Integration of Texture and PCA Information from Sentinel-1 SAR Data for Land Cover-Analysis using Random Forest Classifier Method in Sidoarjo Regency, Indonesia
DOI:
https://doi.org/10.23917/forgeo.v39i1.6045Keywords:
Random Forest Classifier, Sentinel-1 GRD, Land CoverAbstract
Land cover has an important role in modelling to spatially analyse natural phenomena that occur on the earth's surface. The identification of land cover can also be used to determine the availability of green space and the percentage of built-up land in an area. Through this information, it can help the government to formulate policies related to development planning in an area. Currently, land cover identification can be done with remote sensing technology, generally using optical imagery. However, there are obstacles when using optical imagery, namely, if the cloud cover in an area is thick enough, it will affect the accuracy of the land cover results. To anticipate this, land cover identification can be done using active or radar imagery, one of which is the Sentinel-1 GRD image. The active image is not influenced by clouds and can record information without being constrained by weather both during the day and night. Sentinel-1 GRD data contains backscattering information that can be extracted using texture analysis and Principal Component Analysis (PCA). The Random Forest classifier was employed early in this study to analyze Sentinel-1 data, enabling classification using various inputs. Land cover classification from several inputs, namely, sigma, gamma, and beta from backscattering data, resulted in overall accuracy of 86.154%, 87.692%, and 86.154%.
Downloads
References
Adugna, T., Xu, W., & Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Re-gional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing, 14(3), 574. doi: 10.3390/rs14030574
Aggarwal, A. K. (2022). Learning Texture Features from GLCM for Classification of Brain Tumor MRI Images using Random Forest Classifier. Wseas Transactions On Signal Processing, 18, 60–63. doi: 10.37394/232014.2022.18.8
Almaiah, M. A., Almomani, O., Alsaaidah, A., Al-Otaibi, S., Bani-Hani, N., Hwaitat, A. K. Al, Al-Zahrani, A., Lutfi, A., Awad, A. B., & Aldhyani, T. H. H. (2022). Performance Investigation of Principal Component Analysis for In-trusion Detection System Using Different Support Vector Machine Kernels. Electronics, 11(21), 3571. doi: 10.3390/eletronics11213571
Althubiti, S. A., Paul, S., Mohanty, R., Mohanty, S. N., Alenezi, F., & Polat, K. (2022). Ensemble Learning Framework with GLCM Texture Extraction for Early Detection of Lung Cancer on CT Images. Computational and Ma-thematical Methods in Medicine, 2022, 1–14. doi: 10.1155/2022/2733965
Antara, I. M. O. G., Kusmiyarti, T. B., Suyarto, R., & Wiyanti, W. (2021). Klasifikasi Sawah Dan Non-Sawah Dengan Metode Random Forest Pada Citra Sar Sentinel-1 (Studi Kasus di Kecamatan Kediri, Kabupaten Tabanan, Ba-li). Seminar Nasional Geomatika, 245. doi: 10.24895/SNG.2020.0 0.1140
Aouat, S., Ait-hammi, I., & Hamouchene, I. (2021). A New Approach for Texture Segmentation Based on the Gray Level Co-occurrence Matrix. Multimedia Tools and Applications, 80(16), 24027–24052. doi: 10.1007/s11042-021-10634-4
Ardha, M. A. G. S. J. A. Y. F.; Y. D. R. Z. D. (2021). Utilization of Sentinel 1-A for Identification Land Use changes in Ci-tarum Watershed. Journal of Degraded and Mining Lands Management.
Bagaskara, D. P., Widada, S., & Rochaddi, S. (2017). Laju Sedimentasi Dan Pergeseran Delta Di Muara Anak Sungai Porong Sidoarjo. Jurnal Oseanografi, 6(4).
Braun, A. (2020). SAR-based Landcover Classification with Sentinel-1 GRD Products. SkyWatch Space Applications.
Chulafak, G. A., Kushardono, D., & Zylshal, N. (2018). Optimasi Parameter Dalam Klasifikasi Spasial Penutup Penggunaan Lahan Menggunakan Data Sentinel Sar (Parameters Optimiza-Tion In Spatial Land Use Land Cover Classification Using Sentinel Sar Data). Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 14(2). doi : 10.30536/j.pjpdcd.1017.v14.a2746
Dahhani, S., Raji, M., Hakdaoui, M., & Lhissou, R. (2022). Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub Saharan Landscape. Remote Sensing, 15(1), 65. doi: 10.3390/rs15010065
Dharani, M., & Sreenivasulu, G. (2021). Land Use and Land Cover Change Detection by Using Principal Component Analysis and Morphological Operations in Remote Sensing Applications. International Journal of Computers and Applications, 43(5), 462–471. doi: 10.1080/1206212X.2019.1578068
Fadlin, F., Arsyad, M. T., Maricar, F., & Hatta, M. P. (2021). Monitoring Perubahan Penggunaan Lahan Menggunakan Citra Satelit Sentinel 1 Di Das Wanggu Kota Kendari. In Jurnal Teknik Sumber Daya Air, 12(2).
Haydar, M., Sadia, H., & Hossain, M. T. (2024). Data driven forest fire susceptibility mapping in Bangla-desh. Ecologi-cal Indicators, 166, 112264. doi: 10.1016/j.ecolind.2024.112264
Huda, H. A. N., Hasyim, A. W., & Parlindungan, J. (2022). Identifikasi Perubahan Tutupan Lahan Di Ko-Ta Batu Menggunakan Metode Penginderaan Jauh. Planning for Urban Region and Environment Journal (PURE), 11(1), 153-160.
Islami, F. A. T. S. D. W. E. D. D. B. D. (2022). Accuracy Assessment of Land Use Change Analysis Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conf. Series: Earth and Environmental Science, 012091.
Liang, S. (2008). Advances in Land Remote Sensing. Springer Netherlands. doi: 10.1007/978-1-4020-6450-0
Makinde, E., & Oyelade, O. (2018). Land Cover Mapping Using Sentinel-1 SAR Satellite Imagery of Lagos State for 2017. The Economy, Sustainable Development, and Energy International Conference, 1399. doi: 10.3390/proceedings2221399
Najafi Khanbebin, S., & Mehrdad, V. (2021). Local Improvement Approach and Linear Discriminant Analysis-based Local Binary Pattern for Face Recognition. Neural Computing and Applications, 33(13), 7691–7707. doi: 10.1007/s00521-020-05512-3
Prasetyo, S. Y. J. (2023). Metode Penelitian Penginderaan Jauh. Retrieved From www.penerbituwais.com
Pryambodo, D. G., Prihantono, J., & Akhwady, R. (2021). Model Karakteristik Lapisan Bawah Per-Mukaan Tanah Pu-lau Lusi Sidoarjo Jawa Timur Menggunakan Metode Geolistrik Untuk Mendukung Wisata Bahari. Jurnal Kelautan Nasional, 16(1), 45-54.
Pujianto, R., Adiwijaya, & Rahmawati, A. A. (2019). Analisis Ekstraksi Fitur Principle Component Analysis pada Klasi-fikasi Microarray Data Menggunakan Classification And Regression Trees. E-Proceeding of Engineering, 6(1).
Regasa, M., Nones, M., & Adeba, D. (2021). A Review on Land Use and Land Cover Change in Ethiopian Basins. Land, 10(6), 585. doi: 10.3390/land10060585
Sadia, H., Sarkar, S. K., & Haydar, M. (2023). Soil erosion susceptibility mapping in Bangladesh. Ecological Indicators, 156, 111182. doi: 10.1016/j.ecolind.2023.111182
Salih Hasan, B. M., & Abdulazeez, A. M. (2021). A Review of Principal Component Analysis Algorithm for Dimensio-nality Reduction. Journal of Soft Computing and Data Mining, 02(01). doi: 10.30880/jscdm.2021.02.01.003
Šćepanović, S., Antropov, O., Laurila, P., Rauste, Y., Ignatenko, V., & Praks, J. (2021). Wide-Area Land Cover Map-ping With Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10357–10374. doi: 10.1109/JSTARS.2021.3116094
Septiarini, A., & Wardoyo, R. (2015). Kompleksitas Algoritma GLCM untuk Ekstraksi Ciri Tekstur pada Penyakit Glau-coma. Prosiding Seminar Teknik Informatika Dan Sistem Informasi, 98-102.
Tariq, A., Yan, J., Gagnon, A. S., Riaz Khan, M., & Mumtaz, F. (2023). Mapping of Cropland, Cropping Patterns and Crop Types by Combining Optical Remote Sensing Images with Decision Tree Classifier and Random Rorest. Geo-Spatial Information Science, 26(3), 302–320. doi: 10.1080/10095020.2022.2100287
Uddin, Md. P., Mamun, Md. Al, & Hossain, Md. A. (2021). PCA-based Feature Reduction for Hyperspectral Remote Sensing Image Classification. IETE Technical Review, 38(4), 377–396. doi: 10.1080/02564602.2020.1740615
Wu, R., Wang, J., Zhang, D., & Wang, S. (2021). Identifying different types of urban land use dynamics using Point-of-interest (POI) and Random Forest algorithm: The case of Huizhou, China. Cities, 114, 103202. doi: 10.1016/j.cities.2021.103202
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Filsa Bioresita, Trisya Sayyidah Fithri Larastika, Muhammad Taufik, Noorlaila Hayati

This work is licensed under a Creative Commons Attribution 4.0 International License.















