Volcanic Pumice Rafts at Sea: Buoyancy and Infiltration with Micro-particles
DOI:
https://doi.org/10.23917/forgeo.v39i1.7463Keywords:
Pumice, Pumice Rafts, Ocean Wastes, Marine EcosystemsAbstract
Pumice, characterised by its high vesicularity, often forms pumice rafts as it floats on water. Although the vast majority of research has focused on understanding the behavior of pumice rafts, studies on the water infiltration properties of pumice remain scarce. Moreover, the influence of underwater particles, such as microplastics in the ocean, on water infiltration through the pores of pumiceous materials is still unclear. Therefore, this study investigates the water infiltration properties of pumice mate-rials and their behavior in different aqueous environments through laboratory experiments using pumiceous rocks (En-a, originating from Mount Eniwa) from the 2018 Hokkaido Eastern Iburi earthquake site. Experiments were conducted in both still and slurry water conditions to examine the effects of particle size and sediment concentration on water infiltration rates. Results showed that density variations follow a two-phase pattern: a rapid initial increase (+0.43 g/cm³ and 0.3931 g/cm³ in the first 30s for small and large pumice, respectively) followed by a plateau phase (+0.022 g/cm³ and 0.0197 g/cm³ in the next 60s). Statistical analysis revealed significant differences in infiltration rates based on particle size in still water conditions, with smaller pumices showing more heterogeneous infiltration pathways. While sediment presence in slurry conditions did not significantly affect overall infiltration rates, it led to more stable data dispersion, particularly in larger samples. The study also pro-poses a statistical framework for modeling pumice behavior, incorporating parameters such as vesicularity, particle concentration, and temperature. These findings suggest that current pumice raft models need refinement to account for size-dependent infiltration behaviors and the influence of underwater particles, with implications for understanding the transport and environmental impact of pumice rafts in marine environments.
Downloads
References
Bryan, S. E., Cook, A., Evans, J. P., Colls, P. W., Wells, M. G., Lawrence, M. G., Jell, J. S., Greig, A., & Leslie, R. (2004). Pumice rafting and faunal dispersion during 2001–2002 in the Southwest Pacific: Record of a dacitic subma-rine explosive eruption from Tonga. Earth and Planetary Science Letters, 227(1–2), 135–154. doi: 10.1016/j.epsl.2004.08.009
Bryan, W. B. (1968). Low-potash dacite drift pumice from the Coral Sea. Geological Magazine, 105(5), 431–439. doi: 10.1017/S0016756800054819
Casadevall, T.J. (1993). Volcanic Hazards and Aviation Safety: Lessons of the Past Decade. Flight Safety Digest.
Christmann, C., Nunes, R.R., Schmitt, A.R., & Guffanti, M. (2017). Flying into Volcanic Ash Clouds: An Evaluation of
Hazard Potential. The North Atlantic Treaty Organization, Vilnius, Lithuania.
Fiske, R. S., Cashman, K. V., Shibata, A., & Watanabe, K. (1998). Tephra dispersal from Myojinsho, Japan, during its
shallow submarine eruption of 1952-1953. Bulletin of Volcanology, 59(4), 262–275. doi: 10.1007/s004450050190
Global Volcanism Program. (2024). [Database] Volcanoes of the World (v. 5.2.4; 21 Oct 2024). Distributed by Smith-sonian Institution, compiled by Venzke, E. doi: 10.5479/si.GVP.VOTW5-2024.5.2
Gudmundsson F, Ingolfsson A (1967) Goose barnacles (Lepas spp.) on Surtsey pumice. Náttúrufraedingurinn, 37, 57-60.
Jokiel, P. L., & Cox, E. F. (2003). Drift pumice at Christmas Island and Hawaii: Evidence of oceanic dispersal patterns. Marine Geology, 202(3–4), 121–133. doi: 10.1016/S0025-3227(03)00288-3
Jutzeler, M., Marsh, R., Carey, R. J., White, J. D. L., Talling, P. J., & Karlstrom, L. (2014). On the fate of pumice rafts formed during the 2012 Havre submarine eruption. Nature Communications, 5(1), 3660. doi: 10.1038/ncomms4660
Maeno, F., Kaneko, T., Ichihara, M., Suzuki, Y., Yasuda, A., Nishida, K., & Ohminato, T. (2022). First timeseries record of a large-scale silicic shallow-sea phreatomagmatic eruption. Retrieved From https://www.researchsquare.com/article/rs-1272855/v1
Majcen, A., Gohla, J., Steinhoff, A. S., Meißner, L., Tassoti, S., & Spitzer, P. (2024). Fractionating microplastics by densi-ty gradient centrifugation: A novel approach using LuerLock syringes in a low-cost density gradient maker. Chemistry Teacher International, 6(3), 259–267. doi: 10.1515/cti-2023-0079
Manville, V., Segschneider, B., & White, J. D. L. (2002). Hydrodynamic behaviour of Taupo 1800a pumice: Implica-tions for the sedimentology of remobilized pyroclasts. Sedimentology, 49(5), 955–976. doi: 10.1046/j.1365-3091.2002.00485.x
Manville, V., White, J. D. L., Houghton, B. F., & Wilson, C. J. N. (1998). The saturation behaviour of pumice and some sedimentological implications. Sedimentary Geology, 119(1–2), 5–16. doi: 10.1016/S0037-0738(98)00057-8
Murch, A. P., White, J. D. L., Barreyre, T., Carey, R. J., Mundana, R., & Ikegami, F. (2020). Volcaniclastic Dispersal Dur-ing Submarine Lava Effusion: The 2012 Eruption of Havre Volcano, Kermadec Arc, New Zealand. Frontiers in Earth Science, 8, 237. doi: 10.3389/feart.2020.00237
Murch, A. P., White, J. D. L., & Carey, R. J. (2019). Characteristics and Deposit Stratigraphy of Submarine-Erupted Silic-ic Ash, Havre Volcano, Kermadec Arc, New Zealand. Frontiers in Earth Science, 7, 1. doi: 10.3389/feart.2019.00001
Nagayama A., & Izaki T. (2022). The Experiments Of Pumice Stone Drifting Of The Moving Process In The Wind Tun-nel. Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering), 78(2), I_865-I_870. doi: 10.2208/jscejoe.78.2_I_865
Ohno, Y., Iguchi, A., Ijima, M., Yasumoto, K., & Suzuki, A. (2022). Coastal ecological impacts from pumice rafts. Sci-entific Reports, 12(1), 11187. doi: 10.1038/s41598-022-14614-y
Oppenheimer, C. (2003). Climatic, environmental and human consequences of the largest known historic eruption: Tam bora volcano (Indonesia) 1815. Progress in Physical Geography: Earth and Environment, 27(2), 230–259. doi: 10.1191/0309133303pp379ra
Orosa, P., Pasandín, A. R., & Pérez, I. (2021). Compaction and volumetric analysis of cold in-place recycled asphalt mixtures prepared using gyratory, static, and impact procedures. Construction and Building Materials, 296, 123620. doi: 10.1016/j.conbuildmat.2021.123620
Pradit, S., Puttapreecha, R., Noppradit, P., Buranapratheprat, A., & Sompongchaiyakul, P. (2022). The first evidence of microplastic presence in pumice stone along the coast of Thailand: A preliminary study. Frontiers in Marine Science, 9, 961729. doi: 10.3389/fmars.2022.961729
Prata, A.J., & Rose, W.I. (2015). Volcanic Ash Hazards to Aviation. The Encyclopedia of Volcanoes (Second Edition), 911-934. doi: 10.1016/B978-0-12-385938-9.00052-3
Reagan, M. K., Turner, S., Legg, M., Sims, K. W. W., & Hards, V. L. (2008). 238U- and 232Th-decay series constraints on the timescales of crystal fractionation to produce the phonolite erupted in 2004 near Tristan da Cunha, South Atlantic Ocean. Geochimica et Cosmochimica Acta, 72(17), 4367–4378. doi: 10.1016/j.gca.2008.06.002
Redick, N. R. (2023). Review of Pumice Raft Formation Environments, Saturation, and Dispersal Mechanisms. McGill Science Undergraduate Research Journal, 18(1), B19–B25. doi: 10.26443/msurj.v18i1.187
Richards, A. F. (1958). Transpacific distribution of floating pumice from Isla San Benedicto, Mexico. Deep Sea Re-search (1953), 5(1), 29–35. doi: 10.1016/S0146-6291(58)80005-3
Risso, C., Scasso, R. A., & Aparicio, A. (2002). Presence of large pumice blocks on Tierra del Fuego and South Shetland Islands shorelines, from 1962 South Sandwich Islands eruption. Marine Geology, 186(3–4), 413–422. doi: 10.1016/S0025-3227(02)00190-1
Sutherland, F. L. (1965). Dispersal of Pumice, Supposedly from the 1962 South Sandwich Islands Eruption, on South-ern Australian Shores. Nature, 207(5004), 1332–1335. doi: 10.1038/2071332a0
Vaughan, R. G., Abrams, M. J., Hook, S. J., & Pieri, D. C. (2007). Satellite observations of new volcanic island in Tonga. Eos, Transactions American Geophysical Union, 88(4), 37–41. doi: 10.1029/2007EO040002
Von Lichtan, I. J., White, J. D. L., Manville, V., & Ohneiser, C. (2016). Giant rafted pumice blocks from the most recent eruption of Taupo volcano, New Zealand: Insights from palaeomagnetic and textural data. Journal of Vol-canology and Geothermal Research, 318, 73–88. doi: 10.1016/j.jvolgeores.2016.04.003
Whitham, A.G. and Sparks R.S.J. (1986). Pumice, Bull Volcanol. Springer Nature Link, 48, 209-223.
Witham, C., Webster, H.N., Hort, M.C., Jones, A., & Thomson, D.J. (2012). Modelling concentrations of volcanic ash encountered by aircraft in past eruptions. Atmospheric Environment, 48, 219-229.
Woodroffe, C. D., & Stancheva, M. (2024). Sustaining Coastal and Marine environments in the Anthropocene: Guest editors. Journal of Coastal Conservation, 28(3), 51. doi: 10.1007/s11852-024-01051-4
Yeo, I. A., McIntosh, I. M., Bryan, S. E., Tani, K., Dunbabin, M., Dobson, K. J., Mitchell, S. J., Collins, P. C., Clare, M. A., Cathey, H., Duwai, I., Brandl, P. A., Stone, K., & Manu, M. S. (2024). The 2019 pumice raft forming eruption of Volcano-F (Volcano 0403–091) and implications for hazards posed by submerged calderas. Journal of Vol-canology and Geothermal Research, 454, 108160. doi: 10.1016/j.jvolgeores.2024.108160
Yin, Q., Gong, P., & Wang, X. (2024). Potential role of microplastic in sediment as an indicator of Anthropocene. Earth Critical Zone, 1(1), 100016. doi: 10.1016/j.ecz.2024.100016
Yoshida, K., Tamura, Y., Sato, T., Sangmanee, C., Puttapreecha, R., Ono, S. (2022) Petrographic characteristics in the pumice clast deposited along the Gulf of Thailand, drifted from Fukutoku-Oka-no-Ba. Geochem. J., 56, 134–137.
Yoshida, K., Tamura, Y., Sato, T.,Hanyu, T., Usui, Y., Chang, Q., & Ono, S. (2022). Variety of thedrift pumice clasts from the 2021 Fukutoku-Oka-no-Baeruption, Japan. Island Arc, 31(1), e12441. doi: 10.1111/iar.12441
Yu S., Yang L., Junhua X., Pengxiang Z., Shugang L. (2023). Study on particles sedimentation in porous media with the immersed boundary-lattice Boltzmann flux solver. Computers & Mathematics with Applications, 129, 1–10. doi: 10.1016/j.camwa.2022.11.012
Zhang X., Huang T., Ge Z., Man T., Huppert E. H. (2025). Infiltration characteristics of slurries in porous media based on the coupled Lattice-Boltzmann discrete element method, Computers and Geotechnics, 177, 1–18. doi: 10.1016/j.compgeo.2024.106865
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Sho Sawada, Christopher Gomez, Takashi Koi

This work is licensed under a Creative Commons Attribution 4.0 International License.















