Assessing the Heat Vulnerability Index (HVI) in Klang Valley Using Principal Component Analysis (PCA) and an Equal-Weighted Approach

Authors

DOI:

https://doi.org/10.23917/forgeo.v39i2.8633

Keywords:

Heat Vulnerability Index (HVI), Principal Component Analysis (PCA), Equal Weighted Index (EWI)

Abstract

Urbanisasi telah menyebabkan lebih dari 50% populasi global tinggal di daerah perkotaan, berkontribusi pada modifikasi signifikan dalam iklim perkotaan yang memperburuk efek buruk perubahan iklim, khususnya pada kesehatan manusia. Studi ini bertujuan untuk menilai Indeks Kerentanan Panas (HVI) di Lembah Klang, Malaysia, menggunakan Analisis Komponen Utama (PCA) dan Indeks Tertimbang Setara (EWI). Selanjutnya membandingkan kedua metode untuk menentukan mana yang lebih efektif mencerminkan konteks lingkungan dan sosial-ekonomi wilayah tersebut. Berfokus pada suhu permukaan tanah sebagai paparan, variabel sensitivitas dan adaptif lainnya ditriangulasi di mana indeks kerentanan panas dikembangkan. Temuan menunjukkan wilayah lembah Klang memiliki tingkat kerentanan yang bervariasi terhadap tekanan panas, dengan kota yang paling terdampak adalah Kuala Lumpur dan Petaling karena faktor sensitivitas paparan dan kapasitas adaptif. Seperti yang dapat dilihat, HVI-PCA mencakup 7,06% untuk Sangat Rendah, 12,87% untuk Rendah, 54,82% untuk Sedang, 14,99% untuk Tinggi, dan 10,26% untuk kerentanan Sangat Tinggi, sementara HVI-EWI mewakili Sangat Rendah pada 6,62%, Rendah pada 51,29%, Sedang pada 26,86%, Tinggi pada 15,22% dan Sangat Tinggi pada 0,02%. Perbedaan-perbedaan ini menggarisbawahi pentingnya pilihan metodologis, di mana PCA mendukung ketahanan empiris berdasarkan metode berbasis data. Pada saat yang sama, EWI cocok ketika konsensus ahli kurang atau ketika kesederhanaan dan dukungan pemangku kepentingan yang luas diperlukan. Rekomendasi termasuk memaksimalkan representasi indikator untuk penilaian yang akurat dan perencanaan perkotaan yang tangguh terhadap stresor terkait panas. Studi ini dapat berfungsi sebagai HVI dasar dari area studi, yang memungkinkan pengembangan teknik pencegahan untuk mengurangi kondisi panas ekstrem.

Downloads

Download data is not yet available.

References

Akbari, M., Fuladi, A., Shamsoddini, A., Jafarpour Ghalehteimouri, K., & Bidel, H. (2024). Enhancing Urban Livability in District 22 of Tehran: A Study on the Impact of Efficient Fuels Using Fuzzy Delphi and Cross-Impact Analysis Methods. Forum Geografi, 38(3), 395–412. doi: 10.23917/forgeo.v38i3.5185

Bayomi, N., & Fernandez, J. E. (2023). Quantification of heat vulnerability using system dynamics. Frontiers in Built Environment, 9. doi: 10.3389/fbuil.2023.102548

Cresswell, K. (2023). A Florida Urban Heat Vulnerability Index: Assessing Weighting and Aggregation Approaches. SSRN, 4454161. doi: 10.2139/ssrn.4454161

Dewa, H. P. N., Nirwansyah, A. W., Dewi, R. S., & Demirdag, I. (2023). Vulnerability Analysis of School Buildings to Tsunami in the Cilacap Coastal Area. Forum Geografi, 37(2). doi: 10.23917/forgeo.v37i2.23269

Helbling, M. and Meierrieks, D. (2023). Global warming and urbanization. J Popul Econ, 36, 1187–1223. doi: 10.1007/s00148-022-00924-y

Isa, N. A., Wan Mohd, W. M. N., and Salleh, S. A. (2017). The effects of built-up and green areas on the land surface temperature of the Kuala Lumpur City. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 107–112. doi: 10.5194/isprs-archives-XLII-4-W5-107-2017

Isa, N. A., Wan Mohd, W. M. N., Salleh, S. A., and Ooi, M. C. G. (2018). The effects of green areas on air surface temperature of the Kuala Lumpur city using WRF-ARW modelling and Remote Sensing technique. IOP Conference Series: Earth and Environmental Science, 117(1). doi: 10.1088/1755-1315/117/1/012012

Jimenez-Munoz, J. C., Cristobal, J., Sobrino, J. A., Soria, G., Ninyerola, M. and Pons, X. (2009). Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data, IEEE Transactions on Geoscience and Remote Sensing, 47 (1), 339-349, doi: 10.1109/TGRS.2008.2007125.

Kasihairani, D., Hidayat, R., & Supari, S. (2024). Assessing the Reliability of Predicted Decadal Surface Temperatures in Southeast Asia. Forum Geografi, 38(3), 413–425. doi: 10.23917/forgeo.v38i3.5402

Kayal, P., & Chowdhury, I. R. (2025a). Understanding climate change effects on integrated agricultural livelihoods: a PCA-based vulnerability assessment in Gosaba Block, West Bengal, India. Environment, Development and Sustainability, 1-36. doi: 10.1007/s10668-025-05970-6

Kayal, P., & Chowdhury, I. R. (2025b). From challenges to opportunities: uncovering spatial patterns and key determinants of sustainable livelihood development in rural West Bengal. SN Social Sciences, 5(3). doi: 10.1007/s43545-025-01058-0

Kotak, Y., Gul, M. S., Muneer, T., & Ivanova, S. M. (2015, April). Investigating the impact of ground albedo on the performance of PV systems. In Proceedings of the CIBSE Technical Symposium, London, UK (pp. 16-17).

Latif, S. Z. A., Salleh, S. A., Salim, P. M., Saraf, N. M., Halim, M. A., Idris, A. N., Mustaha, E., & Pintor, L. (2023). The Exploratory Study of Normalized Indicator of Heat Vulnerability Index (HVI) By Using Functional Relationship. IOP Conference Series: Earth and Environmental Science, 1240(1), 012009. doi: 10.1088/1755-1315/1240/1/012009

Li, F., Yigitcanlar, T., Nepal, M., Thanh, K. N., & Dur, F. (2024). A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights. Remote Sensing, 16(16), 3032. doi: 10.3390/rs16163032

Lourdes K. T., Gibbins, C. N., Sherrouse, B. C., Semmens, D. J., Hamel, P., Sanusi, R., Azhar, B., Diffendorfer, J., Lechner, A. M. (2024). Mapping development preferences on the perceived value of ecosystem services and land use conflict and compatibility in Greater Kuala Lumpur. Urban Forestry & Urban Greening, 92 (2024), 128183, doi: 10.1016/j.ufug.2023.128183

Man, N & Abd Majid, N. (2024). Urban Landscape Changes and Land Use Patterns: The Impact of Mass Rapid Transit (MRT) System Construction in the Context of Development in the Klang Valley between 2010 and 2020. International Journal of Academic Research in Business and Social Sciences, 14, doi: 10.6007/IJARBSS/v14-i4/20838

Muhamad, S. N., How, V., Lim, F. L., Md Akim, A., Karuppiah, K., & Mohd Shabri, N. S. A. (2024). Assessment of heat stress contributing factors in the indoor environment among vulnerable populations in Klang Valley using principal component analysis (PCA). Scientific Reports, 14(1). doi: 10.1038/s41598-024-67110-w

Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C., Pantea, C. I., ... & Hwang, S. A. (2018). Development of a heat vulnerability index for New York State. Public health, 161, 127-137. doi: 10.1016/j.puhe.2017.09.006

Noori, S., Mohammadi, A., Miguel Ferreira, T., Ghaffari Gilandeh, A., & Mirahmadzadeh Ardabili, S. J. (2023). Modelling and Mapping Urban Vulnerability Index against Potential Structural Fire-Related Risks: An Integrated GIS-MCDM Approach. Fire, 6(3), 107. doi: 10.3390/fire6030107

Paterson, S.K. and Godsmark C. N. (2020). Heat-health vulnerability in temperate climates: lessons and response options from Ireland. Global Health, 16(29). doi: 10.1186/s12992-020-00554-7

Piczak, M. L., Perry, D., Cooke, S. J., Harrison, I., Benitez, S., Koning, A., Peng, L., Limbu, P., Smokorowski, K. E., Salinas-Rodriguez, S., Koehn, J. D., and Creed, I. F. (2023). Protecting and restoring habitats to benefit freshwater biodiversity. Environmental Reviews, 32(3), 438-456. doi: 10.1139/er-2023-0034

Qureshi, A. M., & Rachid, A. (2022). Heat Vulnerability Index Mapping: A Case Study of a Medium-Sized City (Amiens). Climate, 10(8), 113. doi: 10.3390/cli10080113

Ramli, M., & Alias, N. (2024). Multidimensional Vulnerability Mapping Using GIS and Catastrophe Theory. International Journal of Geoinformatics, 20(8), 1–16. doi: 10.52939/ijg.v20i8.3443

Salleh, S. A., Isa, N. A., Siman, N. A., Zakaria, N. H., Pintor, L. L., Yaman, R., & Che Dom, N. (2023). The Development of the Vulnerability Index (VI) using Principal Component Analysis (PCA). International Journal of Sustainable Construction Engineering and Technology, 14(5), 16-36.

Salleh, S. A., Latif, Z. A., Pradhan, B., Wan Mohd, W. M. N., & Chan, A. (2013). Functional relation of land surface albedo with climatological variables: a review on remote sensing techniques and recent research developments. Geocarto International, 29(2), 147–163. doi: 10.1080/10106049.2012.748831

Salleh, S. A., Latif, Z. A., Chan, A., Morris, K. I., Ooi, M. C. G., & Mohd, W. M. N. W. (2015). Weather Research Forecast (WRF) modification of land surface albedo simulations for urban Near Surface Temperature. 2015 International Conference on Space Science and Communication (IconSpace), 243–247. doi: 10.1109/iconspace.2015.7283787

Soomar, S. M. and Soomar S. M. (2023). Identifying factors to develop and validate a heat vulnerability tool for Pakistan – A review. Clinical Epidemiology and Global Health, 19. doi: 10.1016/j.cegh.2023.101214

Szabó, S., Gácsi, Z., & Balázs, B. (2016). Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landscape & Environment, 10(3–4), 194–202. doi: 10.21120/le/10/3-4/13

Tesfamariam, S., Govindu, V., & Uncha, A. (2024). Urban ecology in the context of urban heat island vulnerability potential zone mapping: the case of Mekelle city, Ethiopia. Frontiers in Climate, 6. doi: 10.3389/fclim.2024.1446048

Tomlinson, C. J., Chapman, L., Thornes, J. E., and Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: A review. In Meteorological Applications, 18(3), 296–306. doi: 10.1002/met.287

U.S. Environmental Protection Agency (EPA) and Centers for Disease Control and Prevention (CDC). (2016). Climate Change and Extreme Heat: What You Can Do to Prepare. Retrieved from https://www.epa.gov/sites/default/files/2016-10/documents/extreme-heat-guidebook.pdf

Wenwen Cheng, Dongying Li, and Zhixin Liu, R. D. B. (2021). Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of The Total Environment, 799. doi: 10.1016/j.scitotenv.2021.149417

Wong, L. P., Alias, H., Aghamohammadi, N., Aghazadeh, S., Nik Sulaiman, N. M. (2017). Urban heat island experience, control measures and health impact: A survey among working community in the city of Kuala Lumpur. Sustainable Cities and Society, 35, 660-668, doi: 10.1016/j.scs.2017.09.026

Xue Liu, Wenze Yue, Xuchao Yang, Kejia Hu andWei Zhang, M. H. (2020). Mapping Urban Heat Vulnerability of Extreme Heat in Hangzhou via Comparing Two Approaches. Complexity, 2020(1), 9717658. doi: 10.1155/2020/9717658

Zha, F., Lu, L., Wang, R., Zhang, S., Cao, S., Baqa, M. F., Li, Q., & Chen, F. (2024). Understanding fine-scale heat health risks and the role of green infrastructure based on remote sensing and socioeconomic data in the megacity of Beijing, China. Ecological Indicators, 160, 111847. doi: 10.1016/j.ecolind.2024.111847

Zhang, X., Long, Q., Kun, D., Yang, D., & Lei, L. (2022). Comprehensive Risk Assessment of Typical High-Temperature Cities in Various Provinces in China. International Journal of Environmental Research and Public Health, 19(7), 4292. doi: 10.3390/ijerph19074292

Downloads

Submitted

2025-02-09

Accepted

2025-06-17

Published

2025-07-29

Issue

Section

Research article