Sustainable Management of Natural Resources at Disaggregated Levels with Insights from Landscape Dynamics

Authors

  • T V Ramachandra Energy & Wetlands Research Group, CES TE 15, Environmental Information System, Center for Ecological Sciences (CES) Indian Institute of Science, New Bioscience Building, Third Floor, E-Wing, (Near D-Gate), Bangalore 560012. Centre for Sustainable Technologies (Astra), Indian Institute of Science, Bangalore 560012. Centre for Infrastructure, Sustainable Transportation and Urban Planning (CiSTUP), Indian Institute of Science, Bangalore, Karnataka 560012.
    India
    https://orcid.org/0000-0001-5528-1565
  • Paras Negi Energy & Wetlands Research Group, CES TE 15, Environmental Information System, Center for Ecological Sciences (CES) Indian Institute of Science, New Bioscience Building, Third Floor, E-Wing, (Near D-Gate), Bangalore 560012
    India
    https://orcid.org/0009-0002-2391-8853
  • Tulika Mondal Energy & Wetlands Research Group, CES TE 15, Environmental Information System, Center for Ecological Sciences (CES) Indian Institute of Science, New Bioscience Building, Third Floor, E-Wing, (Near D-Gate), Bangalore 560012
    India
    https://orcid.org/0009-0007-2056-3993
  • Bharath Settur Energy & Wetlands Research Group, CES TE 15, Environmental Information System, Center for Ecological Sciences (CES) Indian Institute of Science, New Bioscience Building, Third Floor, E-Wing, (Near D-Gate), Bangalore 560012. School of Mathematics and Natural Sciences, Chanakya University, Bengaluru, Karnataka
    India
    https://orcid.org/0000-0001-6800-9579

DOI:

https://doi.org/10.23917/forgeo.v39i2.6857

Keywords:

Natural Resource Rich Regions (NRRRs), Arid regions, Land Use Land Cover (LULC), Machine Learning (ML), Random Forest (RF), landscape modelling

Abstract

The burgeoning population, coupled with the resource demand and alterations in the climatic regime, have been posing serious challenges for the sustenance of natural resources. Natural Resource Rich Regions (NRRRs) are areas endowed with abundant natural resources, which maintain ecological balance and economic activities. These regions are pivotal for supporting the livelihoods of local communities by providing essential ecosystem services and resources. However, land degradation leading to deforestation due to unplanned developmental activities has escalated the carbon footprint, aggravated the vagaries of the climate, and posed significant challenges, especially for communities reliant on fragile, arid, and semi-arid ecosystems. The nexus of socio-economic disparity, persistent poverty, and unplanned developmental activities often poses severe challenges for realizing full economic potential with environmental sustainability. Land use (LU) changes with urbanization and agricultural expansion, leading to fragmentation, habitat loss, decline of native species, and disruption of ecological processes with a potential decline of biodiversity. The arid region in the northern part of Karnataka, located in Southern India, has been experiencing a sharp decline in the groundwater table due to frequent droughts and excessive groundwater extraction. The current study unveils actionable solutions for sustainable management of natural resource-rich regions by meticulously analyzing the nexus between rapid development, LU modifications, and their subsequent environmental ramifications. LU transitions are quantified using temporal-spatial data acquired through space-borne sensors through supervised machine learning classifiers based on the non-parametric algorithm Random Forest (RF). Land use dynamics assessment reveals that paved surfaces (area under buildings, roads) have increased from 186.22 sq. km (in 1973) to 1085.12 sq. km (in 2022). The study area has degraded forest patches, and the estimation through fragmentation metrics reveals that the intact forest has shown a decline from 3252.39 sq. km (1973) to 1508.12 sq. km (2022). The forests have continuously decreased from 2,154.20 sq. km (1973) to 1,096.34 sq. km (2022). In Northern Karnataka, the prioritization of NRRRs highlights the status of resource availability, with highly resource-rich zones represented by NRRR1 (67 grids) and NRRR2 (127 grids), followed by NRRR3 (304 grids) with moderate resource potential, and NRRR4 (522 grids) encompassing areas with comparatively scarcer resources. The prioritization of natural resource-rich regions emphasizes the need for prudent land management strategies, with holistic and integrated approaches considering social, economic, and environmental issues with degrees of sensitivity across arid regions.

Downloads

Download data is not yet available.

References

Adugna, T., Xu, W., & Fan, J. (2022). Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing, 14(3), 574. doi: 10.3390/rs14030574

Ahmadi, K., Kalantar, B., Saeidi, V., Harandi, E. K., Janizadeh, S., & Ueda, N. (2020). Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sensing, 12(18), 3019. doi: 10.3390/rs12183019

Ali, K., & Johnson, B. A. (2022). Land-Use and Land-Cover Classification in Semi-arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Sensors, 22(22), 8750. doi: 10.3390/s22228750

Ashok, A., Rani, H. P., & Jayakumar, K. V. (2021). Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery. Remote Sensing Applications: Society and Environment, 23, 100547. doi: 10.1016/j.rsase.2021.100547

Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil use and management, 24(3), 223-234. doi: 10.1111/j.1475-2743.2008.00169.x

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. IS-PRS journal of photogrammetry and remote sensing, 114, 24-31. doi: 10.1016/j.isprsjprs.2016.01.011

Bell, W., Hoffman, M. T., Visser, V., & Kirsten, T. (2023). Modelling land condition to augment Land Degradation Neutrality assessments-The succulent Karoo biome of South Africa as a case study. Journal of Arid Environ-ments, 219, 105086. doi: 10.1016/j.jaridenv.2023.105086

Beroho, M. Briak, H. Cherif, E. K. Boulahfa, I. Ouallali, A. Mrabet, R. Kebede, F. Bernardino, A. Aboumaria, K. (2023). Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in Morocco. Remote Sensing, 15, 1162. doi: 10.3390/rs15041162

Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140. doi: 10.1007/BF00058655

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. doi: 10.1023/A:1010933404324

Bremer, D. J., Lee, H., Su, K., & Keeley, S. J. (2011). Relationships between normalized difference vegetation index and visual quality in cool‐season turfgrass: II. Factors affecting NDVI and its component reflectances. Crop science, 51(5), 2219-2227. doi: 10.2135/cropsci2010.12.0729

Census of India. (2025). Retrieved From https://censusindia.gov.in/

Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil systems, 3(1), 12. doi: 10.3390/soilsystems3010012

Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S. and Von Maltitz, G. (2018). World Atlas of Desertifica-tion, Publications Office of the European Union, Luxembourg. ISBN 978-92-79-75350-3, doi:10.2760/9205, JRC111155

del Barrio, G., Sanjuan, M. E., Martínez-Valderrama, J., Ruiz, A., & Puigdefábregas, J. (2021). Land degradation means a loss of management options. Journal of Arid Environments, 189, 104502. doi: 10.1016/j.jaridenv.2021.104502

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., ... & Bargellini, P. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36. doi: 10.1016/j.rse.2011.11.026

Karnataka. (2023). Economic Survey 2022-23. Retrieved From https://des.karnataka.gov.in/storage/pdf-files/Economic%20Survey%202022-23%20English.pdf

Evans, J.S., Murphy, M.A., Holden, Z.A., Cushman, S.A. (2011). Modeling Species Distribution and Change Using Random Forest. In: Drew, C., Wiersma, Y., Huettmann, F. (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, NY. Retrieved From https://doi.org/10.1007/978-1-4419-7390-0

Evans, R. D., & Belnap, J. (1999). Long‐term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology, 80(1), 150-160. doi: 10.1890/0012-9658(1999)080[0150:LTCODO]2.0.CO;2

Fu, X., Wang, X., & Yang, Y. J. (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of environmental management, 206, 10-19. doi: 10.1016/j.jenvman.2017.10.012

Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., ... & Hazra, S. (2017). Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment, 5, 64-77. doi: 10.1016/j.rsase.2017.01.005

Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2017). Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, north-ern Ethiopia. Modeling Earth Systems and Environment, 3, 1245-1262. doi: 10.1007/s40808-017-0397-6

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern recognition letters, 27(4), 294-300. doi: 10.1016/j.patrec.2005.08.011

Gratzfeld, J. (Ed.). (2003). Extractive industries in arid and semi-arid zones: Environmental planning and management. IUCN. Retrieved From https://doi.org/10.2305/IUCN.CH.2004.CEM.1.en

Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological modelling, 222(20-22), 3761-3772. doi: 10.1016/j.ecolmodel.2011.09.009

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science advances, 1(2), e1500052. doi: 10.1126/sciadv.1500052

Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and predic-tion in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101-112. doi: 10.1016/j.apgeog.2015.06.015

Huo, J., & Peng, C. (2023). Depletion of natural resources and environmental quality: Prospects of energy use, energy imports, and economic growth hindrances. Resources Policy, 86, 104049. doi: 10.1016/j.resourpol.2023.104049

IPCC, (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom, 976 pp.

IPCC, (2013). Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom, 1535 pp.

Kosmas, C., Gerontidis, S., & Marathianou, M. (2000). The effect of land use change on soils and vegetation over vari-ous lithological formations on Lesvos (Greece). Catena, 40(1), 51-68. doi: 10.1016/S0341-8162(99)00064-8

Karnataka. (2022). Krishna Bhagya Jala Nigam Limited (KBJNL), India. Retrieved From https://kbjnl.karnataka.gov.in/storage/pdf-files/Progrss%20Report%20Eng%20as%20on%2030062022.pdf

Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual review of environment and resources, 28(1), 205-241. doi: 10.1146/annurev.energy.28.050302.105459

Lasanta, T., & Vicente-Serrano, S. M. (2012). Complex land cover change processes in semi-arid Mediterranean regions: An approach using Landsat images in northeast Spain. Remote Sensing of Environment, 124, 1-14. doi: 10.1016/j.rse.2012.04.023

Liu, M., Wei, H., Dong, X., Wang, X. C., Zhao, B., & Zhang, Y. (2022). Integrating land use, ecosystem service, and human well-being: A systematic review. Sustainability, 14(11), 6926. doi: 10.3390/su14116926

Mancino, G., Falciano, A., Console, R., & Trivigno, M. L. (2023). Comparison between Parametric and Non-Parametric Supervised Land Cover Classifications of Sentinel-2 MSI and Landsat-8 OLI Data. Geographies, 3(1), 82-109. doi: 10.3390/geographies3010005

Manna, H., Sarkar, S., Hossain, M., & Dolui, M. (2023). Modeling and predicting spatio-temporal land use land cover changes and urban sprawling in Kalaburagi City Corporation, Karnataka, India: a geospatial analysis. Modeling Earth Systems and Environment, 1-24. doi: 10.1007/s40808-023-01814-2

Karnataka Rising. (2018). Ministry of Road Transport and Highways. https://morth.nic.in/sites/default/files/PragatiKiNayiGati/pdf/karnataka.pdf

Mirzabaev, A., Stringer, L. C., Benjaminsen, T. A., Gonzalez, P., Harris, R., Jafari, M., ... & Zakieldeen, S. (2022). Cross-chapter paper 3: deserts, semi-arid areas and desertification. Climate Change, 2195-2231.

Mirzabaev, A., Wu, J., Evans, J., Garcia-Oliva, F., Hussein, I. A. G., Iqbal, M. H., Kimutai, J., Knowles, T., Meza, F., Nedjroaoui, D., Tena, F., Türkeş, M., Vázquez, R. J. & Weltz, M. (2019). Desertification. In P. R. Shukla, J. Skeg, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, S. van Diemen, M. Ferrat, E. Haughey, S. Luz, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi & J. Malley, Climate Change and Land: an IPCC special report on climate change, deser-tification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Retrieved From https://philarchive.org/rec/NGCD

Mugari, E., & Masundire, H. (2022). Consistent Changes in Land-Use/Land-Cover in Semi-arid Areas: Implications on Ecosystem Service Delivery and Adaptation in the Limpopo Basin, Botswana. Land, 11(11), 2057. doi: 10.3390/land11112057

Mumtaz, F., Tao, Y., de Leeuw, G., Zhao, L., Fan, C., Elnashar, A., ... & Wang, D. (2020). Modeling spatio-temporal land transformation and its associated impacts on land surface temperature (LST). Remote Sensing, 12(18), 2987. doi: 10.3390/rs12182987

Nguyen, L. H., Joshi, D. R., Clay, D. E., & Henebry, G. M. (2020). Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sensing of Environment, 238, 111017. doi: 10.1016/j.rse.2018.12.016

Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D., ... & Stringer, L. (2019). Land degra-dation: IPCC special report on climate change, desertification, land 5 degradation, sustainable land manage-ment, food security, and 6 greenhouse gas fluxes in terrestrial ecosystems. In IPCC special report on climate change, desertification, land 5 degradation, sustainable land management, food security, and 6 greenhouse gas fluxes in terrestrial ecosystems (p.1). Intergovernmental Panel on Climate Change (IPCC). Retrieved From https://doi.org/10.1017/9781009157988.006

Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoin-formation, 12, S27-S31. doi: 10.1016/j.rse.2018.12.016

Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sensing, 7(5), 5918-5950. doi: 10.3390/rs70505918

Pongratz, J., Dolman, H., Don, A., Erb, K. H., Fuchs, R., Herold, M., ... & Naudts, K. (2018). Models meet data: Chal-lenges and opportunities in implementing land management in Earth system models. Global change biology, 24(4), 1470-1487. doi: 10.1111/gcb.13988

Pontifes, P. A., García-Meneses, P. M., Gómez-Aíza, L., Monterroso-Rivas, A. I., & Caso-Chávez, M. (2018). Land use/land cover change and extreme climatic events in the arid and semi-arid ecoregions of Mexico. Atmósfera, 31(4), 355-372. doi: 10.20937/ATM.2018.31.04.04

Pontius, G. R., & Malanson, J. (2005). Comparison of the structure and accuracy of two land change models. Interna-tional Journal of Geographical Information Science, 19(2), 243-265. doi: 10.1080/13658810410001713434

Prăvălie, R., Niculiță, M., Roșca, B., Marin, G., Dumitrașcu, M., Patriche, C., ... & Bandoc, G. (2023). Machine learning-based prediction and assessment of recent dynamics of forest net primary productivity in Romania. Journal of Environmental Management, 334, 117513. doi: 10.1016/j.jenvman.2023.117513

Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roșca, B., Dumitraşcu, M., ... & Bandoc, G. (2021). Arable lands un-der the pressure of multiple land degradation processes. A global perspective. Environmental Research, 194, 110697. doi: 10.1016/j.envres.2020.110697

Rai, P. K., Mishra, V. N., & Singh, P. (2022). Geospatial Technology for Landscape and Environmental Management. Springer Singapore. Retrieved From https://doi.org/10.1007/978-981-16-7373-3

Ramachandra, T. V., & Aithal, B. H. (2013a). Understanding urban sprawl dynamics of Gulbarga-Tier II city in Karna-taka through spatio-temporal data and spatial metrics. International Journal of Geomatics and Geosciences, 3(3), 388-404.

Ramachandra, T. V., & Aithal, B. H. (2013b). Urbanisation and sprawl in the Tier II City: metrics, dynamics and model-ling using spatio-temporal data. International Journal of Remote Sensing Applications, 3(2), 65-74.

Ramachandra, T. V., Bharath, S., Subash Chandran, M. D., & Joshi, N. V. (2018). Salient ecological sensitive regions of central Western Ghats, India. Earth Systems and Environment, 2, 15-34. doi: 10.1007/s41748-018-0040-3

Ramachandra, T. V., Mondal, T., Settur, B., & Aithal, B. H. (2023b). Environmental Consequences in the Neighbour-hood of Rapid Unplanned Urbanisation in Bangalore City. Advances in Environmental and Engineering Re-search, 4(4), 1-17. doi: 10.21926/aeer.2304052

Ramachandra, T. V., Negi, P., & Setturu, B. (2022). Insights from Big Spatial Data through Machine Learning Tech-niques for Prudent Management of Natural Resources. Journal of Resources, Energy and Development, 19(1-2),1-18. doi: 10.3233/RED-191201

Ramachandra, T. V., Setturu, B. & Subash Chandran, M. D. (2016). Geospatial analysis of forest fragmentation in Ut-tara Kannada District, India. For. Ecosyst. 3, 10. doi: 10.1186/s40663-016-0069-4

Ramachandra, T.V., Aithal, B.H., Setturu, B., Vinay, S., Asulabha, K.S., Sincy, V. (2024). Valuation of Ecosystem Ser-vices, Karnataka State, India. In: Natural Capital Accounting and Valuation of Ecosystem Services, Karnataka State, India. Springer, Singapore. Retrieved From https://doi.org/10.1007/978-981-97-2405-5_3

Ramachandra, T.V., Mondal, T. & Setturu, B. (2023a). Relative performance evaluation of machine learning algorithms for land use classification using multispectral moderate resolution data. SN Appl. Sci., 5, 274. doi: 10.1007/s42452-023-05496-4

Ramachandra, T.V., & Negi, P. (2025). Geoinformatics-based prioritisation of natural resources rich regions at disaggre-gated levels for sustainable management. Discov Sustain 6, 195. doi: 10.1007/s43621-025-00964-w

Riitters, K. H., Wickham, J. D., & Coulston, J. W. (2004). A preliminary assessment of Montreal process indicators of forest fragmentation for the United States. Environmental Monitoring and Assessment, 91, 257-276. doi: 10.1023/B:EMAS.0000009240.65355.92

Riitters, K.H., Wickham, J.D., O’Neill, R., Jones, B., & Smith, E. (2000). Global-scale patterns of forest fragmentation. Conservation ecology, 4(2).

Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of GeoInformation, 7(4), 154. doi: 10.3390/ijgi7040154

Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and modeling of spatiotemporal urban ex-pansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS Interna-tional Journal of GeoInformation, 6(9), 288. doi: 10.3390/ijgi6090288

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS journal of photogrammetry and remote sensing, 67, 93-104. doi: 10.1016/j.isprsjprs.2011.11.002

Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., ... & Kanawade, V. P. (2022). An-thropogenic land use and land cover changes—A review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50(8), 1615-1640. doi: 10.1007/s12524-022-01569-w

Sahu, N., Reddy, G. O., Dash, B., Kumar, N., & Singh, S. K. (2021). Assessment on spatial extent of arid and semi-arid climatic zones of India using GIS. Journal of Agrometeorology, 23(2), 189-193. doi: 10.54386/jam.v23i2.66

Scholes, R. J. (2020). The future of semi-arid regions: A weak fabric unravels. Climate, 8(3), 43. doi: 10.3390/cli8030043

Setturu, B., & Ramachandra, T.V. (2021). Modeling landscape dynamics of policy interventions in Karnataka State, In-dia. Journal of Geovisualization and Spatial Analysis, 5(2), 22. doi: 10.1007/s41651-021-00091-w

Shanabhoga, M. B., Krishnamurthy, B., Suresha, S. V., Dechamma, S., & Kumar, R. V. (2023). Climate change adapta-tion constraints among paddy growing farmers in Kalyana-Karnataka region of Karnataka State. Indian Journal of Extension Education, 59(2), 124-127. doi: 10.48165/IJEE.2023.59227

Sridhara, S., Gopakkali, P., Manoj, K. N., Patil, K. K. R., Paramesh, V., Jha, P. K., & Prasad, P. V. V. (2022). Identifi-cation of sustainable development priorities for agriculture through sustainable livelihood security indicators for Karnataka, India. Sustainability, 14(3), 1831. doi: 10.3390/su14031831

Strahler, A. H. (1980). The use of prior probabilities in maximum likelihood classification of remotely sensed data. Re-mote sensing of Environment, 10(2), 135-163. doi: 10.1016/0034-4257(80)90011-5

Sugiri, A (2009). Redressing Equity Issues in Natural Resource-Rich Regions: A Theoretical Framework for Sustaining Development in East Kalimantan, Indonesia. Weber, Estelle L. (Ed.), 2009. Environmental Ethics, Sustainability and Education, Oxford: Inter-disciplinary Press, p. 107-34, ISBN: 978-1-904710-74-5, Available at SSRN. Re-trieved From https://ssrn.com/abstract=2038246

Sun, Q., Qi, W., & Yu, X. (2021). Impacts of land use change on ecosystem services in the intensive agricultural area of North China based on Multi-scenario analysis. Alexandria Engineering Journal, 60(1), 1703-1716. doi: 10.1016/j.aej.2020.11.020

Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S. K., Islam, A. R. M. T., & Mallick, J. (2021). Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecological indicators, 126, 107612. doi: 10.1016/j.ecolind.2021.107612

Tariq, A., Mumtaz, F., Majeed, M., & Zeng, X. (2023). Spatio-temporal assessment of land use land cover based on tra-jectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment, 195(1), 114. doi: 10.1007/s10661-022-10738-w

Tian, S., Zhang, X., Tian, J., & Sun, Q. (2016). Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China. Remote Sensing, 8(11), 954. doi: 10.3390/rs8110954

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. doi: 10.1016/0034-4257(79)90013-0

Turner, K. G., Anderson, S., Gonzales-Chang, M., Costanza, R., Courville, S., Dalgaard, T., ... & Wratten, S. (2016). A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecological Modelling, 319, 190-207. doi: 10.1016/j.ecolmodel.2015.07.017

UNCCD. (2016a). The UNCCD: Securing Life on Land (2016–2017). Bonn. United Nations. Retrieved From https://www.unccd.int/sites/default/files/documents/25072016_Securing%20Life%20on%20Land_ENG.pdf.

UNCCD. (2016b). Global Land Outlook; UNCCD: Bonn, Germany, 2022. Retrieved From https://www.unccd.int/sites/default/files/documents/2017-09/GLO_Full_Report_low_res.

Uralovich, K. S., Toshmamatovich, T. U., Kubayevich, K. F., Sapaev, I. B., Saylaubaevna, S. S., Beknazarova, Z. F., & Khurramov, A. (2023). A primary factor in sustainable development and environmental sustainability is envi-ronmental education. Caspian Journal of Environmental Sciences, 21(4), 965-975. doi: 10.22124/CJES.2023.7155

Van de Ven, D. J., Capellan-Peréz, I., Arto, I., Cazcarro, I., de Castro, C., Patel, P., & Gonzalez-Eguino, M. (2021). The potential land requirements and related land use change emissions of solar energy. Scientific reports, 11(1), 2907. doi: 10.1038/s41598-021-82042-5

Van Der Geest, K., De Sherbinin, A., Kienberger, S., Zommers, Z., Sitati, A., Roberts, E., & James, R. (2019). The im-pacts of climate change on ecosystem services and resulting losses and damages to people and society. Loss and damage from climate change: Concepts, methods and policy options, 221-236. doi: 10.1007/978-3-319-72026-5_9

Wambugu, N., Chen, Y., Xiao, Z., Wei, M., Bello, S. A., Junior, J. M., & Li, J. (2021). A hybrid deep convolutional neu-ral network for accurate land cover classification. International Journal of Applied Earth Observation and Geoinformation, 103, 102515. doi: 10.1016/j.jag.2021.102515

Wang, J., Bretz, M., Dewan, M. A. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cov-er-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 822, 153559. doi: 10.1016/j.scitotenv.2022.153559

Wassie, S. B. (2020). Natural resource degradation tendencies in Ethiopia: a review. Environmental systems research, 9(1), 1-29. doi: 10.1186/s40068-020-00194-1

Weng, L., Qian, M., Xia, M., Xu, Y., & Li, C. (2020). Land use/land cover recognition in arid zone using a multi-dimensional multi-grained residual Forest☆. Computers & Geosciences, 144, 104557. doi: 10.1016/j.cageo.2020.104557

West, H., Quinn, N., & Horswell, M. (2019). Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment, 232, 111291. doi: 10.1016/j.rse.2019.111291

Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previ-ously estimated. Nature communications, 12(1), 2501. doi: 10.1038/s41467-021-22702-2

World Bank. (2020). World Development Report 2020: Trading for Development in the Age of Global Value Chains. World Bank. Retrieved From http://hdl.handle.net/10986/32437 License: CC BY 3.0 IGO.

Yang, Y., Wang, K., Liu, D., Zhao, X., & Fan, J. (2020). Effects of land-use conversions on the ecosystem services in the agro-pastoral ecotone of northern China. Journal of Cleaner Production, 249, 119360. doi: 10.1016/j.jclepro.2019.119360

Zhang, A., Venkatesh, V. G., Liu, Y., Wan, M., Qu, T., & Huisingh, D. (2019). Barriers to smart waste management for a circular economy in China. Journal of Cleaner Production, 240, 118198. doi: 10.1016/j.jclepro.2019.118198

Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Le, H. V., Tran, V. Q., ... & Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Prob-lems in Engineering, 2021, 1-15. doi: 10.1155/2021/4832864

Downloads

Submitted

2024-10-11

Accepted

2025-07-18

Published

2025-07-28

Issue

Section

Research article