Sustainable Management of Natural Resources at Disaggregated Levels with Insights from Landscape Dynamics
DOI:
https://doi.org/10.23917/forgeo.v39i2.6857Keywords:
Natural Resource Rich Regions (NRRRs), Arid regions, Land Use Land Cover (LULC), Machine Learning (ML), Random Forest (RF), landscape modellingAbstract
The burgeoning population, coupled with the resource demand and alterations in the climatic regime, have been posing serious challenges for the sustenance of natural resources. Natural Resource Rich Regions (NRRRs) are areas endowed with abundant natural resources, which maintain ecological balance and economic activities. These regions are pivotal for supporting the livelihoods of local communities by providing essential ecosystem services and resources. However, land degradation leading to deforestation due to unplanned developmental activities has escalated the carbon footprint, aggravated the vagaries of the climate, and posed significant challenges, especially for communities reliant on fragile, arid, and semi-arid ecosystems. The nexus of socio-economic disparity, persistent poverty, and unplanned developmental activities often poses severe challenges for realizing full economic potential with environmental sustainability. Land use (LU) changes with urbanization and agricultural expansion, leading to fragmentation, habitat loss, decline of native species, and disruption of ecological processes with a potential decline of biodiversity. The arid region in the northern part of Karnataka, located in Southern India, has been experiencing a sharp decline in the groundwater table due to frequent droughts and excessive groundwater extraction. The current study unveils actionable solutions for sustainable management of natural resource-rich regions by meticulously analyzing the nexus between rapid development, LU modifications, and their subsequent environmental ramifications. LU transitions are quantified using temporal-spatial data acquired through space-borne sensors through supervised machine learning classifiers based on the non-parametric algorithm Random Forest (RF). Land use dynamics assessment reveals that paved surfaces (area under buildings, roads) have increased from 186.22 sq. km (in 1973) to 1085.12 sq. km (in 2022). The study area has degraded forest patches, and the estimation through fragmentation metrics reveals that the intact forest has shown a decline from 3252.39 sq. km (1973) to 1508.12 sq. km (2022). The forests have continuously decreased from 2,154.20 sq. km (1973) to 1,096.34 sq. km (2022). In Northern Karnataka, the prioritization of NRRRs highlights the status of resource availability, with highly resource-rich zones represented by NRRR1 (67 grids) and NRRR2 (127 grids), followed by NRRR3 (304 grids) with moderate resource potential, and NRRR4 (522 grids) encompassing areas with comparatively scarcer resources. The prioritization of natural resource-rich regions emphasizes the need for prudent land management strategies, with holistic and integrated approaches considering social, economic, and environmental issues with degrees of sensitivity across arid regions.
Downloads
References
Adugna, T., Xu, W., & Fan, J. (2022). Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing, 14(3), 574. doi: 10.3390/rs14030574
Ahmadi, K., Kalantar, B., Saeidi, V., Harandi, E. K., Janizadeh, S., & Ueda, N. (2020). Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sensing, 12(18), 3019. doi: 10.3390/rs12183019
Ali, K., & Johnson, B. A. (2022). Land-Use and Land-Cover Classification in Semi-arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Sensors, 22(22), 8750. doi: 10.3390/s22228750
Ashok, A., Rani, H. P., & Jayakumar, K. V. (2021). Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery. Remote Sensing Applications: Society and Environment, 23, 100547. doi: 10.1016/j.rsase.2021.100547
Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil use and management, 24(3), 223-234. doi: 10.1111/j.1475-2743.2008.00169.x
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. IS-PRS journal of photogrammetry and remote sensing, 114, 24-31. doi: 10.1016/j.isprsjprs.2016.01.011
Bell, W., Hoffman, M. T., Visser, V., & Kirsten, T. (2023). Modelling land condition to augment Land Degradation Neutrality assessments-The succulent Karoo biome of South Africa as a case study. Journal of Arid Environ-ments, 219, 105086. doi: 10.1016/j.jaridenv.2023.105086
Beroho, M. Briak, H. Cherif, E. K. Boulahfa, I. Ouallali, A. Mrabet, R. Kebede, F. Bernardino, A. Aboumaria, K. (2023). Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in Morocco. Remote Sensing, 15, 1162. doi: 10.3390/rs15041162
Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140. doi: 10.1007/BF00058655
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. doi: 10.1023/A:1010933404324
Bremer, D. J., Lee, H., Su, K., & Keeley, S. J. (2011). Relationships between normalized difference vegetation index and visual quality in cool‐season turfgrass: II. Factors affecting NDVI and its component reflectances. Crop science, 51(5), 2219-2227. doi: 10.2135/cropsci2010.12.0729
Census of India. (2025). Retrieved From https://censusindia.gov.in/
Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil systems, 3(1), 12. doi: 10.3390/soilsystems3010012
Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S. and Von Maltitz, G. (2018). World Atlas of Desertifica-tion, Publications Office of the European Union, Luxembourg. ISBN 978-92-79-75350-3, doi:10.2760/9205, JRC111155
del Barrio, G., Sanjuan, M. E., Martínez-Valderrama, J., Ruiz, A., & Puigdefábregas, J. (2021). Land degradation means a loss of management options. Journal of Arid Environments, 189, 104502. doi: 10.1016/j.jaridenv.2021.104502
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., ... & Bargellini, P. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36. doi: 10.1016/j.rse.2011.11.026
Karnataka. (2023). Economic Survey 2022-23. Retrieved From https://des.karnataka.gov.in/storage/pdf-files/Economic%20Survey%202022-23%20English.pdf
Evans, J.S., Murphy, M.A., Holden, Z.A., Cushman, S.A. (2011). Modeling Species Distribution and Change Using Random Forest. In: Drew, C., Wiersma, Y., Huettmann, F. (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, NY. Retrieved From https://doi.org/10.1007/978-1-4419-7390-0
Evans, R. D., & Belnap, J. (1999). Long‐term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology, 80(1), 150-160. doi: 10.1890/0012-9658(1999)080[0150:LTCODO]2.0.CO;2
Fu, X., Wang, X., & Yang, Y. J. (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of environmental management, 206, 10-19. doi: 10.1016/j.jenvman.2017.10.012
Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., ... & Hazra, S. (2017). Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment, 5, 64-77. doi: 10.1016/j.rsase.2017.01.005
Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2017). Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, north-ern Ethiopia. Modeling Earth Systems and Environment, 3, 1245-1262. doi: 10.1007/s40808-017-0397-6
Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern recognition letters, 27(4), 294-300. doi: 10.1016/j.patrec.2005.08.011
Gratzfeld, J. (Ed.). (2003). Extractive industries in arid and semi-arid zones: Environmental planning and management. IUCN. Retrieved From https://doi.org/10.2305/IUCN.CH.2004.CEM.1.en
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological modelling, 222(20-22), 3761-3772. doi: 10.1016/j.ecolmodel.2011.09.009
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science advances, 1(2), e1500052. doi: 10.1126/sciadv.1500052
Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and predic-tion in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101-112. doi: 10.1016/j.apgeog.2015.06.015
Huo, J., & Peng, C. (2023). Depletion of natural resources and environmental quality: Prospects of energy use, energy imports, and economic growth hindrances. Resources Policy, 86, 104049. doi: 10.1016/j.resourpol.2023.104049
IPCC, (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom, 976 pp.
IPCC, (2013). Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom, 1535 pp.
Kosmas, C., Gerontidis, S., & Marathianou, M. (2000). The effect of land use change on soils and vegetation over vari-ous lithological formations on Lesvos (Greece). Catena, 40(1), 51-68. doi: 10.1016/S0341-8162(99)00064-8
Karnataka. (2022). Krishna Bhagya Jala Nigam Limited (KBJNL), India. Retrieved From https://kbjnl.karnataka.gov.in/storage/pdf-files/Progrss%20Report%20Eng%20as%20on%2030062022.pdf
Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual review of environment and resources, 28(1), 205-241. doi: 10.1146/annurev.energy.28.050302.105459
Lasanta, T., & Vicente-Serrano, S. M. (2012). Complex land cover change processes in semi-arid Mediterranean regions: An approach using Landsat images in northeast Spain. Remote Sensing of Environment, 124, 1-14. doi: 10.1016/j.rse.2012.04.023
Liu, M., Wei, H., Dong, X., Wang, X. C., Zhao, B., & Zhang, Y. (2022). Integrating land use, ecosystem service, and human well-being: A systematic review. Sustainability, 14(11), 6926. doi: 10.3390/su14116926
Mancino, G., Falciano, A., Console, R., & Trivigno, M. L. (2023). Comparison between Parametric and Non-Parametric Supervised Land Cover Classifications of Sentinel-2 MSI and Landsat-8 OLI Data. Geographies, 3(1), 82-109. doi: 10.3390/geographies3010005
Manna, H., Sarkar, S., Hossain, M., & Dolui, M. (2023). Modeling and predicting spatio-temporal land use land cover changes and urban sprawling in Kalaburagi City Corporation, Karnataka, India: a geospatial analysis. Modeling Earth Systems and Environment, 1-24. doi: 10.1007/s40808-023-01814-2
Karnataka Rising. (2018). Ministry of Road Transport and Highways. https://morth.nic.in/sites/default/files/PragatiKiNayiGati/pdf/karnataka.pdf
Mirzabaev, A., Stringer, L. C., Benjaminsen, T. A., Gonzalez, P., Harris, R., Jafari, M., ... & Zakieldeen, S. (2022). Cross-chapter paper 3: deserts, semi-arid areas and desertification. Climate Change, 2195-2231.
Mirzabaev, A., Wu, J., Evans, J., Garcia-Oliva, F., Hussein, I. A. G., Iqbal, M. H., Kimutai, J., Knowles, T., Meza, F., Nedjroaoui, D., Tena, F., Türkeş, M., Vázquez, R. J. & Weltz, M. (2019). Desertification. In P. R. Shukla, J. Skeg, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, S. van Diemen, M. Ferrat, E. Haughey, S. Luz, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi & J. Malley, Climate Change and Land: an IPCC special report on climate change, deser-tification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Retrieved From https://philarchive.org/rec/NGCD
Mugari, E., & Masundire, H. (2022). Consistent Changes in Land-Use/Land-Cover in Semi-arid Areas: Implications on Ecosystem Service Delivery and Adaptation in the Limpopo Basin, Botswana. Land, 11(11), 2057. doi: 10.3390/land11112057
Mumtaz, F., Tao, Y., de Leeuw, G., Zhao, L., Fan, C., Elnashar, A., ... & Wang, D. (2020). Modeling spatio-temporal land transformation and its associated impacts on land surface temperature (LST). Remote Sensing, 12(18), 2987. doi: 10.3390/rs12182987
Nguyen, L. H., Joshi, D. R., Clay, D. E., & Henebry, G. M. (2020). Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sensing of Environment, 238, 111017. doi: 10.1016/j.rse.2018.12.016
Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D., ... & Stringer, L. (2019). Land degra-dation: IPCC special report on climate change, desertification, land 5 degradation, sustainable land manage-ment, food security, and 6 greenhouse gas fluxes in terrestrial ecosystems. In IPCC special report on climate change, desertification, land 5 degradation, sustainable land management, food security, and 6 greenhouse gas fluxes in terrestrial ecosystems (p.1). Intergovernmental Panel on Climate Change (IPCC). Retrieved From https://doi.org/10.1017/9781009157988.006
Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoin-formation, 12, S27-S31. doi: 10.1016/j.rse.2018.12.016
Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sensing, 7(5), 5918-5950. doi: 10.3390/rs70505918
Pongratz, J., Dolman, H., Don, A., Erb, K. H., Fuchs, R., Herold, M., ... & Naudts, K. (2018). Models meet data: Chal-lenges and opportunities in implementing land management in Earth system models. Global change biology, 24(4), 1470-1487. doi: 10.1111/gcb.13988
Pontifes, P. A., García-Meneses, P. M., Gómez-Aíza, L., Monterroso-Rivas, A. I., & Caso-Chávez, M. (2018). Land use/land cover change and extreme climatic events in the arid and semi-arid ecoregions of Mexico. Atmósfera, 31(4), 355-372. doi: 10.20937/ATM.2018.31.04.04
Pontius, G. R., & Malanson, J. (2005). Comparison of the structure and accuracy of two land change models. Interna-tional Journal of Geographical Information Science, 19(2), 243-265. doi: 10.1080/13658810410001713434
Prăvălie, R., Niculiță, M., Roșca, B., Marin, G., Dumitrașcu, M., Patriche, C., ... & Bandoc, G. (2023). Machine learning-based prediction and assessment of recent dynamics of forest net primary productivity in Romania. Journal of Environmental Management, 334, 117513. doi: 10.1016/j.jenvman.2023.117513
Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roșca, B., Dumitraşcu, M., ... & Bandoc, G. (2021). Arable lands un-der the pressure of multiple land degradation processes. A global perspective. Environmental Research, 194, 110697. doi: 10.1016/j.envres.2020.110697
Rai, P. K., Mishra, V. N., & Singh, P. (2022). Geospatial Technology for Landscape and Environmental Management. Springer Singapore. Retrieved From https://doi.org/10.1007/978-981-16-7373-3
Ramachandra, T. V., & Aithal, B. H. (2013a). Understanding urban sprawl dynamics of Gulbarga-Tier II city in Karna-taka through spatio-temporal data and spatial metrics. International Journal of Geomatics and Geosciences, 3(3), 388-404.
Ramachandra, T. V., & Aithal, B. H. (2013b). Urbanisation and sprawl in the Tier II City: metrics, dynamics and model-ling using spatio-temporal data. International Journal of Remote Sensing Applications, 3(2), 65-74.
Ramachandra, T. V., Bharath, S., Subash Chandran, M. D., & Joshi, N. V. (2018). Salient ecological sensitive regions of central Western Ghats, India. Earth Systems and Environment, 2, 15-34. doi: 10.1007/s41748-018-0040-3
Ramachandra, T. V., Mondal, T., Settur, B., & Aithal, B. H. (2023b). Environmental Consequences in the Neighbour-hood of Rapid Unplanned Urbanisation in Bangalore City. Advances in Environmental and Engineering Re-search, 4(4), 1-17. doi: 10.21926/aeer.2304052
Ramachandra, T. V., Negi, P., & Setturu, B. (2022). Insights from Big Spatial Data through Machine Learning Tech-niques for Prudent Management of Natural Resources. Journal of Resources, Energy and Development, 19(1-2),1-18. doi: 10.3233/RED-191201
Ramachandra, T. V., Setturu, B. & Subash Chandran, M. D. (2016). Geospatial analysis of forest fragmentation in Ut-tara Kannada District, India. For. Ecosyst. 3, 10. doi: 10.1186/s40663-016-0069-4
Ramachandra, T.V., Aithal, B.H., Setturu, B., Vinay, S., Asulabha, K.S., Sincy, V. (2024). Valuation of Ecosystem Ser-vices, Karnataka State, India. In: Natural Capital Accounting and Valuation of Ecosystem Services, Karnataka State, India. Springer, Singapore. Retrieved From https://doi.org/10.1007/978-981-97-2405-5_3
Ramachandra, T.V., Mondal, T. & Setturu, B. (2023a). Relative performance evaluation of machine learning algorithms for land use classification using multispectral moderate resolution data. SN Appl. Sci., 5, 274. doi: 10.1007/s42452-023-05496-4
Ramachandra, T.V., & Negi, P. (2025). Geoinformatics-based prioritisation of natural resources rich regions at disaggre-gated levels for sustainable management. Discov Sustain 6, 195. doi: 10.1007/s43621-025-00964-w
Riitters, K. H., Wickham, J. D., & Coulston, J. W. (2004). A preliminary assessment of Montreal process indicators of forest fragmentation for the United States. Environmental Monitoring and Assessment, 91, 257-276. doi: 10.1023/B:EMAS.0000009240.65355.92
Riitters, K.H., Wickham, J.D., O’Neill, R., Jones, B., & Smith, E. (2000). Global-scale patterns of forest fragmentation. Conservation ecology, 4(2).
Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of GeoInformation, 7(4), 154. doi: 10.3390/ijgi7040154
Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and modeling of spatiotemporal urban ex-pansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS Interna-tional Journal of GeoInformation, 6(9), 288. doi: 10.3390/ijgi6090288
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS journal of photogrammetry and remote sensing, 67, 93-104. doi: 10.1016/j.isprsjprs.2011.11.002
Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., ... & Kanawade, V. P. (2022). An-thropogenic land use and land cover changes—A review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50(8), 1615-1640. doi: 10.1007/s12524-022-01569-w
Sahu, N., Reddy, G. O., Dash, B., Kumar, N., & Singh, S. K. (2021). Assessment on spatial extent of arid and semi-arid climatic zones of India using GIS. Journal of Agrometeorology, 23(2), 189-193. doi: 10.54386/jam.v23i2.66
Scholes, R. J. (2020). The future of semi-arid regions: A weak fabric unravels. Climate, 8(3), 43. doi: 10.3390/cli8030043
Setturu, B., & Ramachandra, T.V. (2021). Modeling landscape dynamics of policy interventions in Karnataka State, In-dia. Journal of Geovisualization and Spatial Analysis, 5(2), 22. doi: 10.1007/s41651-021-00091-w
Shanabhoga, M. B., Krishnamurthy, B., Suresha, S. V., Dechamma, S., & Kumar, R. V. (2023). Climate change adapta-tion constraints among paddy growing farmers in Kalyana-Karnataka region of Karnataka State. Indian Journal of Extension Education, 59(2), 124-127. doi: 10.48165/IJEE.2023.59227
Sridhara, S., Gopakkali, P., Manoj, K. N., Patil, K. K. R., Paramesh, V., Jha, P. K., & Prasad, P. V. V. (2022). Identifi-cation of sustainable development priorities for agriculture through sustainable livelihood security indicators for Karnataka, India. Sustainability, 14(3), 1831. doi: 10.3390/su14031831
Strahler, A. H. (1980). The use of prior probabilities in maximum likelihood classification of remotely sensed data. Re-mote sensing of Environment, 10(2), 135-163. doi: 10.1016/0034-4257(80)90011-5
Sugiri, A (2009). Redressing Equity Issues in Natural Resource-Rich Regions: A Theoretical Framework for Sustaining Development in East Kalimantan, Indonesia. Weber, Estelle L. (Ed.), 2009. Environmental Ethics, Sustainability and Education, Oxford: Inter-disciplinary Press, p. 107-34, ISBN: 978-1-904710-74-5, Available at SSRN. Re-trieved From https://ssrn.com/abstract=2038246
Sun, Q., Qi, W., & Yu, X. (2021). Impacts of land use change on ecosystem services in the intensive agricultural area of North China based on Multi-scenario analysis. Alexandria Engineering Journal, 60(1), 1703-1716. doi: 10.1016/j.aej.2020.11.020
Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S. K., Islam, A. R. M. T., & Mallick, J. (2021). Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecological indicators, 126, 107612. doi: 10.1016/j.ecolind.2021.107612
Tariq, A., Mumtaz, F., Majeed, M., & Zeng, X. (2023). Spatio-temporal assessment of land use land cover based on tra-jectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment, 195(1), 114. doi: 10.1007/s10661-022-10738-w
Tian, S., Zhang, X., Tian, J., & Sun, Q. (2016). Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China. Remote Sensing, 8(11), 954. doi: 10.3390/rs8110954
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. doi: 10.1016/0034-4257(79)90013-0
Turner, K. G., Anderson, S., Gonzales-Chang, M., Costanza, R., Courville, S., Dalgaard, T., ... & Wratten, S. (2016). A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecological Modelling, 319, 190-207. doi: 10.1016/j.ecolmodel.2015.07.017
UNCCD. (2016a). The UNCCD: Securing Life on Land (2016–2017). Bonn. United Nations. Retrieved From https://www.unccd.int/sites/default/files/documents/25072016_Securing%20Life%20on%20Land_ENG.pdf.
UNCCD. (2016b). Global Land Outlook; UNCCD: Bonn, Germany, 2022. Retrieved From https://www.unccd.int/sites/default/files/documents/2017-09/GLO_Full_Report_low_res.
Uralovich, K. S., Toshmamatovich, T. U., Kubayevich, K. F., Sapaev, I. B., Saylaubaevna, S. S., Beknazarova, Z. F., & Khurramov, A. (2023). A primary factor in sustainable development and environmental sustainability is envi-ronmental education. Caspian Journal of Environmental Sciences, 21(4), 965-975. doi: 10.22124/CJES.2023.7155
Van de Ven, D. J., Capellan-Peréz, I., Arto, I., Cazcarro, I., de Castro, C., Patel, P., & Gonzalez-Eguino, M. (2021). The potential land requirements and related land use change emissions of solar energy. Scientific reports, 11(1), 2907. doi: 10.1038/s41598-021-82042-5
Van Der Geest, K., De Sherbinin, A., Kienberger, S., Zommers, Z., Sitati, A., Roberts, E., & James, R. (2019). The im-pacts of climate change on ecosystem services and resulting losses and damages to people and society. Loss and damage from climate change: Concepts, methods and policy options, 221-236. doi: 10.1007/978-3-319-72026-5_9
Wambugu, N., Chen, Y., Xiao, Z., Wei, M., Bello, S. A., Junior, J. M., & Li, J. (2021). A hybrid deep convolutional neu-ral network for accurate land cover classification. International Journal of Applied Earth Observation and Geoinformation, 103, 102515. doi: 10.1016/j.jag.2021.102515
Wang, J., Bretz, M., Dewan, M. A. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cov-er-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 822, 153559. doi: 10.1016/j.scitotenv.2022.153559
Wassie, S. B. (2020). Natural resource degradation tendencies in Ethiopia: a review. Environmental systems research, 9(1), 1-29. doi: 10.1186/s40068-020-00194-1
Weng, L., Qian, M., Xia, M., Xu, Y., & Li, C. (2020). Land use/land cover recognition in arid zone using a multi-dimensional multi-grained residual Forest☆. Computers & Geosciences, 144, 104557. doi: 10.1016/j.cageo.2020.104557
West, H., Quinn, N., & Horswell, M. (2019). Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment, 232, 111291. doi: 10.1016/j.rse.2019.111291
Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previ-ously estimated. Nature communications, 12(1), 2501. doi: 10.1038/s41467-021-22702-2
World Bank. (2020). World Development Report 2020: Trading for Development in the Age of Global Value Chains. World Bank. Retrieved From http://hdl.handle.net/10986/32437 License: CC BY 3.0 IGO.
Yang, Y., Wang, K., Liu, D., Zhao, X., & Fan, J. (2020). Effects of land-use conversions on the ecosystem services in the agro-pastoral ecotone of northern China. Journal of Cleaner Production, 249, 119360. doi: 10.1016/j.jclepro.2019.119360
Zhang, A., Venkatesh, V. G., Liu, Y., Wan, M., Qu, T., & Huisingh, D. (2019). Barriers to smart waste management for a circular economy in China. Journal of Cleaner Production, 240, 118198. doi: 10.1016/j.jclepro.2019.118198
Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Le, H. V., Tran, V. Q., ... & Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Prob-lems in Engineering, 2021, 1-15. doi: 10.1155/2021/4832864
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 T V Ramachandra, Paras Negi, Tulika Mondal, Bharath Settur

This work is licensed under a Creative Commons Attribution 4.0 International License.















