Analysis and Geovisualization of Tsunami Hazard and Evacuation Routes in the Opak-Progo Coastal Area

Authors

  • Sudaryatno Sudaryatno Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Yogyakarta 55281
    Indonesia
  • Josaphat Tetuko Sri Sumantyo Center for Environmental Remote Sensing, Chiba University, Yayoi-Cho, Inage-Ku, Chiba-Shi 263-8522
    Japan
  • Taufik Hery Purwanto Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Yogyakarta 55281
    Indonesia
  • Muhammad Falakh Al Akbar Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Yogyakarta 55281
    Indonesia
  • Amelia Rizki Gita Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Yogyakarta 55281
    Indonesia
  • Osmar Shalih Badan Nasional Penanggulangan Bencana/BNPB-RI, Jakarta, Indonesia
    Indonesia

DOI:

https://doi.org/10.23917/forgeo.v38i2.5436

Keywords:

Berryman, Tsunami hazard level, Network Analyst, Tsunami evacuation route

Abstract

The southern coastal area of Java has a high risk of tsunamis. Additionally, the presence of rivers flowing in the south of Java Island poses a greater tsunami threat because these rivers can act as "toll roads" for tsunami waves to enter the land. Therefore, this study was conducted in the coastal area of the Opak-Progo watershed to determine the level of tsunami hazards and plan effective evacuation routes. The hazard map was created using the Berryman method, which employs parameters such as slope, surface roughness coefficient, coastline, and tsunami run-up height scenario; a 3-metre scenario was used in this study. Network analysts also determined evacuation routes using the nearest facility method. Network analysis was used to identify an optimised route with four evacuation sites. This research has the potential to significantly contribute to tsunami mitigation and evacuation planning in the coastal areas of the Opak-Progo watershed.

Downloads

Download data is not yet available.

References

Adityawan, M. B., & Tanaka, H. (2016). Investigating the 2011 Tsunami Impact on the Teizan Canal and the Old Ri-ver Mouth in Sendai Coast. Springer Link, 125–136. doi: 10.1007/978-3-319-28528-3_9

Amalia Listiani, & Fuji Lestari. (2023). Tsunami Potential Prediction with Artificial Neural Network. International Jour-nal of Scientific Research in Science, Engineering and Technology, 231–236. Doi: 10.32628/IJSRSET2310130

Andriani, A., Adji, B. M., & Ramadhani, S. (2023). The Analysis of Impact and Mitigation of Landslides Using Analyti-cal Hierarchy Process (AHP) Method. Springer Link, 457–466. doi: 10.1007/978-981-16-9348-9_40

Bai, Y., Yamazaki, Y., & Cheung, K. F. (2023). Intercomparison of hydrostatic and nonhydrostatic modeling for tsu-nami inundation mapping. Physics of Fluids, 35(7). doi: 10.1063/5.0152104

Berryman, K. (2006). Review of Tsunami Hazard and Risk in New Zealand. Retrived from https://www.hbemergency.govt.nz/assets/Documents/Hazard-Reference-Documents/review-of-tsunami-hazard-and-risks-in-nz-sept-05.pdf

BNPB. (2023). RBI RISIKO BENCANA INDONESIA BNPB “Memahami Risiko Sistemik di Indonesia’’. Retrived from https://perpustakaan.bnpb.go.id/bulian/index.php?p=show_detail&id=2063

Bosma, C., Shumlich, A., Rankin, M., Kouhi, S., & Amouzgar, R. (2023). Integrating Topographic and Bathymetric Da-ta for High-Resolution Digital Elevation Modeling to Support Tsunami Hazard Mapping. Oceanography, 36(1), 72-73. doi: 10.5670/oceanog.2023.s1.23

Das, S., Baral, A., Rafizul, I. M., & Berner, S. (2024). Efficiency enhancement in waste management through GIS-based route optimization. Cleaner Engineering and Technology, 21, 100775. doi: 10.1016/j.clet.2024.100775

Deliry, S. I., & Uyguçgil, H. (2023). Accessibility assessment of urban public services using GIS-based network analysis: a case study in Eskişehir, Türkiye. GeoJournal, 88(5), 4805–4825. doi: 10.1007/s10708-023-10900-y

Ehara, A., Salmanidou, D. M., Heidarzadeh, M., & Guillas, S. (2023). Multi-level emulation of tsunami simulations over Cilacap, South Java, Indonesia. Computational Geosciences, 27(1), 127–142. doi: 10.1007/s10596-022-10183-1

Friska, V., Arisa, D., Marzuki, M., & Monica, F. (2022). Indo-Australian Plate Velocity Measurement During Interseis-mic Phase in 2010–2014 Using Sumatran GPS Array (SuGAr) Data. Springer Link, 925–934. doi: 10.1007/978-981-19-0308-3_73

Fuad, M. A. Z., Hardiansyah, F., & Semedi, B. (2022). Analysis of Coastline Changes in Palu Bay, Central Sulawesi af-ter the 2018 Tsunami Based on Sentinel 1 Satellite Imagery Using the Digital Shoreline Analysis System (DSAS) Method. Jurnal Perikanan Dan Kelautan, 27(3), 304. doi: 10.31258/jpk.27.3.304-312

Fuentes, M., Uribe, F., Riquelme, S., & Campos, J. (2021). Analytical Model for Tsunami Propagation Including Source Kinematics. Pure and Applied Geophysics, 178(12), 5001–5015. doi: 10.1007/s00024-020-02528-7

Giordan, D., Luzi, G., Monserrat, O., & Dematteis, N. (2022). Remote Sensing Analysis of Geologic Hazards. Remote Sensing, 14(19), 4818. doi: 10.3390/rs14194818

Haider, R., Ali, S., Hoffmann, G., & Reicherter, K. (2023). A multi-proxy approach to assess tsunami hazard with a pre-liminary risk assessment: A case study of the Makran Coast, Pakistan. Marine Geology, 459, 107032. doi: 10.1016/j.margeo.2023.107032

Hartoko, A., Helmi, M., & Sukarno, M. (2016). Spatial Tsunami Wave Modelling For The South Java Coastal Area, In-donesia. International Journal of GEOMATE, 11(25), 2455-2460.

Herlianto, M. (2023). Early Disaster Recovery Strategy: The Missing Link in Post-Disaster Implementation in Indonesia. Influence: International Journal Of Science Review, 5(2), 80–91. doi: 10.54783/influencejournal.v5i2.138

Hou, J., Gao, Y., Fan, T., Wang, P., Wang, Y., Wang, J., & Lu, W. (2023). Tsunami Risk Change Analysis for Qidong County of China Based on Land Use Classification. Journal of Marine Science and Engineering, 11(2), 379. doi: 10.3390/jmse11020379

Ibrahim, Syamsidik, Azmeri, Hasan, M., Irwansyah, A., & Al Farizi, M. D. (2023). Assessing tsunami vertical evacua-tion processes based on probabilistic tsunami hazard assessment for west coast of Aceh Besar, Indonesia. Geoenvironmental Disasters, 10(1), 8. doi: 10.1186/s40677-023-00238-5

Jati, B. A. E. K., Akbar, M. F. Al, Wahyuni, T., Khasanah, E. U., Paramanandi, A. R. G., Sutiono, H. E. C. P., Setyaning-sih, D. P., Widyatmanti, W., & Wibowo, T. W. (2023). Analysis Of Tsunami Evacuation Route Planning In Ku-lon Progo Regency. International Journal of Remote Sensing and Earth Sciences (IJReSES), 20(1), 16. doi: 10.30536/j.ijreses.2023.v20.a3823

Jay, G. (2022). Remote Sensing of Natural Hazards (B. Ahmed & A. Alam, Eds.). MDPI Remote Sensing, 12, 3363. doi: 10.3390/books978-3-0365-4307-9

Karpouza, M., Bathrellos, G. D., Kaviris, G., Antonarakou, A., & Skilodimou, H. D. (2023). How could students be safe during flood and tsunami events?. International Journal of Disaster Risk Reduction, 95, 103830. doi: 10.1016/j.ijdrr.2023.103830

Katsumata, A., Tanaka, M., & Nishimiya, T. (2021). Rapid estimation of tsunami earthquake magnitudes at local dis-tance. Earth, Planets and Space, 73(1), 72. doi: 10.1186/s40623-021-01391-7

Kirana, A., & Bature, S. S. (2022). Socialization of Natural Disaster Mitigation to Minimize the Impact of the Risk of Economic Loss in the Citarum River Basin (DAS) West Bandung Regency. International Journal of Research in Community Services, 3(4), 120–126. doi: 10.46336/ijrcs.v3i4.339

Liu, J., Brunner, P., & Tokunaga, T. (2022). Modeling seawater flooding, ponding, and infiltration processes under fu-ture tsunami scenarios: A case study at Niijima Island, Japan. Retrived from https://doi.org/10.5194/egusphere-egu22-4643

Lynett, P. J. (2011). Tsunami Inundation, Modeling of. In Extreme Environmental Events. Springer New York, 1008–1021. doi: 10.1007/978-1-4419-7695-6_53

Meng, F., Jia, C., Wang, X., Gao, F., Liu, J., Shao, M., & Dong, H. (2022). The Development History of Geological Ha-zard Investigation Work Based on Remote Sensing Technology : - Taking Shandong Province as an Example. International Conference on Geology, Mapping and Remote Sensing (ICGMRS), 922–925. doi: 10.1109/ICGMRS55602.2022.9849270

Muttaqy, F., Nugraha, A. D., Mori, J., Puspito, N. T., Supendi, P., & Rohadi, S. (2022). Seismic Imaging of Lithospheric Structure Beneath Central-East Java Region, Indonesia: Relation to Recent Earthquakes. Retrived from https://doi.org/10.3389/feart.2022.756806

Oetjen, J., Sundar, V., Venkatachalam, S., Reicherter, K., Engel, M., Schüttrumpf, H., & Sannasiraj, S. A. (2022). A comprehensive review on structural tsunami countermeasures. Natural Hazards, 113(3), 1419–1449. doi: 10.1007/s11069-022-05367-y

Ovando, P. (2023). Watershed. In Dictionary of Ecological Economics. Edward Elgar Publishing, 584–584. doi: 10.4337/9781788974912.W.12

Pattiaratchi, C. (2020). Influence of Ocean Topography on Tsunami Propagation in Western Australia. Journal of Ma-rine Science and Engineering, 8(9), 629. doi: 10.3390/jmse8090629

Ramalho, I., Omira, R., & Kim, J. (2024). Effect of volcanic islands offshore morphology on the tsunami generation and hazard extent from coastal cliff-failures. Retrived from https://doi.org/10.5194/egusphere-egu24-19584

Richard, G. L., Msheik, K., & Duran, A. (2023). A preliminary depth-integrated model for tsunamis propagation inclu-ding water compressibility and seafloor elasticity. European Journal of Mechanics - B/Fluids, 99, 84–97. doi: 10.1016/j.euromechflu.2023.01.004

Rikumahu, V. D. (2024). Tsunami Vulnerability Mapping of Coastal Areas to Confront the Banda Detachment Tsu-nami (Case Study at Tual City). EGUsphere, 1–13. doi: 10.5194/egusphere-2023-3021

Rusydi, A. N., & Masitoh, F. (2023). Identification of Sea Surface Temperature Anomaly during Earthquake in Sou-thern Java Island using Google Earth Engine Datasets. Indonesian Journal of Geography, 55(1), 69. doi: 10.22146/ijg.68247

Ry, R. V., Cummins, P. R., Hejrani, B., & Widiyantoro, S. (2023). 3-D shallow shear velocity structure of the Jakarta Basin from transdimensional ambient noise tomography. Geophysical Journal International, 234(3), 1916–1932. doi: 10.1093/gji/ggad176

Setiawan, B., Yudono, P., Waluyo, S., Studi Agronomi, P., Pertanian, F., & Gadjah Mada, U. (2018). Evaluation of the Agricultural Land Utilization Types for Mitigation of Land Degradation in Giritirta, Pejawaran, Banjarnegara. Vegetalika, 7(2), 1-15.

Shalih, O., Setiadi, H., Nurlambang, T., & Sumadio, W. (2020). Toward a community resilience framework for disaster risk management. a case study: Landslide Cisolok in Sukabumi 2018 and Sunda strait tsunami in Pandeglang 2018. E3S Web of Conferences, 156. doi: 10.1051/e3sconf/202015601011

Sinaga, R., & Ronoatmojo, I. S. (2022). Analysis Of Earthquake-Prone Areas For Disaster Mitigation In The Sumatra Trench And Surroundings. Journal of Geoscience Engineering & Energy, 108–115. doi: 10.25105/jogee.v3i1.12998

Srinivasa Kumar, T., Pattabhi Rama Rao, E., Patanjali Kumar, Ch., Manneela, S., Ajay Kumar, B., Saikia, D., Mahen-dra, R. S., Murty, P. L. N., & Padmanabham, J. (2023). Tsunami Early Warning Services. In Social and Econo-mic Impact of Earth Sciences. Springer Nature Singapore, 351–375. doi: 10.1007/978-981-19-6929-4_18

Sudaryatno, S., Sumantyo, J. T. S., Purwanto, T. H., Hidayat, I. R., & Nasikha, M. A. (2022). Simulated Mitigation of Tsunami Disasters in the Coastal Area of Purworejo Regency, Central Java, Indonesia. Forum Geografi, 36(1), 54-65. doi: 10.23917/forgeo.v36i1.16984

Sugawara, D. (2020). Trigger mechanisms and hydrodynamics of tsunamis. In Geological Records of Tsunamis and Other Extreme Waves. Elsevier, 47–73. doi: 10.1016/B978-0-12-815686-5.00004-3

Tanaka, H., & Tinh, N. X. (2022). Tsunami Propagation Into Rivers In Tohoku Area During The 2022 Tonga Volcano-Tsunami. Journal of Japan Society of Civil Engineers, 78(2), 151-156. doi: 10.2208/kaigan.78.2_I_151

Tarigan, T., Subardjo, P., Jurusan, D. N., Kelautan, I., Perikanan, F., Diponegoro, U., Soedarto, J. H., & Semarang, T. (2015). Analisa Spasial Kerawanan Bencana Tsunami Di Wilayah Pesisir Kabupaten Kulon Progodaerah Is-timewa Yogyakarta. Retrived from: http://ejournal-s1.undip.ac.id/index.php/jose.50275Telp/fax

Wang, Y., Wang, P., Kong, H., & Wong, C.-S. (2022). Tsunamis in Lingding Bay, China, caused by the 2022 Tonga vol-canic eruption. Geophysical Journal International, 232(3), 2175–2185. doi: 10.1093/gji/ggac291

Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), 15274. doi: 10.1038/s41598-020-72142-z

Zamora, N., Catalán, P. A., Gubler, A., & Carvajal, M. (2021). Microzoning Tsunami Hazard by Combining Flow Depths and Arrival Times. Frontiers in Earth Science, 8. doi: 10.3389/feart.2020.591514

Zelaya, C., Olivares, I., Pulgar, N., & Henríquez, C. (2023). Tsunami inundation chart (CITSU) as a tool to support coastal area management: a case study for Coronel. Revista Geográfica de Chile Terra Australis, 2(2). doi: 10.23854/07199562.202258esp.Zelaya35

Zorn, E. U., Orynbaikyzy, A., Plank, S., Babeyko, A., Darmawan, H., Robbany, I. F., & Walter, T. R. (2022). Identifica-tion and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia. Natural Hazards and Earth System Sciences, 22(9), 3083–3104. doi: 10.5194/nhess-22-3083-2022

Downloads

Submitted

2024-06-13

Accepted

2024-08-19

Published

2024-08-29

Issue

Section

Research article