Modelling of Soil Erosion Susceptibility Using the Multi-Influencing Factor Method in the Amizmiz Basin, Morocco
DOI:
https://doi.org/10.23917/forgeo.v38i3.6263Keywords:
watershed of Amizmiz, hydraulic erosion, remote sensing, GIS, Multi-influencing FactorAbstract
In the Western High Atlas of Morocco, soil loss caused by hydraulic erosion is a serious environmental issue that has led to the destruction of arable land and the feeding of surface water with large solid loads, resulting in major flood damage and the silting of dams. This study aims to identify areas vulnerable to hydraulic erosion in the Amizmiz watershed in the Western High Atlas to facilitate effective management of natural resources. The methodology adopted in this study is based on the multi-influencing factor (MIF) method coupled with remote sensing and geographic information system (GIS) data. The resulting erodibility map shows that areas with low to very low erosion potential represent 13% and 6% of the watershed, respectively, occupying the downstream and eastern parts of the basin, whereas 62% of the basin is classified as medium-risk. The remaining 19% of the watershed comprises high-risk areas, which are generally located in the axial and western zones. The validation value (AUC) obtained from the ROC curve is 0.78, confirming the sufficient predictive capacity of the MIF model for identifying areas vulnerable to hydraulic erosion in the Amimiz watershed.
Downloads
References
Agli, S., Ahmed, A., Abdellah, A., Abdelouahed, F., Moujane, S., Salma, K., & Maryam, E. (2024). Delineation of Groundwater Storage and Recharge Potential Zones Using Multi-Influencing Factors (MIF) Method: Applica-tion in Synclinal Coastal Basin of Essaouira (Western High Atlas of Morocco). Geomatics and Environmental Engineering, 18(4), 117–145. doi: 10.7494/geom.2024.18.4.117
Agli, S., Ahmed, A., Abdellah, A., Abdelouahed, F., Moujane,et al., (2023). Characterization the dynamics of transport of quartz grains in the Amizmiz watershed (Western High Atlas): Exoscopic approach. International Journal of Advanced Natural Sciences and Engineering Researches (IJANSER), 7(11), 552–560. doi: 10.59287/as-ijanser.716
Ayad, A., Ribeiro, M. L., Mata, J., Ferreira, P., Ezzouhairi, H., Charif, A., & Dias, R. (1998). Evolution du magmatisme cambrien en deux régions périgondwanniennes: Azegour (Haut-Atlas) et Alter do Chao-Elvas (NE Alente-jo). Communicaçaos do Instituto Geologico e Mineiro, 84, B154-B157.
Barakat, A., Rafai, M., Mosaid, H., Islam, M. S., & Saeed, S. (2023). Mapping of water-induced soil erosion using ma-chine learning models: a case study of Oum Er Rbia Basin (Morocco). Earth Systems and Environment, 7(1), 151-170. doi: 10.1007/s41748-023-003768
Chen, W., Shahabi, H., Zhang, S., Khosravi, K., Shirzadi, A., Chapi, K., ... & Ahmad, B. B. (2018). Landslide susceptibil-ity modelling based on gis and novel bagging-based kernel logistic regression. Applied Sciences, 8(12), 2540. doi: 10.3390/app8122540
Ebhuoma, E. E. (2022). Factors undermining the use of seasonal climate forecasts among farmers in south africa and zimbabwe: Implications for the 1st and 2nd sustainable development goals. Frontiers in Sustainable Food Systems, 6, 761195. doi: 10.3389/fsufs.2022.761195
Ebhuoma, O., Gebreslasie, M., Ngetar, N. S., Phinzi, K., & Bhattacharjee, S. (2022). Soil erosion vulnerability mapping in selected rural communities of uThukela catchment, South Africa, using the analytic hierarchy process. Earth Systems and Environment, 6(4), 851-864. doi: 10.1007/s41748-022-00339-0
Elbadaoui, K., Mansour, S., Ikirri, M., Abdelrahman, K., Abu-Alam, T., & Abioui, M. (2023). Integrating Erosion Poten-tial Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco. Land, 12(4), 837. doi: 10.3390/land12040837
Ellero, A., Ottria, G., Malusà, M. G., & Ouanaimi, H. (2012). Structural geological analysis of the High Atlas (Morocco): evidence of a transgressional fold-thrust belt. Tectonics-recent advances, 229-258.
Errami, M., Algouti, A., Algouti, A., Farah, A., & Agli, S. (2023). Utilization of ASTER data in lithological and lineament mapping of the southern flank of the Central High Atlas in Morocco. Geologos, 29(1), 1-20. doi: 10.2478/logos-2023-0001
Farah, A., Algouti, A., Algouti, A. (2021). Lineament mapping in the Ikniouen area (eastern anti-atlas, Morocco) using Landsat-8 Oli and SRTM data. Remote sensing applications: society and environment, 23, 100606. doi: 10.1016/j.rsase.2021.100606
Farah , A., Algouti, A., Algouti, A., et al., (2022). GIS and remote sensing coupled with analytical hierarchy process (AHP) for the selection of appropriate sites for landfills: a case study in the province of Ouarzazate, Moroc-co. Journal of Engineering and Applied Science, 69(1), 19. doi: 10.1186/s44147-022-00019-8
Farah, A., Algouti, A., Algouti, A., Ait Mlouk, M., & Ifkirne, M. (2022). Lineament mapping in the Central High Atlas us-ing ASTER and ASTER-GDEM data,(Morocco). Boletín de la Sociedad Geológica Mexicana, 74(1). doi: 10.18268/BSGM2022v74n1a2
Fartas, N., El Fellah, B., Mastere, M., Benzougagh, B., & El Brahimi, M. (2022). Potential soil erosion modeled with RUSLE approach and geospatial techniques (GIS tools and remote sensing) in Oued Joumouaa watershed (Western Prerif-Morocco). The Iraqi Geological Journal, 47-61.
Forootan, E. (2022). Erosion susceptibility assessment using fuzzy logic and multi-influencing factors combination ap-proach. Arabian Journal of Geosciences, 15(5), 444. https://doi.org/10.1007/s12517-022-09875-2
Gourfi, A., & Daoudi, L. (2019). Effects of land use changes on soil erosion and sedimentation of dams in semi-arid re-gions: example of N’fis watershed in western high atlas, Morocco. J Earth Sci Clim Change, 10(513), 2. doi: 10.4172/2157-7617.1000513
Gourfi, A., Daoudi, L., Daoud, N. B., & Fagel, N. (2024). Clay minerals in soils and sediment as tracers of provenance: The case study of the N'fis watershed, Morocco. Soil Use and Management, 40(1), e12925.
Haitami, H., Ulfa, A., & Muntaha, A. (2017). Kadar vitamin C jeruk sunkist peras dan infused water. Medical Labora-tory Technology Journal, 3(1), 22-26. doi: .33086/mltj.v3i1.71
Hitouri, S., Varasano, A., Mohajane, M., Ijlil, S., Essahlaoui, N., Ali, S. A., ... & Teodoro, A. C. (2022). Hybrid machine learning approach for gully erosion mapping susceptibility at a watershed scale. ISPRS International Journal of Geo-Information, 11(7), 401. doi: 10.3390/ijgi11070401
Igwe, O., John, U. I., Solomon, O., & Obinna, O. (2020). GIS-based gully erosion susceptibility modelling , adapting biva-riate statistical method and AHP approach in Gombe town and environs Northeast Nigeria. Geoenvironmental Disasters, 7, 1-16.
Innan, R., & Moustaghfir, K. (2012). Predicting Employees’ Behavior: An Application of the Theory of Planned Behav-ior; The Case of the Moroccan Forestry Department (HCEFLCD). In Proceedings of the Management, Knowledge and Learning International Conference, 333-348.
Kabili, S., Ahmed, A., Abdellah, A., & Akram, E. G. (2023). Quantification of water erosion using empirical models RUSLE and EPM in the Rheraya basin in the High Atlas of Marrakech. Disaster Advances, 16(5), 19-28.
Kabili, S., Ahmed, A., Abdellah, A., & Salma, E. (2023). Estimation and mapping of water erosion and soil loss: Appli-cation of Gavrilovic erosion potential model (EPM) using GIS and remote sensing in The Assif el mal Water-shed, Western high Atlas. China Geology, 7, 1-14. doi: 10.31035/cg2023058
Ke, Y., Im, J., Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote sensing of environment, 164, 298-313. doi: 10.1007/s12665-023-10768-5
Khairuddin, W. N. B. W., Rambat, S. B., & Harun, A. N. B. (2022). Community based index of coastal erosion using ahp analysis. IOP Conference Series: Earth and Environmental Science, 1091(1), 012042.
Khemiri, K., & Jebari, S. (2021). Évaluation de l’érosion hydrique dans des bassins versants de la zone semi-aride tuni-sienne avec les modèles RUSLE et MUSLE couplés à un Système d’information géographique. Cahiers Agri-cultures, 30, 7.
Kirkby, M. (2003). Modelling erosion–the PESERA project. In The First SCAPE Workshop: Alicante, Spain.
Kirkby, M., Jones, R. J., Irvine, B., Gobin, A. G. G., Cerdan, O., van Rompaey, J. J., ... & Huting, J. R. M. (2004). Pan-European Soil Erosion Risk Assessment for Europe: the PESERA map, version 1 October 2003. Explanation of Special Publication Ispra 2004 No. 73 (SPI 04.73) (No. 16, 21176). Office for Official Publications of the Eu-ropean Communities.
Lal, R. A. T. T. A. N. "Soil degradation by erosion." Land degradation & development 12.6 (2001): 519-539. doi: 10.1002/ldr.472
Le Bissonnais, Y., Thorette, J., Bardet, C., & Daroussin, J. (2002). L’érosion hydrique des sols en France. Rapport INRA, IFEN, 106.
Le Roux, J. J., Morgenthal, T. L., Malherbe, J., Pretorius, D. J., & Sumner, P. D. (2008). Water erosion prediction at a na-tional scale for South Africa. Water Sa, 34(3), 305-314. doi : 10.4314/wsa.v34i3.183650
Lin, L., & Pussella, P. (2017). Assessment of vulnerability for coastal erosion with GIS and AHP techniques case study: Southern coastline of Sri Lanka. Natural Resource Modelling , 30(4), e12146.
Liu, J., Gao, G., Wang, S., Jiao, L., Wu, X., & Fu, B. (2018). The effects of vegetation on runoff and soil loss: Multidi-mensional structure analysis and scale characteristics. Journal of Geographical Sciences, 28, 59-78.
Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: us-ing RUSLE, remote sensing and GIS. Land degradation & development, 15(5), 499-512. doi: 10.1002/ldr.634
Mandal, K., Saha, S., & Mandal, S. (2021). Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geoscience Fron-tiers, 12(5), 101203. doi: 10.1016/j.gsf.2020.101203
Mandal, P., Saha, J., Bhattacharya, S., & Paul, S. (2021). Delineation of groundwater potential zones using the integra-tion of geospatial and MIF techniques: A case study on Rarh region of West Bengal, India. Environmental Challenges, 5, 100396. doi: 10.1016/j.envc.2021.100396
Markhi, A., Laftouhi, N., Grusson, Y., & Soulaimani, A. (2019). Assessment of potential soil erosion and sediment yield in the semi-arid N′ fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica, 67, 263-272. doi: 10.1007/s11600-018-0200-6
Merkhi, A., Laftouhi, N. E., Soulaimani, A., & Fniguire, F. (2015). Quantification et évaluation de l’érosion hydrique en utilisant le modèle RUSLE et déposition intégrée dans un SIG. Application dans le bassin versant n'fis dans le haut atlas de Marrakech (Maroc). Eur Sci J 11 (29): 340–356.
Moujane, S., Algouti, A., Algouti, A., Farah, A., Aboulfaraj, A., & Nafouri, I. (2024). Mapping lineaments using Landsat 8 OLI and SRTM data; a case study of the eastern part of the Ouarzazate Basin, Morocco. Journal of Moun-tain Science, 21(3), 987-1003. doi: 10.1007/s11629-024-7426-7
Najia, F., Bouchta, E., Mohamed, M., Benzougagh, B., & El Brahimi, M. (2021). Evaluation of water erosion by map-ping and application of the PAP/RAC method in the Prerif of Ouazzane. Ecology, Environnement and Conser-vation, 12.
Nouaim, W., Rambourg, D., El Harti, A., Abderrahim, E., Merzouki, M., & Karaoui, I. (2023). The estimation of water erosion with RUSLE and deposition model: A case study of the Bin El-Ouidane dam catchment area (High At-las, Morocco). Journal of Water and Land Development. doi: 10.24425/jwld.2023.141424
Oudchaira, S., Rhoujjati, A., Hanich, L., & EL Hachimi, M. L. (2024). Evaluating soil loss and sediment yield for sus-tainable management of the Hassan II dam within Morocco’s Upper Moulouya watershed using RUSLE mod-el and GIS. Environmental Earth Sciences, 83(7), 210. doi: 10.1007/s12665-023-10768-5
Ourhzif, Z., & Algouti, A., Algouti, A., Ait Mlouk, M., Aydda, A., (2020). Soil Erosion susceptibility mapping using sup-port vector machine and Remote sensing data in Semi-arid Environment: South High Atlas of Marrakech (Mo-rocco). Ecology Environment and Conservation, 27(2), 405-421.
Rajasekhar, M., Raju, G. S., Sreenivasulu, Y., & Raju, R. S. (2019). Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch, 2, 97-108. doi: 10.1016/j.hydres.2019.10.001
Saha, S. M., Pranty, S. A., Rana, M. J., Islam, M. J., & Hossain, M. E. (2022). Teaching during a pandemic: do universi-ty teachers prefer online teaching?. Heliyon, 8(1). doi: 10.1016/j.heliyon.2021.e08834
Saha, S., Sarkar, D., & Mondal, P. (2022). Assessing and mapping soil erosion risk zone in Ratlam District, central In-dia. Regional Sustainability, 3(4), 373-390.
Saoud, M., & Meddi, M. (2022). Mapping of erosion using USLE, GIS and remote sensing in Wadi El Hachem Water-shed (Northern Algeria): Case study. Journal of the Indian Society of Remote Sensing, 50(3), 569-581.
Sutradhar, S., Mondal, P., & Das, N. (2021). Delineation of groundwater potential zones using MIF and AHP models: a micro-level study on Suri Sadar Sub-Division, Birbhum District, West Bengal, India. Groundwater for Sustain-able Development, 12, 100547. doi: 10.1016/j.gsd.2020.100547
Tahouri, J., Sadiki, A., Karrat, L. H., Johnson, V. C., weng Chan, N., Fei, Z., & Te Kung, H. (2022). Using a modified PAP/RAC model and GIS-for mapping water erosion and causal risk factors: Case study of the Asfalou water-shed, Morocco. International Soil and Water Conservation Research, 10(2), 254-272.
Valentin, C. (1994). Sécheresse et érosion au Sahel. Sécheresse, 5(3), 191-198.
Vanguestaine, M., & Van Looy, J. (1983). Acritarches du Cambrien moyen de la vallée de Tacheddirt (Haut-Atlas, Ma-roc) dans le cadre d'une nouvelle zonation du Cambrien. Annales de la Société géologique de Belgique.
Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Moun-tains: Guide for selection of practices for soil and water conservation. Agricultural Research Service, US De-partment of Agriculture, 282.
Xu, D., & Guo, X. (2014). Compare NDVI extracted from Landsat 8 imagery with that from Landsat 7 imagery. Ameri-can Journal of Remote Sensing, 2(2), 10-14. doi: 10.11648/j.ajrs.20140202.11
Yariyan, P., Janizadeh, S., Van Phong, T., Nguyen, H. D., Costache, R., Van Le, H., ... & Tiefenbacher, J. P. (2020). Im-provement of best first decision trees using bagging and dagging ensembles for flood probability map-ping. Water Resources Management, 34, 3037-3053. doi: 10.1007/s11269-020-02564-2
Ziadi, K., Barakat, A., El Aloui, A., Ouayah, M., & Namous, M. (2023). Modelling and mapping of soil erosion risk based on GIS and PAP/RAC guidelines in the watershed of Tassaoute (Central High-Atlas, Morocco). Bulletin of Geography. Physical Geography Series, (24), 65-83.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Saloua Agli, Algouti Ahmed, Algouti Abdellah, Farah Abdelouahed, Moujane Said, Abdelfattah Aboulfaraj, El ghouat Akram

This work is licensed under a Creative Commons Attribution 4.0 International License.















