Urban Violent Crime Dynamics in Kuala Lumpur and Putrajaya: Utilizing Spatial Temporal Techniques

Authors

  • Mohd Sofian Redzuan Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Univer-siti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak
    Malaysia
  • Tarmiji Masron Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Univer-siti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak
    Malaysia
  • Adibah Yusuf Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Univer-siti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak
    Malaysia
  • Syahrul Nizam Junaini Faculty of Computer Science and Information Technology (FCSIT), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak
    Malaysia
  • Yoshinari Kimura Graduate School of Literature and Human Sciences, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 5588585
    Japan
  • Mohamad Hardyman Barawi Faculty of Cognitive Science and Human Development (FCSHD), Universiti Malaysia Sarawak (UNIMAS), 94300 Ko-ta Samarahan, Sarawak
    Malaysia
  • Mohamad Suhaidi Salleh Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Univer-siti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak
    Malaysia
  • Ruslan Rainis Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor
    Malaysia
  • Azizul Ahmad Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Univer-siti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak
    Malaysia

DOI:

https://doi.org/10.23917/forgeo.v39i1.6456

Keywords:

Mean Center (MC), Spatial Analysis, Spatial Autocorrelation, Standard Deviational Ellipse (SDE), Urban Crime Patterns, Violent Crime

Abstract

This paper investigates the patterns of violent crime in Kuala Lumpur and Putrajaya between 2015 and 2020 using advanced spatial analysis techniques, including Spatial Autocorrelation, Standard Deviational Ellipse (SDE), and Mean Centre (MC). The study analyzes the spatial distribution and temporal dynamics of violent crimes, tracks shift in crime hotspots and examines the influence of socio-economic factors on these patterns. Findings reveal that violent crimes predominantly occur in the late afternoon and night, with peak incidents at 3:00 PM (1,830 cases, 8.28%). The study highlights notable shifts in crime hotspots, initially concentrated in commercial districts and gradually expanding to transportation networks and emerging urban areas. The Moran Index values indicate a transition from a near-random pattern in 2015 (-0.002668) to a mild clustering in 2018 (0.032962). Additionally, socio-economic factors, including population density, economic conditions, and the COVID-19 pandemic, significantly impacted crime patterns, leading to changes in crime rates and hotspot locations. These findings are crucial for law enforcement and urban planning, emphasizing the need for adaptive crime prevention strategies that respond to evolving urban challenges, and demonstrating the importance of integrating socio-economic data into spatial crime analysis for comprehensive crime mitigation.

Downloads

Download data is not yet available.

References

Abubakar Ghani, Z. (2017). A Comparative Study of Urban Crime Between Malaysia and Nigeria. Journal of Urban Management, 6(1), 19–29. doi: 10.1016/j.jum.2017.03.001

Ahmad, A., Masron, T., Jubit, N., Redzuan, M. S., Soda, R., Bismelah, L. H., & Mohd Ali, A. S. (2024a). Analysis of the Movement Distribution Pattern of Violence Crime in Malaysia’s Capital Region-Selangor, Kuala Lumpur, and Putrajaya. International Journal of Geoinformatics, 20(2), 11–26. doi: 10.52939/ijg.v20i2.3061

Ahmad, A., Kelana, M. H., Soda, R., Jubit, N., Mohd Ali, A. S., Bismelah, L. H., & Masron, T. (2024b). Mapping the Impact: Property Crime Trends in Kuching, Sarawak, During and After the COVID-19 Period (2020-2022). In-donesian Journal of Geography, 56(1), 127–137. doi: 10.22146/ijg.90057

Ahmad, A., Masron, T., Mohd Ali, A. S., Barawi, M. H., Nordin, Z. S., Abg Ahmad, A. I., Redzuan, M. S., & Bismelah, L. H. (2024c). Exploring the Potential of Geographic Information System (GIS) Application for Understanding Spatial Distribution of Violent Crime Related to United Nations Sustainable Development Goals-16 (SDGS-16). Journal of Sustainability Science and Management, 19(9), 35–63. doi: 10.46754/jssm.2024.09.003

Ahmad, A., Masron, T., Junaini, S. N., Barawi, M. H., Redzuan, M. S., Kimura, Y., Jubit, N., Bismelah, L. H., & Mohd Ali, A. S. (2024d). Criminological Insights: A Comprehensive Spatial Analysis of Crime Hot Spots of Property Offenses in Malaysia’s Urban Centers. Forum Geografi: Indonesian Journal of Spatial and Regional Analysis, 38(1), 94–109. doi: 10.23917/forgeo.v38i1.4306

Andresen, M. A., & Malleson, N. (2013). Crime Seasonality and Its Variations Across Space. Applied Geography, 43, 25–35. doi: 10.1016/j.apgeog.2013.06.007

Andresen, M. A., & Hodgkinson, T. (2023). In a World Called Catastrophe: The Impact of COVID-19 on Neighbour-hood Level Crime in Vancouver, Canada. Journal of Experimental Criminology, 19, 487–511. doi: 10.1007/s11292-021-09495-6

Army, C., & Vellani, K. (2021). Violent Crime Typology and Continuum. Retrieved From https://doi.org/10.21428/cb6ab371.71ec923d

Bassam, S., Osman, N., & Haitham, S. (2018). New Methods for Analyzing Spatio-Temporal Simulation Results of Mo-ran’s Index. Journal of Computer Engineering & Information Technology, 7(2). doi: 10.4172/2324-9307.1000196

Boivin, R., & Ouellet, F. (2014). Space and Time Variations in Crime-Recording Practices within a Large Municipal Po-lice Agency. International Journal of Police Science & Management, 16(3), 171–183. doi: 10.1350/ijps.2014.16.3.337

Breen, C., Herley, C., & Redmiles, E. M. (2022). A Large-Scale Measurement of Cybercrime Against Individuals. CHI Conference on Human Factors in Computing Systems, 1–41. doi: 10.1145/3491102.3517613

Brunsdon, C., & Corcoran, J. (2022). Unveiling The Relationship Between Land Use Types and The Temporal Signals of Crime: An Empirical Decomposition Approach. Environment and Planning B: Urban Analytics and City Science, 49(3), 847–865. doi: 10.1177/23998083211033304

Butt, U. M., Letchmunan, S., Hassan, F. H., Ali, M., Baqir, A., & Sherazi, H. H. R. (2020). Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review. IEEE Access, 8, 166553–166574. doi: 10.1109/ACCESS.2020.3022808

Carcach, C. (2015). A Spatio-Temporal Model of Homicide in El Salvador. Crime Science, 4(20), 1-7. doi: 10.1186/s40163-015-0033-6

Che Soh, M. Bin. (2012). Crime and Urbanization: Revisited Malaysian Case. Procedia - Social and Behavioral Sci-ences, 42, 291–299. doi: 10.1016/j.sbspro.2012.04.193

Chen, Y. (2023). Spatial Autocorrelation Equation based on Moran’s Index. Scientific Reports, 13(19296). doi: 10.1038/s41598-023-45947-x

Cummings, A. R., Markandey, N., Das, H., Arredondo, C., Wehenkel, A., Tiemann, B. L., & Lee, G. (2019). The Spill Over of Crime from Urban Centers: An Account of the Changing Spatial Distribution of Violent Crime in Guy-ana. ISPRS International Journal of Geo-Information- Special Issue Urban Crime Mapping and Analysis Us-ing GIS, 8(11), 481. doi: 10.3390/ijgi8110481

Dağlar, M., & Argun, U. (2016). Crime Mapping and Geographical Information Systems in Crime Analysis. Interna-tional Journal of Human Sciences, 13(1), 2208–2221. doi: 10.14687/ijhs.v13i1.3736

D’Orsogna, Maria. R., & Perc, M. (2015). Statistical Physics of Crime: A Review. Physics of Life Reviews, 12, 1–21. doi: 10.1016/j.plrev.2014.11.001

Elfadaly, A., Zanaty, N., Mostafa, W., Hendawy, E., & Lasaponara, R. (2024). Multi-Sensor Satellite Images for De-tecting the Effects of Land-Use Changes on the Archaeological Area of Giza Necropolis, Egypt. Land, 13(4), 471. doi: 10.3390/land13040471

ESRI. (2022a). How Directional Distribution (Standard Deviational Ellipse) Works. Retrieved From https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-directional-distribution-standard-devia-tiona.htm#:~:text=These%20measures%20define%20the%20axes,the%20axes%20of%20the%20ellipse.

ESRI. (2022b). How Mean Center Works, Environmental Systems Research Institute, Inc. (ESRI). Retrieved From https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-mean-center-spatial-statistics-works.htm#:~:text=The%20mean%20center%20is%20the,of%20different%20types%20of%20features.

Fagerlund, M., Kääriäinen, J., & Ellonen, N. (2018). Recording of Offences on Police Domestic Violence Call Outs. In-ternational Journal of Comparative and Applied Criminal Justice, 42(2–3), 119–137. doi: 10.1080/01924036.2017.1364277

Felson, M., & Poulsen, E. (2003). Simple Indicators of Crime by Time of Day. International Journal of Forecasting, 19(4), 595–601. doi: 10.1016/S0169-2070(03)00093-1

Furfey, P. H. (1927). A Note on Lefever’s “Standard Deviational Ellipse.” American Journal of Sociology, 33(1), 94–98.

Haberman, C. P., Groff, E. R., Ratcliffe, J. H., & Sorg, E. T. (2016). Satisfaction With Police in Violent Crime Hot Spots: Using Community Surveys as a Guide for Selecting Hot Spots Policing Tactics. Crime and Delinquency, 62(4), 525–557. doi: 10.1177/0011128713516840

Heap, V. (2008). Criminal Victimisation of the Elderly: Have Rates of Crime against the Elderly Changed Relative to Overall Crime Rates?. Retrieved From https://shura.shu.ac.uk/31395/

He, L., Páez, A., & Liu, D. (2017). Persistence of Crime Hot Spots: An Ordered Probit Analysis. Geographical Analysis, 49(1), 3–22. doi: 10.1111/gean.12107

Huang, G., Cheng, W., Xu, Y., Yang, J., Jiang, J., Pan, X., Zhou, X., Jiang, J., & Chai, C. (2024). Spatiotemporal Pattern and Its Determinants for Newly Reported HIV/AIDS Among Older Adults in Eastern China From 2004 to 2021: Retrospective Analysis Study. JMIR Public Health and Surveillance, 10(e51172). doi: 10.2196/51172

Jamru, L. R., Hashim, M., Phua, M. H., Jafar, A., Sakke, N., Eboy, O. V., Imang, U., Natar, M., Ahmad, A., & Mohd Najid, S. A. (2024). Exploring Intensity Metrics in Raw LiDAR Data Processing for Tropical Forest. IOP Confer-ence Series: Earth and Environmental Science, 12th IGRSM International Conference and Exhibition on Geo-spatial & Remote Sensing 29/04/2024 - 30/04/2024 Kuala Lumpur, Malaysia, 1412(012005), 1–13. doi: 10.1088/1755-1315/1412/1/012005

Johnson, S. D. (2010). A Brief History of the Analysis of Crime Concentration. European Journal of Applied Mathe-matics, 21(4–5), 349–370. doi: 10.1017/S0956792510000082

Johnson, S. D., Lab, S. P., & Bowers, K. J. (2008). Stable and Fluid Hotspots of Crime: Differentiation and Identifica-tion. Built Environment, 34(1), 32–45.

Jubit, N., Redzuan, M. S., Ahmad, A., Salleh, M. S., & Masron, T. (2022). Tren Jenayah Harta Benda di Malaysia: Kajian di Selangor dan Kuala Lumpur (Property Crime Trends in Malaysia: A Study in Selangor and Kuala Lumpur). Geografi, 10(2), 35–53. doi: 10.37134/geografi.vol10.2.3.2022

Jubit, N., Masron, T., Redzuan, M. S., Ahmad, A., & Kimura, Y. (2024). Revealing Adolescent Drug Trafficking and Addiction: Exploring School Disciplinary and Drug Issues in The Federal Territory of Kuala Lumpur and Selan-gor, Malaysia. International Journal of Geoinformatics, 20(6), 1–12. doi: 10.52939/ijg.v20i6.3327

Kent, J., & Leitner, M. (2008). Efficacy of Standard Deviational Ellipses in the Application of Criminal Geographic Pro-filing. Journal of Investigative Psychology and Offender Profiling, 4(3), 147–165. doi: 10.1002/jip.72

Mansor, N. S., Mohd Shafri, H. Z., & Mansor, S. (2019). A GIS Based Method for Assessing the Association Between Urban Development and Crime Pattern in Sungai Petani, Kedah Malaysia. International Journal of Recent Technology and Engineering (IJRTE), 8(2), 4374–4380. doi: 10.35940/ijrte.B3177.078219

Marzuki, A., Bagheri, M., Ahmad, A., Masron, T., & Akhir, M. F. (2024). Examining Transformations in Coastal City Landscapes: Spatial Patch Analysis of Sustainable Tourism—A Case Study in Pahang, Malaysia. Landscape and Ecological Engineering. https://doi.org/10.1007/s11355-024-00613-w

Masron, T., Ahmad, A., Jubit, N., Sulaiman, M. H., Rainis, R., Redzuan, M. S., Junaini, S. N., Jamian, M. A. H., Mohd Ali, A. S., Salleh, M. S., Zaini, F., Soda, R., & Kimura, Y. (2024). Crime Map Book, Centre for Spatially Inte-grated Digital Humanities (CSIDH), Faculty of Social Sciences and Humanities, Universiti Malaysia Sarawak. Retrieved From https://www.researchgate.net/publication/384572873_Crime_Map_Book

Masron, T., Ahmad, A., Abdillah, K. K., Mohd Ali, A. S., Junaini, S. N., & Kimura, Y. (2025). Deciphering Property Crime through OLS Regression: A Demographic Study. International Social Science Journal. doi: 10.1111/issj.12558

Mohd Ali, A. S., Masron, T., Junaini, S. N., Ahmad, A., & Soda, R. (2025). Ethnic Disparities and Demographic Shifts in Sarawak’s Aging Population: A Comprehensive Longitudinal Analysis (1980-2020). International Journal of Geoinformatics, 21(2), 106–122. doi: 10.52939/ijg.v21i2.3943

Mission, R. S. (2024). Spatial Analysis Leveraging Geographic Information System and Kernel Density Estimation for Crime Prediction. Journal of Innovative Technology Convergence, 6(1), 95–104. doi: 10.69478/JITC2024v6n2a10

Mohd Hakim, H., Omar Khan, H., Helmi Hamzah, H., Othman, M. F., Nelson, B. R., Chambers, G. K., Atan Edinur, H., Abdullah, M. T., & Rasudin, N. S. (2019). Violent Crime Datasets: Incidence and Patterns in Malaysia from 2006 To 2017. Data in Brief, 26(104449). doi: 10.1016/j.dib.2019.104449

Mordwa, S. (2015). Techniki GIS – w poszukiwaniu hot spotów przestępczości (GIS Techniques – In Search of Crime Hotspots). Archiwum Kryminologii (Archives of Criminology), XXXVII, 279–302. doi: 10.7420/AK2015I

Muhamad Ludin, A. N., Abd. Aziz, N., Hj Yusoff, N., & Wan Abd Razak, W. J. (2013). Impacts of Urban Land Use on Crime Patterns Through GIS Application. Planning Malaysia: Journal of the Malaysian Institute of Planners (Special Issue 2: 2013, Geospatial Analysis in Urban Planning), 11(2), 1–22. doi: 10.21837/pm.v11i2.113

Nadian, M., Mirzaei, R., & Soltani Mohammadi, S. (2018). Application of Moran’sI Autocorrelation in Spatial-Temporal Analysis of PM2.5 Pollutant (A case Study: Tehran City). Journal of Environmental Health Engi-neering, 5(3), 197–213. doi: 10.29252/jehe.5.3.197

Nagulendran, K., Padfield, R., Aziz, S. A., Amir, A. A., Abd. Rahman, A. R., Latiff, M. A., Zafir, A., Quilter, A. G., Tan, A., Arifah, S., Awang, N., Azhar, N., Balu, P., Gan, P. C., Hii, N., Reza, M. I. H., Lakshmi Lavanya, R. I., Lim, T., Mahendra, S., … Campos-Arceiz, A. (2016). A Multi-Stakeholder Strategy to Identify Conservation Priori-ties in Peninsular Malaysia. Cogent Environmental Science, 2(1), 1–19. doi: 10.1080/23311843.2016.1254078

Nelson, A. L., Bromley, R. D. F., & Thomas, C. J. (2001). Identifying Micro-Spatial and Temporal Patterns of Violent Crime and Disorder in the British City Centre. Applied Geography, 21(3), 249–274. doi: 10.1016/S0143-6228(01)00008-X

Oliveira, M., & Menezes, R. (2019). Spatial Concentration and Temporal Regularities in Crime. Understanding Crime through Science, 1901.03589. doi: 10.48550/arXiv.1901.03589

Tan, K. G., Chuah, H. Y., & Luu, N. T. D. (2018). A Case Study on Malaysia and Singapore: Nexus Amongst Competi-tiveness, Cost of Living, Wages, Purchasing Power and Liveability. Competitiveness Review, 28(2), 172–193. doi: 10.1108/CR-09-2017-0062

Thomas, J., & Mohan, K. (2023). Drug-Free School Locality through Crime Prevention Strategies – The Case of Kerala. Qeios, 1–18. doi: 10.32388/36fvfq

Towers, S., Chen, S., Malik, A., & Ebert, D. (2018). Factors Influencing Temporal Patterns in Crime in a Large American City: A Predictive Analytics Perspective. PLoS ONE, 13(10). doi: 10.1371/journal.pone.0205151

Verma, R., Fischer, V., & Nalisnick, E. (2024). On Calibration in Multi-Distribution Learning. ArXiv, 2412(14142), 1-18. doi: 10.48550/arXiv.2412.14142

Wang, L., Lee, G., & Williams, I. (2019). The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach. ISPRS International Journal of Geo-Information, 8(1), 51. doi: 10.3390/ijgi8010051

Wong, D. W. S., & Lee, J. (2005). Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS. Re-trieved From https://www.wiley.com/en-us/Statistical+Analysis+of+Geographic+Information+with+ArcView +GIS+and+ArcGIS-p-9780471468998

Yadav, K. (2023). Crime Mapping and Forecasting Using Geospatial Techniques: A Case of Ajmer. International Jour-nal for Research in Applied Science and Engineering Technology, 11(10), 1323–1338. doi : 10.22214/ijraset.2023.56178

Yue, H., Zhu, X., Ye, X., & Guo, W. (2017). The Local Colocation Patterns of Crime and Land-Use Features in Wuhan, China. ISPRS International Journal of Geo-Information (This Article Belongs to the Special Issue Place-Based Research in GIScience and Geoinformatics), 6(10), 1–5. doi: 10.3390/ijgi6100307

Zakaria, S., & Abdul Rahman, N. (2015). The Mapping of Spatial Patterns of Violent Crime in Peninsular Malaysia: Normal Mixture Model Approach. PERTANIKA: Journal of Science & Technology, 23(2), 207–222.

Zakaria, Y. S., Ariffin, N. A., Ahmad, A., Rainis, R., M. Muslim, A., & Wan Ibrahim, W. M. M. (2025). Optimizing Tu-berculosis Treatment Predictions: A Comparative Study of XGBoost with Hyperparameter in Penang, Malay-sia (Mengoptimumkan Peramalan Rawatan Tuberkulosis: Suatu Kajian Perbandingan XGBoost dengan Hiperparameter di Penang, Malaysia). Sains Malaysiana, 54(1), 3743–3754. doi: 10.17576/jsm-2025-5401-22

Zhao, J., Ibrahim, H., Wang, C., & Yuan, R. (2024). Investigating the Temporal and Spatial Evolution of Bank Perfor-mance and its Impact Pathways in the Context of Financial Technology Development. Heliyon, 10(10), e30585. doi: 10.1016/j.heliyon.2024.e30585

Downloads

Submitted

2024-08-28

Accepted

2024-12-25

Published

2025-03-08

Issue

Section

Research article