Use of the TPI and TWI Methods for Identifying Karst Dolines in Purwosari District, Gunungkidul Regency, Indonesia
DOI:
https://doi.org/10.23917/forgeo.v39i1.4462Keywords:
doline, distrbution, Gunungkidul, Topographic Position Index (TPI), Topographic Wetness Index (TWI), Cave MorphometryAbstract
Gunung Sewu Karst, located in the Gunung Kidul Regency within the Special Region of Yogyakarta, features a distinctive karst topography consisting of dolines, hills and caves. Despite its aesthetic appearance, the area often experiences water scarcity due to the lack of surface water. Dolines, basin-like depressions formed during the karstification process, play a crucial role in biodiversity conservation, ecology, hydrology and land-use management planning. This study aims to map and identify the spatial distribution and morphometric characteristics of dolines in the Purwosari subdistrict, which have important implications for water resource management and drought mitigation in karst regions. The findings are intended to guide spatial planning and environmental mitigation strategies. Data for the study were derived from a digital elevation model (DEM), more scalable and accessible elevation data, to generate the Topographic Position Index (TPI) and Topographic Wetness Index for analysing doline spatial patterns, their terrain shapes, their types (dry or watery), and morphometry. The results show that dolines are associated with negative TPI values (58%) and low TWI values (53.48%), with most landforms classified below the plain level (27.91%). A significant proportion of dolines (79.06%) contain water, with the classification accuracy between TPI and TWI being 65.11%. Morphologically, most dolines are U-shaped, with oval-shaped dolines being the most common (41.86% of observations). The findings reveal that dolines in the Purwosari Subdistrict have significant underground water storage potential, making them crucial for mitigating regional drought risks.
Downloads
References
Abdullah, N & Abdulrahman, A.I. (2019). Landform Classification Automated Techniques In Geographical Information System. University Of Duhok. Geography Department University of Duhok
Antonić, O., Hatić, D., & Pernar, R. (2001). DEM-based depth in sink as an environmental estimator. Ecological Model-ling, 138, 247-254. doi: 10.1016/S0304-3800(00)00405-1
Aprilia, B. C. (2019). Penggunaan Metode APLIS (Altitude, Slope, Lithology, Infiltration and Soils) Dalam Sistem Infor-masi Geografis Sebagai Upaya Melindungi Sumber Daya Air Tanah Bentang Alam Karst. Retrieved From Researchgate.Net
Bauer, C. (2015). Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology, 250, 78–88. doi: 10.1016/J.GEOMORPH.2015.08.015
Bátori, Z., Vojtkó, A., Keppel, G., Tölgyesi, C., Čarni, A., Zorn, M., Farkas, T., Erdős, L., Kiss, P. J., Módra, G., & Breg Valjavec, M. (2020). Anthropogenic disturbances alter the conservation value of karst dolines. Biodiversity and Conservation, 29(2), 503–525. doi: 10.1007/s10531-019-01896-4
Budiharso, A. S. & Andre, J. M. (2023). Kajian Topographic Wetness Index (Twi) Untuk Mengetahui Potensi Bahaya Banjir Di Kota Manado. Journal Geological Processes, Risks, And Integrated Spatial Modeling, 01 (01).
Budiyanto, E. (2016). Keterkaitan kondisi fitur permukaan karst yang diperoleh dari data citra penginderaan jauh den-gan kualitas air Bawah Tanah di Gunungsewu Bagian Barat. Jurnal Geografi, 14(2), 112-123.
Čarni, A., Čonč, Š., & Breg Valjavec, M. (2022). Landform-vegetation units in karstic depressions (dolines) evaluated by indicator plant species and Ellenberg indicator values. Ecological Indicators, 135, 108572. doi: 10.1016/J.ECOLIND.2022.108572
Čonč, Š., Oliveira, T., Portas, R., Černe, R., Valjavec, M. B., & Krofel, M. (2022). Dolines and Cats: Remote Detection of Karst Depressions and Their Application to Study Wild Felid Ecology. Remote Sensing, 14(3). doi: 10.3390/rs14030656
Damayanti, A & Diah, F.N.S (2018) Karakteristik Dan Pola Persebaran Dolines Di Kecamatan Ponjong Dan Semanu, Kabupaten Gunungkidul, Jurnal Geografi Lingkungan Tropik (Journal Of Geography Of Tropical Environ-ments), 2(2), 1-5. doi: 10.7454/Jglitrop.V2i2.50
Diah, H., Adji, T. N., & Haryono, E. (2021). Perbedaan tingkat perkembangan karst daerah peralihan antara Basin Wonosari dan Karst Gunung Sewu. Media Komunikasi Geografi, 22(1), 51-61. doi: 10.23887/mkg.v22i1.30885
Doneus, M., (2013). Openness as visualization technique for interpretative mapping of airborne lidar derived digital ter-rain models. Remote Sensing, 5, 6427–6442. doi: 10.3390/rs5126427
ESRI. (2001). ArcGIS Spatial Analyst: Advanced GIS Spatial Analysis Using Raster and Vector Data. ESRI. New York
Ferreira, C. F., Hussain, Y., Uagoda, R., Silva, T. C., & Cicerelli, R. E. (2023). UAV-based doline mapping in Brazilian karst: A cave heritage protection reconnaissance. Open Geosciences, 15(1). doi: 10.1515/geo-2022-0535
Ford, D. & Paul, D. W. (2007). Karst hydrogeology and geomorphology. John Wiley and Sons.
Furtado, C. P. Q., Borges, S. V. F., Bezerra, F. H. R., de Castro, D. L., Maia, R. P., Teixeira, W. L. E., Souza, A. M., Auler, A. S., & Lima-Filho, F. P. (2022). The fracture-controlled carbonate Brejões Karst System mapped with UAV, LiDAR, and electroresistivity in the Irecê Basin - Brazil. Journal of South American Earth Sciences, 119, 103986. doi: 10.1016/J.JSAMES.2022.103986
Gallant, J. C., Wilson, J. P., (2000). Primary topographic attributes, in: Terrain Analysis: Principles and Applications. John Wiley & Sons, 51–85.
Gazali, W., Haryono S., Jenny, O. (2012) Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital. Jurnal Mat Stat, 2 (2), 103-113.
González-Díez, A. J. A. Barreda-Argüeso, L. Rodríguez-Rodríguez, J. Fernández-Lozano. (2021). The use of filters ba-sed on the Fast Fourier Transform applied to DEMs for the objective mapping of karstic features, Geomorpho-logy, 385, 107724. doi: 10.1016/j.geomorph.2021.107724
Grlj, A. (2020). Omejevanje kraških kotanj z analizo polrezov. Dela, 53, 5–22.
Haryono, E., & Tjahyo, N. A. (2004). Geomorfologi Dan Hidrologi Karst. Kelompok Studi Karst Fakultas Geografi, Universitas Gadjah Mada.
Haryono, E., Adji, T. N., & Widyastuti, M. (2017). Environmental Problems Of Telaga (Doline Pond) In Gunungsewu Karst, Java Indonesia. Retrieved From https://doi.org/10.31227/osf.io/8us3w
Herrmann, H., & Bucksch, H. (2014). Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik (2nd ed.). Retrie-ved From https://doi.org/10.1007/978-3642-41714-6
Hiller, J. K., Smith, M. (2008). Residual relief separation: digital elevation model enhancement for geomorphological mapping. Earth Surf. Process. Landforms 33,2266–2276. doi: 10.1002/esp.1659.
Kennelly, P. J. (2008). Terrain maps displaying hill-shading with curvature. Geomorphology, 102, 567–577. doi: 10.1016/j.geomorph.2008.05.046.
Kincey, M., Batty, L., Chapman, H., Gearey, B., Ainsworth, S., Challis, K. (2014). Assessing thechanging condition of industrial archaeological remains on Alston Moor, UK, usingmultisensor remote sensing. J. Archaeol. Sci., 45, 36–51. doi: 10.1016/j.jas.2014.02.008.
Lemeshow, S. & David W. H. Jr. (1997). Besar Sampel dalam Penelitian Kesehatan (terjemahan). Gadjahmada Univer-sity Press, Yogyakarta
Lindsay, J. B., Cockburn, J. M. H., Russell, H. A. J. (2015). An integral image approach toperforming multi-scale topo-graphic position analysis. Geomorphology, 245, 51–61. doi : 10.1016/j.geomorph.2015.05.025.
Miardini, Arina., & Grace S. S. (2019). Penentuan Prioritas Penanganan Banjir Genangan Berdasarkan Tingkat Kerawanan Menggunakan Topographic Wetness Index Studi Kasus Di Das Solo. Jurnal Ilmu Lingkungan 17(1),113. doi: 10.14710/jil.17.1.113-119.
Mulyanto, D., & Surono. (2009). Pengaruh Topografi dan Kesarangan Batuan Karbonat terhadap Warna Tanah pada jalur Baronp-Wonosari, Kabupaten Gunungkidul, DIY. Yogyakarta. Forum Geografi, 23(2), 181 - 195. doi: 10.23917/forgeo.v23i2.5010
Nucifera, F., & Sutanto, T. P. (2017). Deteksi Kerawanan Banjir Genangan Menggunakan Topographic Wetness Index (TWI). Media Komunikasi Geografi 18(2), 107. doi: 10.23887/mkg.v18i2.12088.
Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2014). Topography Wetness Index Appli-cation in Flood-Risk-Based Land Use Planning. Applied Spatial Analysis and Policy, 9(1), 39–54. doi:10.1007/s12061-014-9130-2
Pueyo-Anchuela, Ó., Casas-Sainz, A. M., Soriano, M. A., & Pocoví-Juan, A. (2010). A geophysical survey routine for the detection of doline areas in the surroundings of Zaragoza (NE Spain). Engineering Geology, 114(3–4), 382–396. doi: 10.1016/J.ENGGEO.2010.05.015
Putro, S. T., & Fitria, N. (2017). Klasifikasi bentuklahan secara otomatis menggunakan Topographic Position Index. Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, 14(2), 75-83. doi: https://doi.org/10.15294/jg.v14i2.11523
Saputra, B. D. (2008). Morfometri Dolines Di Wilayah Karst Gombong Selatan. Skripsi Departemen Geografi, Universitas Indonesia
Setiawan, A., Mahfud, A., Rachmad, H., & Apong, S. (2018). Hubungan Karakteristik Topografi dengan Sifat-Sifat Fisika Tanah. Bandung. Soilrens, 16(1). doi: 10.24198/soilrens.v16i1.18310
Sofia, G., 2020. Combining geomorphometry, feature extraction techniques and Earthsurface processes research: the way forward. Geomorphology, 355. doi: 10.1016/j.geomorph.2020.107055.
Sorensen, R., Zinko., & Seibert, J. (2006). On the Calculation of the Topographic Wetness Index: Evaluation of Diffe-rent Methods Based on Field Observations. Hydrology and Earth System Sciences 10(1), 101–12. doi: 10.5194/hess-10-101-2006.
Stefanovski, S., Kokalj, Ž., & Stepišnik, U. (2024). Sky-view factor enhanced doline delineation: A comparative metho-dological review based on case studies in Slovenia. Geomorphology, 465, 109389. doi: 10.1016/J.GEOMORPH.2024.109389
Sulastoro. (2013). Karakteristik sumberdaya air di daerah karst (Studi Kasus Daerah Pracimantoro). Journal of Rural and Development, IV(1), 61–67.
Suri, M., & Susilo, B. K. (2020). Identifikasi dolines karst Formasi Kalipucang melalui Analisis DEM, Daerah Ayah, Kabupaten Kebumen, Provinsi Jawa Tengah. Prosiding Applicable Innovation of Engineering and Science Research (AVoER), 218-224.
Sutanta, H., & Tiera. (2019). Calculation of the Number of Peaks in the Gunung Sewu Area Using DEMNAS, Focal Maximum Function and Slope Position Classification Method. IOP Conference Series: Earth and Environ-mental Science 389(1). doi: 10.1088/1755-1315/389/1/012052
Valjavec, M. B., Čarni, A., Žlindra, D., Zorn, M., & Marinšek, A. (2022). Soil organic carbon stock capacity in karst do-lines under different land uses. Catena, 218, 106548. doi: 10.1016/j.catena.2022.106548
Weiss, A. (2001). Topographic Position and Landforms Analysis. Poster Presentation, ESRI User Conference, San Die-go, CA 64, 227–45.
Yusra, A. (2018). The analysis of the geomorphometric and landforms of Sarhan Basin, In Jordan. Human and Social Sciences, 1, 453. doi: 10.35516/0103-045-985-027.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Astrid Damayanti

This work is licensed under a Creative Commons Attribution 4.0 International License.















