Assessing the Reliability of Predicted Decadal Surface Temperatures in Southeast Asia

Authors

  • Dara Kasihairani Applied Climatology Program, Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680
    Indonesia
  • Rahmat Hidayat Applied Climatology Program, Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680
    Indonesia
  • Supari Supari Directorate of Climate Change, Deputy for Climatology, BMKG
    Indonesia

DOI:

https://doi.org/10.23917/forgeo.v38i3.5402

Keywords:

ENSO, decadal, dcpp-A hindcast, CMIP6, evaluation

Abstract

Climate predictions spanning 10-year periods, known as Decadal Climate Predictions (DCPs), have become an important aspect of the latest Coupled Model Intercomparison Project (CMIP6). These DCPs have the capability to capture the El Niño-Southern Oscillation (ENSO) phenomena, which affects heatwave frequency in Southeast Asia over years to decades. This research assesses the ability of six General Circulation Model (GCM) DCPs to predict surface temperature over the Southeast Asian region, using the dcpp-A hindcast as the main product. The metrics of Anomaly Correlation Coefficient (ACC) and Mean Error (ME) are employed to assess the model outputs, with 51 hindcast datasets spanning initial years from 1960 to 2010 and ERA5 reanalysis data serving as the reference. The evaluation reveals that DCP model skill varies across lead times and subregions, with no single model consistently outperforming the others. The highest correlation values are observed during the September-October-November (SON) season, and the ENSEMBLE model demonstrates the ability to increase correlation values compared to the individual DCP models. However, the ENSEMBLE approach is unable to effectively reduce ME values due to the contrasting errors among individual models. PBIAS metric aligns with the ME, consistently identifying similar areas of underestimation (mainland) and overestimation (maritime continent) across the models. Despite these challenges, the evaluation results highlight the potential of DCPs in predicting surface temperature variability for the Southeast Asian region over decadal periods, particularly in capturing ENSO-related signals. Further improvements in model initializations, internal variability representation, and bias reduction are necessary to enhance the utility of CMIP6 decadal predictions for heatwave preparedness and mitigation strategies in this vulnerable region.

Downloads

Download data is not yet available.

References

Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.-G., Passos, L., Bentsen, M., Guo, C., Gupta, A., Tjiputra, J., Kirkevåg, A., Olivié, D., Seland, Ø., Solsvik Vågane, J., … Eldevik, T. (2021). NorCPM1 and its contribution to CMIP6 DCPP. Geoscientific Model Development, 14(11), 7073–7116. https://doi.org/10.5194/gmd-14-7073-2021

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., … Vuichard, N. (2020). Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010

Corti, S., Weisheimer, A., Palmer, T., Doblas-Reyes, F., & Magnusson, L. (2012). Reliability of decadal predictions. Geo-physical Research Letters, 39. https://doi.org/10.1029/2012GL053354

Fan, Y., Li, J., Zhu, S., Li, H., & Zhou, B. (2022). Trends and variabilities of precipitation and temperature extremes over Southeast Asia during 1981–2017. Meteorology and Atmospheric Physics, 134(4), 78. https://doi.org/10.1007/s00703-022-00913-6

Guemas, V., Corti, S., García-Serrano, J., Doblas-Reyes, F. J., Balmaseda, M., & Magnusson, L. (2013). The Indian Ocean: The Region of Highest Skill Worldwide in Decadal Climate Prediction. Journal of Climate, 26(3), 726–739. https://doi.org/10.1175/JCLI-D-12-00049.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteoro-logical Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Hu, S., Wu, B., Wang, Y., Zhou, T., Yu, Y., He, B., Lin, P., Bao, Q., Liu, H., Chen, K., & Zhao, S. (2023). CAS FGOALS-f3-L Model Datasets for CMIP6 DCPP Experiment. Advances in Atmospheric Sciences, 40(10), 1911–1922. https://doi.org/10.1007/s00376-023-2122-x

Kamworapan, S., & Surussavadee, C. (2019). Evaluation of CMIP5 Global Climate Models for Simulating Climatolo-gical Temperature and Precipitation for Southeast Asia. Advances in Meteorology, 2019, e1067365. https://doi.org/10.1155/2019/1067365

Kataoka, T., Tatebe, H., Koyama, H., Mochizuki, T., Ogochi, K., Naoe, H., Imada, Y., Shiogama, H., Kimoto, M., & Watanabe, M. (2020). Seasonal to Decadal Predictions With MIROC6: Description and Basic Evaluation. Journal of Advances in Modeling Earth Systems, 12(12), e2019MS002035. https://doi.org/10.1029/2019MS002035

Lin, L., Chen, C., & Luo, M. (2018). Impacts of El Niño–Southern Oscillation on heat waves in the Indochina peninsula. Atmospheric Science Letters, 19(11), e856. https://doi.org/10.1002/asl.856

Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohl-mann, H., Rienecker, M., … Yeager, S. (2014). Decadal Climate Prediction: An Update from the Trenches. Bul-letin of the American Meteorological Society, 95(2), 243–267. https://doi.org/10.1175/BAMS-D-12-00241.1

Mengistu, A. G., Woldesenbet, T. A., & Dile, Y. T. (2021). Evaluation of the performance of bias-corrected CORDEX re-gional climate models in reproducing Baro–Akobo basin climate. Theoretical and Applied Climatology, 144(1), 751–767. https://doi.org/10.1007/s00704-021-03552-w

Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., … Marotzke, J. (2018). A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10(7), 1383–1413. https://doi.org/10.1029/2017MS001217

Nicolì, D., Bellucci, A., Ruggieri, P., Athanasiadis, P. J., Materia, S., Peano, D., Fedele, G., Hénin, R., & Gualdi, S. (2023). The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system. Geoscientific Model Development, 16(1), 179–197. https://doi.org/10.5194/gmd-16-179-2023

Sun, X., Ge, F., Fan, Y., Zhu, S., & Chen, Q. (2022). Will population exposure to heat extremes intensify over Southeast Asia in a warmer world? Environmental Research Letters, 17(4), 044006. https://doi.org/10.1088/1748-9326/ac48b6

Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chi-kira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O’ishi, R., … Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and cli-mate sensitivity in MIROC6. Geoscientific Model Development, 12(7), 2727–2765. https://doi.org/10.5194/gmd-12-2727-2019

Viana, J. F. de S., Montenegro, S. M. G. L., da Silva, B. B., da Silva, R. M., Srinivasan, R., Santos, C. A. G., Araujo, D. C. dos S., & Tavares, C. G. (2021). Evaluation of gridded meteorological datasets and their potential hydrological application to a humid area with scarce data for Pirapama River basin, northeastern Brazil. Theoretical and Applied Climatology, 145(1–2), 393–410. https://doi.org/10.1007/s00704-021-03628-7

Downloads

Submitted

2024-06-11

Accepted

2024-12-19

Published

2024-12-27

Issue

Section

Research article