Mapping of the Spatio-Spectral Dynamics of Mangrove Chlorophyll Concentrations via Sentinel-2 Satellite Imagery

Authors

  • K. K Basheer Ahammed Department of Marine Science, Faculty of Marine Science and Fisheries, Udayana University, Jimbaran, Bali 80361 Indonesia. International Union for the Conservation of Nature (IUCN), Commission on Ecosystem Management (CEM), South Asia
    India
  • I Wayan Gede Astawa Karang Department of Marine Science, Faculty of Marine Science and Fisheries, Udayana University, Jimbaran, Bali 80361
    Indonesia
  • I Wayan Nuarsa Department of Marine Science, Faculty of Marine Science and Fisheries, Udayana University, Jimbaran, Bali 80361
    Indonesia
  • I Gede Surya Indrawan Department of Marine Science, Faculty of Marine Science and Fisheries, Udayana University, Jimbaran, Bali 80361
    Indonesia
  • I Gede Hendrawan Department of Marine Science, Faculty of Marine Science and Fisheries, Udayana University, Jimbaran, Bali 80361
    Indonesia
  • Ni Made Nia Bunga Surya Dewi Doctor of Environmental Science, Post Graduate Program, Udayana University, Jimbaran, Bali
    Indonesia
  • Arvind Chandra Pandey Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Cheri Manatu Rachi, 835 222
    India

DOI:

https://doi.org/10.23917/forgeo.v38i2.4518

Keywords:

Google Earth Engine, Sentinel 2, Mangroves, Canopy chlorophyll, Vegetation health

Abstract

Mangrove ecosystems play a critical role in maintaining coastal health; however, they are increasingly threatened by anthropogenic activities and climate change. Health assessment is essential for effective conservation efforts. However, traditional remote sensing techniques such as the normalised difference vegetation index (NDVI) may not fully capture the complex physiological processes influencing vegetation health. Therefore, this study investigated chlorophyll (Chl) dynamics in mangroves using remote sensing techniques, including the NDVI and a novel method, the normalised area over reflectance curve (NAOC), via Sentinel-2 satellite imagery during October 2023, and analysed spatial variations in Chl content (CC) via the Google Earth Engine API. NDVI and NAOC-Chl were weakly correlated (0.47), highlighting their complementary roles. The average NDVI and NOAC-Chl values for different species were analysed, and Rhizophora mucronata presented the highest value (NDVI: 0.86 ± 0.08, NOAC: 20.48 ± 4.49.

Downloads

Download data is not yet available.

References

Ahmad, S., Pandey, A. C., Kumar, A., Parida, B. R., Lele, N. V., & Bhattacharya, B. K. (2020). Chlorophyll deficiency (chlorosis) detection based on spectral shift and yellowness index using hyperspectral AVIRIS-NG data in Sho-layar reserve forest, Kerala. Remote Sensing Applications: Society and Environment, 19, 100369. doi: 10.1016/j.rsase.2020.100369

Akram, H., Hussain, S., Mazumdar, P., Chua, K. O., Butt, T. E., & Harikrishna, J. A. (2023). Mangrove Health: A Re-view of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests, 14(9), 1698. doi: 10.3390/f14091698

Alongi, D. M. (2022). Climate Change and Mangroves. In S. C. Das, Pullaiah, & E. C. Ashton. (2022). Mangroves: Bio-diversity, Livelihoods and Conservation. Springer Nature Singapore, 175–19. doi: 10.1007/978-981-19-0519-3_8

Arifanti, V. B. (2020). Mangrove management and climate change: a review in Indonesia. In IOP conference series: earth and environmental science. IOP Publishing, 487(1), 012022. doi: 10.1088/1755-1315/487/1/012022

Arifanti, V. B., Novita, N., & Tosiani, A. (2021). Mangrove deforestation and CO2 emissions in Indonesia. IOP Confe-rence Series: Earth and Environmental Science, 874(1), 012006. doi: 10.1088/1755-1315/874/1/012006

Asner, G. P., Wessman, C. A., & Archer, S. (1998). Scale Dependence Of Absorption Of Photosynthetically Active Ra-diation In Terrestrial Ecosystems. Ecological Applications, 8(4), 1003–1021. doi: 10.1890/1051-0761(1998)008 [1003:SDOAOP]2.0.CO;2

Ballut-Dajud, G. A., Sandoval Herazo, L. C., Fernández-Lambert, G., Marín-Muñiz, J. L., López Méndez, M. C., & Be-tanzo-Torres, E. A. (2022). Factors affecting wetland loss: A review. Land, 11(3), 434. doi: 10.3390/land11030434

Barbier, E. B., & Strand, I. (1998). Valuing mangrove-fishery linkages–a case study of Campeche, Mexico. Environ-mental and Resource Economics, 12(2), 151–166. doi: 10.1023/A:1008248003520

Basheer Ahammed, K. K., & Pandey, A. C. (2021). Characterization and impact assessment of super cyclonic storm AMPHAN in the Indian subcontinent through space borne observations. Ocean & Coastal Management, 205, 105532. doi: 10.1016/j.ocecoaman.2021.105532

Beck Eichler, P. P., & Barker, C. P. (2020). Sea Level Forecast Indicators: Sea-Level Rise Forecast by “The Moon and Sun” Foraminifera Species Indicators. In P. P. Beck Eichler & C. P. Barker, Benthic Foraminiferal Ecology. Springer International Publishing, 111–132. doi: 10.1007/978-3-030-61463-8_7

Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vege-tation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Envi-ronment, 76(2), 156–172. doi: 10.1016/S0034-4257(00)00197-8

Carmona, F., Rivas, R., & Fonnegra, D. C. (2015). Vegetation Index to estimate chlorophyll content from multispectral remote sensing data. European Journal of Remote Sensing, 48(1), 319–326. doi: 10.5721/EuJRS20154818

Cavalcanti, L. F., do N Feitosa, F. A., Cutrim, M. V., de JF Montes, M., Lourenço, C. B., Furtado, J. A., & dos S Sá, A. K. D. (2022). Drivers of phytoplankton biomass and diversity in a macrotidal bay of the Amazon Mangrove Coast, a Ramsar site. Ecohydrology & Hydrobiology, 22(3), 435–453. doi: 10.1016/S0034-4257(00)00197-8

Çelekli, A., & Zariç, Ö. E. (2023). Hydrobiology and ecology in the context of climate change: The future of aquatic ecosystems. Retrieved from https://aperta.ulakbim.gov.tr/record/263238

Cendrero-Mateoa, M. P., Moranb, M. S., Papugaa, S. A., Laparrad, V., Ponce-Camposb, G., Riverad, J. P., & Wange, G. (2014). Appendix C: Seasonal Variation Of Net Photosynthesis And Chlorophyll Fluorescence Under Nitro-gen Treatments In Wheat. Chlorophyll Fluorescence Response To Water And Nitrogen Deficit, 88.

Chakraborty, S. K. (2019). Bioinvasion and Environmental Perturbation: Synergistic Impact on Coastal–Mangrove Ecosystems of West Bengal, India. In C. Makowski & C. W. Finkl (Eds.), Impacts of Invasive Species on Coas-tal Environments Springer International Publishing, 29, 171–245. doi: 10.1007/978-3-319-91382-7_6

Chandel, S. P. K. (2022). Impacts of Tourism on Environment. Central Asian Journal of Innovations on Tourism Ma-nagement and Finance, 3(10), 90–98.

Chang-Hua, J. U., Yong-Chao, T. I. A. N., Xia, Y. A. O., Wei-Xing, C. A. O., Yan, Z. H. U., & Hannaway, D. (2010). Es-timating leaf chlorophyll content using red edge parameters. Pedosphere, 20(5), 633-644. doi: 10.1016/S1002-0160(10)60053-7

Chang-Hua, J. U., Yong-Chao, T., Xia, Y. A. O., Wei-Xing, C. A. O., Yan, Z. H. U., & Hannaway, D. (2010). Estimating leaf chlorophyll content using red edge parameters. Pedosphere, 20(5), 633–644.

Connelly, X. M. (1997). The Use of a chlorophyll meter (SPAD-502) for field determinations of red mangrove (Rhizo-phora Mangle L.) leaf chlorophyll amount. NASA University Research Centers Technical Advances in Educa-tion, Aeronautics, Space, Autonomy, Earth and Environment, 1(URC97032). Retrieved from https://ntrs.nasa.gov/citations/20010000391

Croft, H., & Chen, J. M. (2017). Leaf pigment content. Comprehensive Remote Sensing, 3, 117–142.

Croft, H., Chen, J. M., Zhang, Y., Simic, A., Noland, T. L., Nesbitt, N., & Arabian, J. (2015). Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically based modelling framework. IS-PRS Journal of Photogrammetry and Remote Sensing, 102, 85–95. doi: 10.1016/j.isprsjprs.2015.01.008

Czaja, M., Kołton, A., & Muras, P. (2020). The complex issue of urban trees—Stress factor accumulation and ecologi-cal service possibilities. Forests, 11(9), 932.

Daughtry, C. S., Walthall, C. L., Kim, M. S., De Colstoun, E. B., & McMurtrey Iii, J. E. (2000). Estimating corn leaf chlo-rophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239. doi: 10.1016/S0034-4257(00)00113-9

de Lacerda, L. D., Ward, R. D., Borges, R., & Ferreira, A. C. (2022). Mangrove trace metal biogeochemistry response to global climate change. Frontiers in Forests and Global Change, 5, 47. doi: 10.3389/ffgc.2022.817992

De, T. K., Raman, M., Sarkar, S. K., & Mukherjee, A. (2021). Ecological assessment of Hooghly River considering a few of the more perturbed sites based on some relevant physico-chemical and biological variables—A part of the AVIRIS-NG (NASA-ISRO) ground truth verification. Regional Studies in Marine Science, 41, 101598.

Delegido, J., Alonso, L., Gonzalez, G., & Moreno, J. (2010). Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). International Journal of Applied Earth Observa-tion and Geoinformation, 12(3), 165–174. doi: 10.1016/j.jag.2010.02.003

Dou, Z., Cui, L., Li, J., Zhu, Y., Gao, C., Pan, X., Lei, Y., Zhang, M., Zhao, X., & Li, W. (2018). Hyperspectral estimation of the chlorophyll content in short-term and long-term restorations of mangrove in Quanzhou Bay Estuary, China. Sustainability, 10(4), 1127. doi: 10.3390/su10041127

Ewel, K., Twilley, R., & Ong, J. I. N. (1998). Different kinds of mangrove forests provide different goods and services. Global Ecology & Biogeography Letters, 7(1), 83–94. doi: 10.1111/j.1466-8238.1998.00275.x

Fauzi, A., Sakti, A., Yayusman, L., Harto, A., Prasetyo, L., Irawan, B., Kamal, M., & Wikantika, K. (2019). Contextuali-zing mangrove forest deforestation in southeast asia using environmental and socioeconomic data products. Forests, 10(11), 952. doi: 10.3390/f10110952

Fava, F., Colombo, R., Bocchi, S., Meroni, M., Sitzia, M., Fois, N., & Zucca, C. (2009). Identification of hyperspectral vegetation indices for Mediterranean pasture characterization. International Journal of Applied Earth Obser-vation and Geoinformation, 11(4), 233–243. doi: 10.1016/j.jag.2009.02.003

Fernández-Tejedor, M., Velasco, J. E., & Angelats, E. (2022). Accurate estimation of Chlorophyll-a concentration in the coastal areas of the Ebro Delta (NW Mediterranean) using Sentinel-2 and its application in the selection of areas for mussel aquaculture. Remote Sensing, 14(20), 5235. doi: 10.3390/rs14205235

Flores-de-Santiago, F., Kovacs, J. M., & Flores-Verdugo, F. (2013a). Assessing the utility of a portable pocket instrument for estimating seasonal mangrove leaf chlorophyll contents. Bulletin of Marine Science, 89(2), 621–633. doi: 10.5343/bms.2012.1032

Flores-de-Santiago, F., Kovacs, J. M., & Flores-Verdugo, F. (2013b). The influence of seasonality in estimating man-grove leaf chlorophyll-a content from hyperspectral data. Wetlands Ecology and Management, 21(3), 193–207. doi: 10.1007/s11273-013-9290-x

Gafurov, A., Prokhorov, V., Kozhevnikova, M., & Usmanov, B. (2024). Forest Community Spatial Modelling Using Machine Learning and Remote Sensing Data. Remote Sensing, 16(8), 1371. doi: 10.3390/rs16081371

Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely sensed vegetation in-dices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136–2160. doi: 10.3390/s8042136

Grove, D. (2021). Ocean acidification and carbon limitation affect photosynthetic capacity of the seagrass (Amphibo-lis antarctica) and its calcifying epiphytes [PhD Thesis, University of Plymouth]. Retrieved from https://pearl.plymouth.ac.uk/handle/10026.1/17162

Guimarães, T. T., Veronez, M. R., Koste, E. C., Gonzaga Jr, L., Bordin, F., Inocencio, L. C., ... & Mauad, F. F. (2017). An alternative method of spatial autocorrelation for chlorophyll detection in water bodies using remote sensing. Sustainability, 9(3), 416. doi: 10.3390/su9030416

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vege-tation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2), 416–426. doi: 10.1016/S0034-4257(02)00018-4

Hai, P. M., Tinh, P. H., Son, N. P., Thuy, T. V., Hanh, N. T. H., Sharma, S., Hoai, D. T., & Duy, V. C. (2022). Mangrove health assessment using spatial metrics and multi-temporal remote sensing data. Plos one, 17(12), e0275928. doi: 10.1371/journal.pone.0275928

Hati, J. P., Goswami, S., Samanta, S., Pramanick, N., Majumdar, S. D., Chaube, N. R., Misra, A., & Hazra, S. (2021). Es-timation of vegetation stress in the mangrove forest using AVIRIS-NG airborne hyperspectral data. Modelling Earth Systems and Environment, 7, 1877–1889.

Jiang, H., Halverson, J. B., & Simpson, J. (2008). On the differences in storm rainfall from Hurricanes Isidore and Lili. Part I: Satellite observations and rain potential. Weather and Forecasting, 23(1), 29–43. doi: 10.1175/2007WAF2005096.1

Kamarianakis, Z., & Panagiotakis, S. (2023). Design and Implementation of a Low-Cost Chlorophyll Content Meter. Sensors, 23(5), 2699. doi: 10.3390/s23052699

Kannankai, M. P., Alex, R. K., Muralidharan, V. V., Nazeerkhan, N. P., Radhakrishnan, A., & Devipriya, S. P. (2022). Urban mangrove ecosystems are under severe threat from microplastic pollution: a case study from Mangala-vanam, Kerala, India. Environmental Science and Pollution Research, 29(53), 80568-80580.

Karang, I. W. G. A., Pravitha, N. L. P. R., Nuarsa, I. W., Basheer Ahammed K. K, & WicaksonoPramaditya. (2024). High-resolution seagrass species mapping and propeller scars detection in Tanjung Benoa, Bali through UAV imagery. Journal of Ecological Engineering, 25(1). doi: 10.12911/22998993/174943

Ku, K.-B., Mansoor, S., Han, G. D., Chung, Y. S., & Tuan, T. T. (2023). Identification of new cold tolerant Zoysia grass species using high-resolution RGB and multispectral imaging. Scientific Reports, 13(1), 13209.

Kumar, N., Deepak, P. M., Basheer Ahammed, K. K., Rao, K. N., Gopinath, G., & Dinesan, V. P. (2022). Coastal vulne-rability assessment using Geospatial technologies and a Multi-Criteria Decision Making approach–a case study of Kozhikode District coast, Kerala State, India. Journal of Coastal Conservation, 26(3), 1–14.

Kumari, A., & Rathore, M. S. (2021). Roles of Mangroves in Combating the Climate Change. In R. P. Rastogi, M. Phul-waria, & D. K. Gupta (Eds.), Mangroves: Ecology, Biodiversity and Management (pp. 225–255). Retrieved from https://link.springer.com/chapter/10.1007/978-981-16-2494-0_10

Lagomasino, D., Fatoyinbo, T., Lee, S., Feliciano, E., Trettin, C., Shapiro, A., & Mangora, M. M. (2019). Measuring mangrove carbon loss and gain in deltas. Environmental Research Letters, 14(2), 025002. doi: 10.1088/1748-9326/aaf0de

Li, H., Cui, L., Dou, Z., Wang, J., Zhai, X., Li, J., Zhao, X., Lei, Y., Wang, J., & Li, W. (2023). Hyperspectral Analysis and Regression Modelling of SPAD Measurements in Leaves of Three Mangrove Species. Forests, 14(8), 1566. doi: 10.3390/f14081566

Li, N., Huo, L., & Zhang, X. (2024). Using only the red-edge bands is sufficient to detect tree stress: A case study on the early detection of PWD using hyperspectral drone images. Computers and Electronics in Agriculture, 217, 108665. doi: 10.1016/j.compag.2024.108665

Liang, L., Qin, Z., Zhao, S., Di, L., Zhang, C., Deng, M., Lin, H., Zhang, L., Wang, L., & Liu, Z. (2016). Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. International Jour-nal of Remote Sensing, 37(13), 2923–2949. doi: 10.1080/01431161.2016.1186850

Mahasani, I., Widagti, N., & Karang, I. (2015). Estimasi persentase karbon organik di hutan mangrove bekas tambak, Perancak, Jembrana, Bali. Journal of Marine and Aquatic Sciences, 1(1), 14–18.

Matsui, N. (1998). Estimated stocks of organic carbon in mangrove roots and sediments in Hinchinbrook Channel, Aus-tralia. Mangroves and Salt Marshes, 2, 199–204.

Minu, A., Routh, J., Machiwa, J., & Pamba, S. (2020). Spatial variation of nutrients and primary productivity in the Ru-fiji Delta mangroves, Tanzania. African Journal of Marine Science, 42(2), 221–232. doi:10.2989/1814232X.2020.1776391

Misra, G., Cawkwell, F., & Wingler, A. (2020). Status of phenological research using Sentinel-2 data: A review. Remote Sensing, 12(17), 2760.

Misra, G., Cawkwell, F., & Wingler, A. (2020). Status of phenological research using Sentinel-2 data: A review. Remote Sensing, 12(17), 2760. doi: 10.3390/rs12172760

Montagna, P., Palmer, T. A., & Pollack, J. B. (2012). Hydrological changes and estuarine dynamics (Vol. 8). Springer Science & Business Media. Retrived from https://books.google.co.in/books?hl=en&lr=&id=7hymBy82V5EC &oi=fnd&pg=PR3&dq=Coastal+developments+can+disrupt+natural+hydrological+patterns,+affecting+the+intrcate+balance+of+salinity+and+water+flow+crucial+for+mangrove+health.+&ots=dDoWiB6O&sig=4ao9yifjdgFJX0TCKz3aBBH0wFE#v=onepage&q&f=false

Moorhouse, H. L., Roberts, L. R., McGowan, S., Panizzo, V. N., Barker, P., Salehin, M., Do, T. N., Nguyen Thanh, P., Rahman, M. F., Ghosh, T., Das, S., Hackney, C., Salgado, J., Roy, M., Opel, A., Henderson, A. C. G., & Large, A. R. G. (2021). Tropical Asian mega‐delta ponds: Important and threatened socio‐ecological systems. Geo: Geography and Environment, 8(2), e00103. doi:10.1002/geo2.103

Musacchi, S., Sheick, R., Mia, M. J., & Serra, S. (2023). Studies on physiological and productive effects of multileader training systems and Prohexadione-Ca applications on apple cultivar’WA 38′. Scientia Horticulturae, 312, 111850.

Neres, J., Dodonov, P., Mielke, M. S., & Strenzel, G. M. R. (2020). Relationships between portable chlorophyll meter es-timates for the red mangrove tree (Rhizophora mangle L.). Ocean and Coastal Research, 68. Retrieved from https://www.scielo.br/j/ocr/a/jyGNrw5BGcHwsLyjh3NSpSr/?lang=en

Newton, A., Icely, J., Cristina, S., Perillo, G. M., Turner, R. E., Ashan, D., Cragg, S., Luo, Y., Tu, C., & Li, Y. (2020). An-thropogenic, direct pressures on coastal wetlands. Frontiers in Ecology and Evolution, 8, 144.

Ng, C. K. C., & Ong, R. C. (2022). A review of anthropogenic interaction and impact characteristics of the Sundaic mangroves in Southeast Asia. Estuarine, Coastal and Shelf Science, 267, 107759.

Numbere, A. O. (2021). Impact of Urbanization and Crude Oil Exploration in Niger Delta Mangrove Ecosystem and Its Livelihood Opportunities: A Footprint Perspective. In A. Banerjee, R. S. Meena, M. K. Jhariya, & D. K. Yadav (Eds.), Agroecological Footprints Management for Sustainable Food System (pp. 309–344). Springer Singa-pore. doi: 10.1007/978-981-15-9496-0_10

Odabas, M. S., Senyer, N., Kayhan, G., & Ergun, E. (2017). Estimation of Chlorophyll Concentration Index at Leaves using Artificial Neural Networks. Journal of Circuits, Systems and Computers, 26(02), 1750026. doi: 10.1142/S0218126617500268

Pastor-Guzman, J., Atkinson, P. M., Dash, J., & Rioja-Nieto, R. (2015). Spatiotemporal variation in mangrove chloro-phyll concentration using Landsat 8. Remote Sensing, 7(11), 14530–14558.

Perri, S., Detto, M., Porporato, A., & Molini, A. (2023). Salinity‐induced limits to mangrove canopy height. Global Eco-logy and Biogeography, 32(9), 1561–1574. https://doi.org/10.1111/geb.13720

Pineda, M., & Barón, M. (2022). Health status of oilseed rape plants grown under potential future climatic conditions assessed by invasive and noninvasive techniques. Agronomy, 12(8), 1845.

Pu, R., Gong, P., Tian, Y., Miao, X., Carruthers, R. I., & Anderson, G. L. (2008). Using classification and NDVI differen-cing methods for monitoring sparse vegetation coverage: A case study of saltcedar in Nevada, USA. Interna-tional Journal of Remote Sensing, 29(14), 3987–4011. doi: 10.1080/01431160801908095

Röthig, T., Trevathan‐Tackett, S. M., Voolstra, C. R., Ross, C., Chaffron, S., Durack, P. J., Warmuth, L. M., & Sweet, M. (2023). Human‐induced salinity changes impact marine organisms and ecosystems. Global Change Biology, 29(17), 4731–4749. doi: 10.1111/gcb.16859

Rugel, E. J., Henderson, S. B., Carpiano, R. M., & Brauer, M. (2017). Beyond the normalized difference vegetation in-dex (NDVI): developing a natural space index for population-level health research. Environmental research, 159, 474-483.

Saenger, P., Hegerl, E. J., & Davie, J. D. (1983). Global status of mangrove ecosystems. International Union for Conser-vation. Nature and Natural Resources.

Sentinel, C. (2021). 2.:(processed by ESA), MSI Level-2A BOA Reflectance Product. Collection 1.

Steven, A., Addo, K. A., Llewellyn, G., Ca, V. T., Boateng, I., Bustamante, R., Doropoulos, C., Gillies, C., Hemer, M., & Lopes, P. (2020). Coastal development: Resilience, restoration and infrastructure requirements. World Re-sources Institute, Washington DC. Retrieved from Www. Oceanpanel. Org/b l Ue-Papers/Coastal-Development-Resilience-Restoration-and-Infrastructure-Requi r Ements.

Su, Z., Shen, J., Sun, Y., Hu, R., Zhou, Q., & Yong, B. (2024). Deep Spatio-Temporal Fuzzy Model for NDVI Forecas-ting. IEEE Transactions on Fuzzy Systems. Retrieved from https://smujo.id/biodiv/article/view/11293

Sugiana, I. P., Andiani, A. A. E., Dewi, I. G. A. I. P., Karang, I. W. G. A., As-Syakur, A. R., & Dharmawan, I. W. E. (2022). Spatial distribution of mangrove health index on three genera dominated zones in Benoa Bay, Bali, In-donesia. Biodiversitas Journal of Biological Diversity, 23(7).

Sun, Y., Qin, Q., Ren, H., Zhang, T., & Chen, S. (2019). Red-edge band vegetation indices for leaf area index estimation from sentinel-2/msi imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 826–840.

Sun, Y., Wang, B., & Zhang, Z. (2023). Improving leaf area index estimation with chlorophyll insensitive multispectral red-edge vegetation indices. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sen-sing, 16, 3568-3582. doi: 10.1109/JSTARS.2023.3262643

Umprasoet, W., Mu, Y., Somrup, S., Junchompoo, C., Guo, Z., & Zhang, Z. (2023). Assessment of Habitat Risks Caused by Human Activities and Integrated Approach to Marine Spatial Planning: The Case of Sriracha District—Sichang Island. Coasts, 3(3), 190–208.

Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., & Moreno, J. (2011). Retrieval of vegetation biophysical parame-ters using Gaussian process techniques. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1832–1843. doi: 10.1109/TGRS.2011.2168962

Wang, F., Liu, J., Qin, G., Zhang, J., Zhou, J., Wu, J., ... & Ren, H. (2023). Coastal blue carbon in China as a nature-based solution towards carbon neutrality. The Innovation, 4(5), 100481. doi: 10.1016/j.xinn.2023.100481

Wang, Y.-S., & Gu, J.-D. (2021). Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. International Biodeterioration & Biodegradation, 162, 105248. doi: 10.1016/j.ibiod.2021.105248

Weier, J., & Herring, D. (2000). Measuring vegetation (ndvi & evi). NASA Earth Observatory, 20(2).

White, E., & Kaplan, D. (2017). Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Eco-system Health and Sustainability, 3(1), e01258. doi: 10.1002/ehs2.1258

Wong, W. Y., Al-Ani, A. K. I., Hasikin, K., Khairuddin, A. S. M., Razak, S. A., Hizaddin, H. F., ... & Azizan, M. M. (2021). Water, soil and air pollutants’ interaction on mangrove ecosystem and corresponding artificial intelli-gence techniques used in decision support systems-a review. Ieee Access, 9, 105532-105563.

Xue, H., Xu, X., Zhu, Q., Yang, G., Long, H., Li, H., ... & Li, Y. (2023). Object-oriented crop classification using time se-ries sentinel images from google earth engine. Remote Sensing, 15(5), 1353. doi: 10.3390/rs15051353

Zhao, W., Li, B., Li, R., Wu, X., Lin, G., & Huang, Y. (2024). Urban mangroves at risk: Understanding organophosphate flame retardant pollution at different urban function zones in shenzhen. Ocean & Coastal Management, 255, 107262. doi: 0.1016/j.ocecoaman.2024.107262

Downloads

Submitted

2024-03-11

Accepted

2024-07-26

Published

2024-08-29

Issue

Section

Research article