping : A Meta-analysis and Review. SN Comput. Sci., 4, 815. doi: 10.1007/s42979-023-02214-0
Kwan, C., Ayhan, B., Budavari, B., Lu, Y., Perez, D., Li, J., Bernabe, S., Plaza, A. (2020). Deep Learning for Land Cover Classification Using Only a Few Bands. Remote Sensing, 12, 2000. doi: 10.3390/rs12122000
Li, K., Cao, X., Meng, D., 2024. A New Learning Paradigm for Foundation Model-Based Remote-Sensing Change De-tection. IEEE Trans. Geosci. Remote Sensing, 62, 1–12. doi: 10.1109/TGRS.2024.3365825
Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., Qiao, Z. (2020). Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ., 239, 111624. doi: 10.1016/j.rse.2019.111624
Luo, C., Zhang, X., Wang, Y., Men, Z., Liu, H. (2022). Regional soil organic matter mapping models based on the opti-mal time window, feature selection algorithm and Google Earth Engine. Soil Tillage Res., 219, 105325. doi: 10.1016/j.still.2022.105325
Makar R. S., Shahin Sahar A., El-Nazer Mostafa., Wheida Ali. (2022). Development of a PCA-based land use/land co-ver classification utilizing Sentinel-2time series. Middle East Journal of Agriculture Research, 11(2), 630-637. doi: 10.36632/mejar/2022.11.2.42
Maxwell, A.E., Warner, T.A., Fang, F., (2018). Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens., 39, 2784–2817. doi: 10.1080/01431161.2018.1433343
McHugh, M.L. (2012). Interrater reliability: the kappa statistic. Biochem. Medica, 276–282. doi: 10.11613/BM.2012.031
Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S.M.M., Borz, S.A. (2022). Land Use and Land Cover Mapping Using Sen-tinel-2, Landsat-8 Satellite Images, and Google Earth Engine:Engine : A Comparison of Two Composition Methods. Remote Sens., 14, 1977. doi: 10.3390/rs14091977
Nedd, R., Light, K., Owens, M., James, N., Johnson, E., Anandhi, A., (2021). A Synthesis of Land Use/Land Cover Stu-dies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Land-scape. Land, 10, 994. doi: 10.3390/land10090994
Pande, C.B., Moharir, K.N., Khadri, S.F.R., (2021). Assessment of land-use and land-cover changes in Pangari wa-tershed area (MS), India, based on the remote sensing and GIS techniques. Appl. Water Sci., 11, 96. doi: 10.1007/s13201-021-01425-1
Pande, Dr.C. (2022). Land Use/Land Cover and Change Detection mapping in Rahuri watershed area (MS), India using the Google Earth Engine and Machine Learning Approach. Geocarto International, 37(26). doi: 10.1080/10106049.2022.2086622
Paudel, B., Zhang, Y., Li, S., Liu, L., Wu, X., Khanal, N.R. (2016). Review of studies on land use and land cover change in Nepal. J. Mt. Sci., 13, 643–660. doi: 10.1007/s11629-015-3604-9
Pelletier, C., Webb, G., Petitjean, F., (2019). Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sensing, 11, 523. doi: 10.3390/rs11050523
Peng, M., Liu, Y., Khan, A., Ahmed, B., Sarker, S.K., Ghadi, Y.Y., Bhatti, U.A., Al-Razgan, M., Ali, Y.A., (2024). Crop monitoring using remote sensing land use and land change data: Comparative analysis of deep learning methods using pre-trained CNN models. Big Data Res. 36, 100448. https://doi.org/10.1016/j.bdr.2024.100448
Pogoda i Klimat. (2025). Weather and climate data. Retrieved from http://www.pogodaiklimat.ru/
Rakhmonov, S., Umurzakov, U., Rakhmonov, K., Bozarov, I., Karamatov, O., (2021). Land Use and Land Cover Change in Khorezm, Uzbekistan. E3S Web Conf., 227, 01002. doi: 10.1051/e3sconf/202122701002
Salman, Md.A., Nomaan, Md.S.S., Sayed, S., Saha, A., Rafiq, M.R., (2020). Land use and land cover change detection by using remote sensing and GIS technology in Barishal district, Bangladesh. Earth Sci. Malays, 5, 33–40. doi: 10.26480/esmy.01.2021.33.40
Sefrin, O., Riese, F.M., Keller, S., (2020). Deep Learning for Land Cover Change Detection. Remote Sens, 13, 78. doi: 10.3390/rs13010078
Skidmore, A.K., Stein, A., Van Der Meer, F., Gorte, B. (1999). Accuracy assessment of spatial information, in Spatial Statistics for Remote Sensing, Remote Sensing and Digital Image Processing. Springer Netherlands, Dordrecht, 197–209. doi: 10.1007/0-306-47647-9_12
Tejasree, G., Agilandeeswari, L., (2024). Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images. Egypt. J. Remote Sens. Space Sci. 27, 52–68. https://doi.org/10.1016/j.ejrs.2024.01.004
Teshager, Z., & Abeje, K. (2021). GIS and Remote Sensing based Land Us e/Land Cover Change Detection: The Case of Kility Watershed. J Remote Sens GIS, 10(3). doi: 10.35248/2469-4134.21.10.282
UN. (2019). Sustainable Development Goals Report. Retrieved from https://unstats.un.org/sdgs/report/2019/
Vajsova, B., & Aastrand, P. (2015). New sensors benchmark report on Sentinel-2A. Retrieved from https://ec.europa.eu/jrc
Vaughn, I. (2019). Landsat 8 (L8) Data Users. Handbook. Retrieved From https://www.usgs.gov/media/files/landsat-8-data-users-handbook
Wulansari, H. (2017). Uji Akurasi Klasifikasi Penggunaan Lahan Dengan Menggunakan Metode Defuzzifikasi Maxi-mum Likelihood Berbasis Citra Alos Avnir-2. BHUMI J. Agrar. Dan Pertanah., 3, 98. doi: 10.31292/jb.v3i1.233
Xu, P., Tsendbazar, N.-E., Herold, M., De Bruin, S., Koopmans, M., Birch, T., Carter, S., Fritz, S., Lesiv, M., Mazur, E., Pickens, A., Potapov, P., Stolle, F., Tyukavina, A., Van De Kerchove, R., Zanaga, D., 2024. Comparative vali-dation of recent 10 m-resolution global land cover maps. Remote Sens. Environ, 311, 114316. doi: 10.1016/j.rse.2024.114316
Zaabar, N., Niculescu, S., Mihoubi, M.K. (2023). Assessment of Land Cover Changes in the Allala Watershed Based on Object Based Image Analysis Using Landsat and Sentinel-2 Images, in:in : Niculescu, S. (Ed.), European Spa-tial Data for Coastal and Marine Remote Sensing. Springer International Publishing, Cham, 81–96. doi: 10.1007/978-3-031-16213-8_5
Zafar, Z., Zubair, M., Zha, Y., Fahd, S., Ahmad Nadeem, A., (2024). Performance assessment of machine learning algo-rithms for mapping of land use/land cover using remote sensing data. Egypt. J. Remote Sens. Space Sci. 27, 216–226. doi: 10.1016/j.ejrs.2024.03.003
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2026 Ilyaskhoja Jumaniyazov, Mukhiddin Juliev, Mamanbek Reimov, Rustam Oymatov, Aziz Inamov, Begench Yunusov, Dilbar Abdramanova

This work is licensed under a Creative Commons Attribution 4.0 International License.

















