Assessment of Low-Cost Tide Gauges to Meet GLOSS 1-cm Precision and Accuracy Standards: A Case Study on Pramuka Island, Indonesia

Authors

  • Zulfikar Adlan Nadzir Department of Geomatic Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu Way Hui, Jati Agung District, South Lampung 35365, Indonesia. Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 17, Bonn 53115
    Germany
  • Irdam Adil Department of Geomatic Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu Way Hui, Jati Agung District, South Lampung 35365
    Indonesia

DOI:

https://doi.org/10.23917/forgeo.v38i2.5182

Keywords:

tide gauge, sea level observation, quality control, van de Casteele test

Abstract

The expansion of the tide gauge network along the coasts is essential for better monitoring of sea-level dynamics. Owing to climate change, the urgency has been exacerbated, especially during the last two decades. However, densification a challenging task because of the lack of affordability of the sensor, especially in the Global South. Further, the precision and accuracy requirements of 1-cm imposed by the Global Sea Level Observing System (GLOSS) is too restrictive, particularly for low-cost tide gauge sensors. Here, we evaluated the performance of a low-cost DIY tide gauge in meeting these standards. Three sets of sea level observations from IR-TIDES, a DIY tide gauge sensor observed in 2016 and 2018, were subjected to a performance test in terms of precision and accuracy in comparison with a global tide model and two neighbouring established tide gauges. All three datasets were estimated to have an 8- cm standard deviation as a metric for the precision level. In terms of accuracy, the IR-TIDES datasets had a standard deviation of 25 cm and a correlation coefficient of 0.616. Overall, IR-TIDES demonstrated sufficient precision while still lacking accuracy, partially meeting the GLOSS quality standard. These findings could strengthen the confidence level of a low-cost DIY tide gauge, especially for use as a back-up and redundant sensor for an established tide gauge station after ad-dressing the limitations.

Downloads

Download data is not yet available.

References

Adrianto, D., Djatmiko, E. B., & Suntoyo. (2019). The improvement of ultrasonic sensor-based device for direct ocean wave measurement program at Western Java Sea – Indonesia. IOP Conference Series: Earth and Environ-mental Science, 389(1), 012022. doi: 10.1088/17551315/389/1/012022

Agnew, D. C. (1986). Detailed analysis of tide gauge data: A case history. Marine Geodesy, 10(3–4), 231–255. doi: 10.1080/01490418609388024

Arifin, W. A., Ariawan, I., Rosalia, A. A., Sasongko, A. S., Apriansyah, M. R., & Satibi, A. (2021). Model Prediksi Pasang Surut Air Laut Pada Stasiun Pushidrosal Bakauheni Lampung Menggunakan Support Vector Regression. Jur-nal Kemaritiman: Indonesian Journal of Maritime, 2(2), 139–148. doi: 10.17509/ijom.v2i2.35149

Becker, M., Karpytchev, M., Marcos, M., Jevrejeva, S., & Lennartz‐Sassinek, S. (2016). Do climate models reproduce complexity of observed sea level changes?. Geophysical Research Letters, 43(10), 5176–5184. doi: 10.1002/2016GL068971

Caldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2001). Sea level measured by tide gauges from global oceans as part of the Joint Archive for Sea Level (JASL) since 1846. Retrieved From https://www.ncei.noaa.gov/access/metadata/landingpage/bin/iso?id=gov.noaa.nodc:JIMARJASL

Cazenave, A., & Nerem, R. S. (2004). Present‐day sea level change: Observations and causes. Reviews of Geophysics, 42(3), 2003RG000139. doi: 10.1029/2003RG000139

Chelton, D. B., & Enfield, D. B. (1986). Ocean signals in tide gauge records. Journal of Geophysical Research: Solid Earth, 91(B9), 9081–9098. doi: 10.1029/JB091iB09p09081

Church, J. A., & White, N. J. (2006). A 20th century acceleration in global sea‐level rise. Geophysical Research Letters, 33(1), 2005GL024826. doi: 10.1029/2005GL024826

De Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., & Vic, C. (2019). Toward global maps of internal tide energy sinks. Ocean Modelling, 137, 52–75. doi: 10.1016/j.ocemod.2019.03.010

Doodson, A. T. (1957). The analysis and prediction of tides in shallow water. The International Hydrographic Review. Retrived From https://journals.lib.unb.ca/index.php/ihr/article/download/26682/1882519442/1882519677

Fagundes, M. A. R., Mendonça-Tinti, I., Iescheck, A. L., Akos, D. M., & Geremia-Nievinski, F. (2021). An open-source low-cost sensor for SNR-based GNSS reflectometry: Design and long-term validation towards sea-level alti-metry. GPS Solutions, 25(2), 73. doi: 10.1007/s10291-021-01087-1

Fenoglio-Marc, L., Schöne, T., Illigner, J., Becker, M., Manurung, P., & Khafid. (2012). Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region. Marine Geodesy, 35(1), 137–150. doi: 10.1080/01490419.2012.718682

Fitriana, D., Oktaviani, N., & Khasanah, I. U. (2019). Analisa Harmonik Pasang Surut Dengan Metode Admiralty Pada Stasiun Berjarak Kurang Dari 50 Km. Jurnal Meteorologi Klimatologi dan Geofisika, 6(1), 38–48.

Fitriana, D., Patria, M. P., & Kusratmoko, E. (2022). Karakteristik Pasang Surut Surabaya Diamati Selama 5 Tahun (2015-2020). JGISE: Journal of Geospatial Information Science and Engineering, 5(1), 1. doi: 10.22146/jgise.72856

Giardina, M. F., Earle, M. D., Cranford, J. C., & Osiecki, D. A. (2000). Development of a Low-Cost Tide Gauge. Journal of Atmospheric and Oceanic Technology, 17(4), 575–583. doi: 10.1175/1520-0426(2000)017<0575:DOALCT> 2.0.CO;2

Guaraglia, D. O., & Pousa, J. L. (2014). Introduction to modern instrumentation: For hydraulics and environmental sciences. De Gruyter Open.

Ichsari, L. F., Handoyo, G., Setiyono, H., Ismanto, A., Marwoto, J., Yusuf, M., & Rifai, A. (2020). Studi Komparasi Ha-sil Pengolahan Pasang Surut Dengan 3 Metode (Admiralty, Least Square Dan Fast Fourier Transform) Di Pela-buhan Malahayati, Banda Aceh. Indonesian Journal of Oceanography, 2(2), 121–128. doi: 10.14710/ijoce.v2i2.7985

IOC. (1990). Global Sea Level Observing System (GLOSS) implementation plan (No. 35; Technical Series, p. 90). Inter-governmental Oceanographic Commission. Retrived From https://unesdoc.unesco.org/ark:/48223/pf0000112650

Knight, P., Bird, C., Sinclair, A., Higham, J., & Plater, A. (2021). Testing an “IoT” Tide Gauge Network for Coastal Moni-toring. IoT, 2(1), 17–32. doi: 10.3390/iot2010002

Larson, K. M., Ray, R. D., & Williams, S. D. P. (2017). A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver versus a Conventional Tide Gauge. Journal of Atmospheric and Oceanic Technology, 34(2), 295–307. doi: 10.1175/JTECH-D-16-0101.1

Lase, D. N., & Nadzir, Z. A. (2024). Studi Komponen Harmonik Pasang Surut Air Laut dengan Data ALES dan GDR Al-timetri Jason-1, Jason-2, dan Jason-3 Dengan Data Tide Gauge (Studi Kasus: Pesisir Barat Sumatra). Retri-ved From https://repository.itera.ac.id/depan/author/DEVIANTI%20NATALIA%20LASE

Legler, D. M., Freeland, H. J., Lumpkin, R., Ball, G., McPhaden, M. J., North, S., Crowley, R., Goni, G. J., Send, U., & Merrifield, M. A. (2015). The current status of the real-time in situ Global Ocean Observing System for opera-tional oceanography. Journal of Operational Oceanography, 8(2), s189–s200. doi: 10.1080/1755876X.2015.10 49883

Lennon, G. (1968). The evaluation of tide-gauge performance through the Van de Casteele test. Cah. Oceanogr, 20, 867–877.

Mehra, P., Prabhudesai, R. G., Joseph, A., Kumar, V., Aga, Y., Luis, R., Damodaran, S., & Viegas, B. (2009). A one year comparison of radar and pressure tide gauge at Goa, west coast of India. International Symposium on Ocean Electronics (SYMPOL 2009), 173–183. doi: 10.1109/SYMPOL.2009.5664190

Menéndez, M., & Woodworth, P. L. (2010). Changes in extreme high water levels based on a quasi‐global tide‐gauge data set. Journal of Geophysical Research: Oceans, 115(C10), 2009JC005997. doi: 10.1029/2009JC005997

Merrifield, M. A., Firing, Y. L., Aarup, T., Agricole, W., Brundrit, G., Chang‐Seng, D., Farre, R., Kilonsky, B., Knight, W., Kong, L., Magori, C., Manurung, P., McCreery, C., Mitchell, W., Pillay, S., Schindele, F., Shillington, F., Testut, L., Wijeratne, E. M. S., … Turetsky, N. (2005). Tide gauge observations of the Indian Ocean tsunami, Decem-ber 26, 2004. Geophysical Research Letters, 32(9), 2005GL022610. doi: 10.1029/2005GL022610

Merrifield, M., Aarup, T., Allen, A., Aman, A., Caldwell, P., Bradshaw, E., Fernandes, R., Hayashibara, H., Hernandez, F., Kilonsky, B., & others. (2009). The global sea level observing system (GLOSS). Retrived From https://www.ioc.unesco.org/en/global-sea-level-observing-system

Míguez, B. M., Gomez, B. P., & Fanjul, E. Á. (2005). The ESEAS-RI Sea Level Test Station: Reliability and Accuracy of Different Tide Gauges. International Hydrographic Review, 6, 44–54.

Míguez, B. M., Le Roy, R., & Wöppelmann, G. (2008). The Use of Radar Tide Gauges to Measure Variations in Sea Level along the French Coast. Journal of Coastal Research, 4, 61–68. doi: 10.2112/06-0787.1

Miguez, B. M., Testut, L., & Wöppelmann, G. (2008). The Van de Casteele Test Revisited: An Efficient Approach to Tide Gauge Error Characterization. Journal of Atmospheric and Oceanic Technology, 25(7), 1238–1244. doi: 10.1175/2007JTECHO554.1

Míguez, B. M., Testut, L., & Wöppelmann, G. (2012). Performance of modern tide gauges: Towards mm-level accura-cy. Scientia Marina, 76(S1), 221–228. doi: 10.3989/scimar.03618.18A

Nadzir, Z. A., Fenoglio, L., & Kusche, J. (2023). Coastal Altimetry Datasets Performance in Indonesian Seas. Retrived From https://www.researchgate.net/publication/368691024CoastalAltimetry_Datasets_Performance_in_Indonesian_Seas?channel=doi&linkId=63f5d6ef0d98a97717abd157&showFulltext=true

Nadzir, Z. A., Fenoglio-Marc, L., Uebbing, B., & Kusche, J. (2022). Exploring Coastal Altimetry Datasets for Indonesian Seas in relation to Local Tide Gauges. Retrived From https://meetingorganizer.copernicus.org/EGU22/EGU22-538.html

Nadzir, Z. A., & Kusche, J. (2023). Coastal Altimetry Datasets Performance in Indonesian Seas. Retrived From https://www.researchgate.net/publication/368691024_Coastal_Altimetry_Datasets_Performance_in_Indonesian_Seas

Nadzir, Z. A., & Kusche, J. (2021). GNSS Interferometric Reflectrometry Sea Level Retrieval on Simeulue Island, In-donesia validated with co-located Tide Gauge. IOP Conference, 824, 012066. doi: 10.1088/1755-1315/824/1/012066

Passaro, M., Nadzir, Z. A., & Quartly, G. D. (2018). Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections. Remote Sensing of Environment, 218, 245–254. doi: 10.1016/j.rse.2018.09.007

Pérez, B., Payo, A., López, D., Woodworth, P. L., & Alvarez Fanjul, E. (2014). Overlapping sea level time series mea-sured using different technologies: An example from the REDMAR Spanish network. Natural Hazards and Earth System Sciences, 14(3), 589–610. doi: 10.5194/nhess-14-589-2014

Pytharouli, S., Chaikalis, S., & Stiros, S. C. (2018). Uncertainty and bias in electronic tide-gauge records: Evidence from collocated sensors. Measurement, 125, 496–508. doi: 10.1016/j.measurement.2018.05.012

Richasari, D., Rohmawati, C., & Fitriana, D. (2019). Analisis Perbandingan Konstanta Harmonik Pasang Surut Air Laut Menggunakan Software GeoTide dan Toga (Studi Kasus: Stasiun Pasang Surut Surabaya, Jawa Timur, In-donesia). Seminar Nasional: Strategi Pengembangan Infrastruktur (SPI) 2019.

Salama, G. M., Hamed, H. F. A., Deabes, E. A. M., & Othman, S. E. (2019). An innovative technique for the develop-ment of the traditional mechanical tide gauge to improve the performance of the measurement system. Mea-surement: Sensors, 2–4, 100005. doi: 10.1016/j.measen.2020.100005

Satake, K., Fujii, Y., Harada, T., & Namegaya, Y. (2013). Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data. Bulletin of the Seismological Society of Ame-rica, 103(2), 1473–1492. doi: 10.1785/0120120122

Schöne, T., Illigner, J., Manurung, P., Subarya, C., Khafid, Zech, C., & Galas, R. (2011). GPS-controlled tide gauges in Indonesia – a German contribution to Indonesia’s Tsunami Early Warning System. Natural Hazards and Earth System Sciences, 11(3), 731–740. doi: 10.5194/nhess-11-731-2011

Simarmata, N., Nadzir, Z. A., & Sari, D. N. (2023). Analisis Perubahan Garis Pantai menggunakan Metode Sentinel-1 Dual-Polarized Water Index (SDWI) berbasis Data Multitemporal pada Google Earth Engine. Geomatika, 29(2), 107–120.

Simons, W., Naeije, M., Ghazali, Z., Rahman, W. D., Cob, S., Kadir, M., Mustafar, A., Din, A. H., Efendi, J., & Noppra-dit, P. (2023). Relative Sea Level Trends for the Coastal Areas of Peninsular and East Malaysia Based on Re-mote and In Situ Observations. Remote Sensing, 15(4), 1113. doi: 10.3390/rs15041113

Tamisiea, M. E., Hughes, C. W., Williams, S. D. P., & Bingley, R. M. (2014). Sea level: Measuring the bounding surfaces of the ocean. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2025), 20130336. doi: 10.1098/rsta.2013.0336

Toimil, A., Díaz-Simal, P., Losada, I. J., & Camus, P. (2018). Estimating the risk of loss of beach recreation value under climate change. Tourism Management, 68, 387–400. doi: 10.1016/j.tourman.2018.03.024

Woodworth, P. L. (1991). The Permanent Service for Mean Sea Level and the Global Sea Level Observing System. Journal of Coastal Research, 7(3), 699–710.

Woodworth, P. L., Aman, A., & Aarup, T. (2007). Sea level monitoring in Africa. African Journal of Marine Science, 29(3), 321–330. doi: 10.2989/AJMS.2007.29.3.2.332

Woodworth, P. L., & Smith, D. E. (2003). A one year comparison of radar and bubbler tide gauges at Liverpool. Retri-ved From https://journals.lib.unb.ca/index.php/ihr/article/view/20630/23792

Wöppelmann, G., & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variabili-ty. Reviews of Geophysics, 54(1), 64–92. doi: 10.1002/2015RG000502

Wöppelmann, G., Zerbini, S., & Marcos, M. (2006). Tide gauges and Geodesy: A secular synergy illustrated by three present-day case studies. Comptes Rendus. Géoscience, 338(14–15), 980–991. doi: 10.1016/j.crte.2006.07.006

Xu, M., Wang, S., Zhang, S. L., Ding, W., Kien, P. T., Wang, C., Li, Z., Pan, X., & Wang, Z. L. (2019). A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy, 57, 574–580. doi: 10.1016/j.nanoen.2018.12.041

Zerbini, S., Raicich, F., Prati, C. M., Bruni, S., Del Conte, S., Errico, M., & Santi, E. (2017). Sea-level change in the Nor-thern Mediterranean Sea from long-period tide gauge time series. Earth-Science Reviews, 167, 72–87. doi: 10.1016/j.earscirev.2017.02.009

Downloads

Submitted

2024-05-24

Accepted

2024-07-26

Published

2024-08-27

Issue

Section

Research article