Assessing the Reliability of Predicted Decadal Surface Temperatures in Southeast Asia
DOI:
https://doi.org/10.23917/forgeo.v38i3.5402Keywords:
ENSO, decadal, dcpp-A hindcast, CMIP6, evaluationAbstract
Climate predictions spanning 10-year periods, known as Decadal Climate Predictions (DCPs), have become an important aspect of the latest Coupled Model Intercomparison Project (CMIP6). These DCPs have the capability to capture the El Niño-Southern Oscillation (ENSO) phenomena, which affects heatwave frequency in Southeast Asia over years to decades. This research assesses the ability of six General Circulation Model (GCM) DCPs to predict surface temperature over the Southeast Asian region, using the dcpp-A hindcast as the main product. The metrics of Anomaly Correlation Coefficient (ACC) and Mean Error (ME) are employed to assess the model outputs, with 51 hindcast datasets spanning initial years from 1960 to 2010 and ERA5 reanalysis data serving as the reference. The evaluation reveals that DCP model skill varies across lead times and subregions, with no single model consistently outperforming the others. The highest correlation values are observed during the September-October-November (SON) season, and the ENSEMBLE model demonstrates the ability to increase correlation values compared to the individual DCP models. However, the ENSEMBLE approach is unable to effectively reduce ME values due to the contrasting errors among individual models. PBIAS metric aligns with the ME, consistently identifying similar areas of underestimation (mainland) and overestimation (maritime continent) across the models. Despite these challenges, the evaluation results highlight the potential of DCPs in predicting surface temperature variability for the Southeast Asian region over decadal periods, particularly in capturing ENSO-related signals. Further improvements in model initializations, internal variability representation, and bias reduction are necessary to enhance the utility of CMIP6 decadal predictions for heatwave preparedness and mitigation strategies in this vulnerable region.
Downloads
References
Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.-G., Passos, L., Bentsen, M., Guo, C., Gupta, A., Tjiputra, J., Kirkevåg, A., Olivié, D., Seland, Ø., Solsvik Vågane, J., … Eldevik, T. (2021). NorCPM1 and its contribution to CMIP6 DCPP. Geoscientific Model Development, 14(11), 7073–7116. https://doi.org/10.5194/gmd-14-7073-2021
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., … Vuichard, N. (2020). Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010
Corti, S., Weisheimer, A., Palmer, T., Doblas-Reyes, F., & Magnusson, L. (2012). Reliability of decadal predictions. Geo-physical Research Letters, 39. https://doi.org/10.1029/2012GL053354
Fan, Y., Li, J., Zhu, S., Li, H., & Zhou, B. (2022). Trends and variabilities of precipitation and temperature extremes over Southeast Asia during 1981–2017. Meteorology and Atmospheric Physics, 134(4), 78. https://doi.org/10.1007/s00703-022-00913-6
Guemas, V., Corti, S., García-Serrano, J., Doblas-Reyes, F. J., Balmaseda, M., & Magnusson, L. (2013). The Indian Ocean: The Region of Highest Skill Worldwide in Decadal Climate Prediction. Journal of Climate, 26(3), 726–739. https://doi.org/10.1175/JCLI-D-12-00049.1
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteoro-logical Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hu, S., Wu, B., Wang, Y., Zhou, T., Yu, Y., He, B., Lin, P., Bao, Q., Liu, H., Chen, K., & Zhao, S. (2023). CAS FGOALS-f3-L Model Datasets for CMIP6 DCPP Experiment. Advances in Atmospheric Sciences, 40(10), 1911–1922. https://doi.org/10.1007/s00376-023-2122-x
Kamworapan, S., & Surussavadee, C. (2019). Evaluation of CMIP5 Global Climate Models for Simulating Climatolo-gical Temperature and Precipitation for Southeast Asia. Advances in Meteorology, 2019, e1067365. https://doi.org/10.1155/2019/1067365
Kataoka, T., Tatebe, H., Koyama, H., Mochizuki, T., Ogochi, K., Naoe, H., Imada, Y., Shiogama, H., Kimoto, M., & Watanabe, M. (2020). Seasonal to Decadal Predictions With MIROC6: Description and Basic Evaluation. Journal of Advances in Modeling Earth Systems, 12(12), e2019MS002035. https://doi.org/10.1029/2019MS002035
Lin, L., Chen, C., & Luo, M. (2018). Impacts of El Niño–Southern Oscillation on heat waves in the Indochina peninsula. Atmospheric Science Letters, 19(11), e856. https://doi.org/10.1002/asl.856
Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohl-mann, H., Rienecker, M., … Yeager, S. (2014). Decadal Climate Prediction: An Update from the Trenches. Bul-letin of the American Meteorological Society, 95(2), 243–267. https://doi.org/10.1175/BAMS-D-12-00241.1
Mengistu, A. G., Woldesenbet, T. A., & Dile, Y. T. (2021). Evaluation of the performance of bias-corrected CORDEX re-gional climate models in reproducing Baro–Akobo basin climate. Theoretical and Applied Climatology, 144(1), 751–767. https://doi.org/10.1007/s00704-021-03552-w
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., … Marotzke, J. (2018). A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10(7), 1383–1413. https://doi.org/10.1029/2017MS001217
Nicolì, D., Bellucci, A., Ruggieri, P., Athanasiadis, P. J., Materia, S., Peano, D., Fedele, G., Hénin, R., & Gualdi, S. (2023). The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system. Geoscientific Model Development, 16(1), 179–197. https://doi.org/10.5194/gmd-16-179-2023
Sun, X., Ge, F., Fan, Y., Zhu, S., & Chen, Q. (2022). Will population exposure to heat extremes intensify over Southeast Asia in a warmer world? Environmental Research Letters, 17(4), 044006. https://doi.org/10.1088/1748-9326/ac48b6
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chi-kira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O’ishi, R., … Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and cli-mate sensitivity in MIROC6. Geoscientific Model Development, 12(7), 2727–2765. https://doi.org/10.5194/gmd-12-2727-2019
Viana, J. F. de S., Montenegro, S. M. G. L., da Silva, B. B., da Silva, R. M., Srinivasan, R., Santos, C. A. G., Araujo, D. C. dos S., & Tavares, C. G. (2021). Evaluation of gridded meteorological datasets and their potential hydrological application to a humid area with scarce data for Pirapama River basin, northeastern Brazil. Theoretical and Applied Climatology, 145(1–2), 393–410. https://doi.org/10.1007/s00704-021-03628-7
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Dara Kasihairani, Rahmat Hidayat, Supari Supari

This work is licensed under a Creative Commons Attribution 4.0 International License.















