The Impedance of East Jakarta Road Network to Estimate Fire Station Service Areas
DOI:
https://doi.org/10.23917/forgeo.v38i2.4408Keywords:
connectivity, fire, impedance, network analysis, service areaAbstract
Urban fires, prevalent in densely populated areas, pose significant risks by increasing deaths and injuries. Fire departments must navigate challenging access routes to manage these incidents effectively. This study analyzes the service coverage of fire stations in East Jakarta, considering road network, width, speed, and travel time. The study utilizes secondary data from the DKI Jakarta Provincial Fire and Rescue Service, road network data from local government sources, and traffic data from Google Maps. Additionally, a field survey was conducted to validate road conditions and accessibility. Using graph theory-based network analysis, the study assesses connectivity, flows, directions, and destinations to determine the coverage extent. The optimal route, defined by road class, width, and condition, exhibits the lowest impedance. Google Maps’ estimated travel times, incorporating traffic conditions, are used to assess travel times, with a 5-minute travel time set as the standard barrier for coverage. Results reveal that the current service coverage of East Jakarta fire stations is only 66.57%. This disparity indicates an inadequate number of fire stations relative to their required service areas. The findings underscore the need for strategic placement of additional fire stations and potential improvements in road infrastructure to enhance response times. Traffic dynamics often affect travel times, demonstrating that shorter distances do not always result in faster arrivals according to real-time data.
Downloads
References
Alkış, S., Aksoy, E., & Akpınar, K. (2021). Risk assessment of industrial fires for surrounding vulnerable facilities using a multi-criteria decision support approach and gis. Fire, 4(3), 1-16. doi: 10.3390/fire4030053
Ardiansyah, Hernina, R., Suseno, W., Zulkarnain, F., Yanidar, R., & Rokhmatuloh, R. (2019). Percent of building densi-ty (PBD) of urban environment: A multi-index Approach Based Study in DKI Jakarta Province. Indonesian Journal of Geography, 50(2), 154–161. doi: 10.22146/ijg.36113
Baihaqi, M. K., Suprayogi, A., & Firdaus, H. S. (2019). Analisis Aksesibilitas Shelter BRT Terhadap SMP dan SMA Negeri di Kota Semarang Berbasis Sistem Informasi Geografis. Geodesi Undip, 8, 143–153.
Balasubramani, K., Gomathi, M., & Prasad, S. (2016). GIS-Based Service Area Analysis for Optimal Planning Strate-gies: A Case Study of Fire Service Stations in Madurai City. Geographic Analysis of Union Geographic Infor-mation Technologists, 5(2).
Bispo, R., Vieira, F. G., Bachir, N., Espadinha-Cruz, P., Lopes, J. P., Penha, A., Marques, F. J., & Grilo, A. (2023). Spatial modelling and mapping of urban fire occurrence in Portugal. Fire Safety Journal, 138, 103802. doi: 10.1016/J.FIRESAF.2023.103802
BPS Kota Jakarta Timur. (2023). Jakarta Timur Dalam Angka 2023. Retrived From https://jaktimkota.bps.go.id/publication/2023/02/28/1f03f51e9bb5bb46b682206c/kota-jakarta-timur-dalam-angka-2023.html
Challands, N. (2010). The relationships between fire service response time and fire outcomes. Fire Technology, 46(3), 665–676. doi: 10.1007/s10694-009-0111-y
Davoodi, M. (2019). A GIS based Fire Station Site Selection using Network Analysis and Set Covering Location Prob-lem. International Journal Of Human Geography And Environmental Studies, 12(1), 433–436. doi: 10.6084/m9.figshare.10053329.v1
DKI Jakarta Provincial Fire and Rescue Service. (2021). Kejadian Kebakaran Di Dki Jakarta Tahun 2020. Retrived From https://statistik.jakarta.go.id/kejadian-kebakaran-di-dki-jakarta-tahun-2020/
Dong, X. M., Li, Y., Pan, Y. L., Huang, Y. J., & Cheng, X. D. (2018). Study on Urban Fire Station Planning based on Fire Risk Assessment and GIS Technology. Procedia Engineering, 211, 124–130. doi: 10.1016/j.proeng.2017.12.129
Erden, T., & Coşkun, M. Z. (2010). Multi-criteria site selection for fire services: The interaction with analytic hierarchy process and geographic information systems. Natural Hazards and Earth System Science, 10(10), 2127–2134. doi: 10.5194/nhess-10-2127-2010
Fire Fighter Nation. (2015). Urban Rural and In Between. Retrived From https://www.firefighternation.com/firerescue/urban-rural-and-inbetween/#gref
Hardiantoro, A. (2022). Kronologi dan Dugaan Penyebab Kebakaran Pasar Gembrong Jakarta Timur. Retrived From Kompas.Com. https://www.kompas.com/tren/read/2022/04/25/113100165/kronologi-dan-dugaan-penyebab-kebakaran-pasar-gembrong-jakarta-timur?page=all
KC, K., & Corcoran, J. (2017). Modelling residential fire incident response times: A spatial analytic approach. Applied Geography, 84, 64–74. doi: 10.1016/j.apgeog.2017.03.004
Lee, Y. H., Kim, M. S., & Lee, J. S. (2021). Firefighting in vulnerable areas based on the connection between fire hy-drants and fire brigade. Sustainability (Switzerland), 13(1), 1–12. doi: 10.3390/su13010098
Lestari, F., Kim, K., Adiwibowo, A., Octaviani, D. F., Fisher, M., & Yamashita, E. (2022). Improving Service Coverage and Response Times for Three-Wheeled Mobile Fire Units on Pari Island, Indonesia. Transportation Research Record: Journal of the Transportation Research Board, 036119812211010. doi: 10.1177/03611981221101031
Liu, D., Xu, Z., & Fan, C. (2019). Predictive analysis of fire frequency based on daily temperatures. Natural Hazards, 97(3), 1175–1189. doi: 10.1007/s11069-019-03694-1
Liu, D., Xu, Z., Wang, Z., Zhou, Y., & Fan, C. (2021). Estimation of effective coverage rate of fire station services based on real-time travel times. Fire Safety Journal, 120, 103021. doi: 10.1016/j.firesaf.2020.103021
Minister of Public Works of the Republic of Indonesia. (2009). Peraturan Menteri Pekerjaan Umum Nomor: 20/PRT/M/2009 tentang Pedoman Teknis Manajemen Proteksi Kebakaran di Perkotaan. Retrived From https://peraturan.bpk.go.id/Details/104492/permen-pupr-no-20prtm2009-tahun-2009
Minister of Transportation of the Republic of Indonesia. (2015). Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 111 Tahun 2014 tentang Tata Cara Penetapan Batas Kecepatan. Retrived From https://ppid.dephub.go.id/fileupload/informasi-setiap-saat/PM_111_Tahun_2015.pdf
National Fire Protection Association. (2021). NFPA Glossary of Terms (2021st ed.). NFPA.
Noori, S., Mohammadi, A., Miguel Ferreira, T., Ghaffari Gilandeh, A., & Mirahmadzadeh Ardabili, S. J. (2023). Model-ling and Mapping Urban Vulnerability Index against Potential Structural Fire-Related Risks: An Integrated GIS-MCDM Approach. Fire, 6(3), 107. doi: 10.3390/fire6030107
Putra, B. (2023). Kebakaran Dahsyat Puluhan Lapak Pemulung di Duren Sawit, Satu Orang Tewas. Retrived From https://jakarta.tribunnews.com/2023/05/30/kebakaran-dahsyat-puluhan-lapak-pemulung-di-duren-sawit-satu-orang-tewas
Rahadian, A., Lestari, F., & Paramitasari, D. (2022). Fire Hazard, Vulnerability, and Fire Protection Assessment in North Jakarta. Health Notions, 6(6). doi: 10.33846/hn60606
Rodrigues, M., de la Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weightedlogistic regression. Applied Geography, 48, 52–63. doi: 10.1016/j.apgeog.2014.01.011
Tali, J. A., Divya, S., & Nusrath, A. (2020). Location-allocation model applied to urban public services: Spatial analysis of fire stations in Mysore Urban Area Karnataka, India. Indonesian Journal of Geography, 35(2), 201–207. doi: 10.22146/IJG.25365
Wagistina, S., Syafitri, D. R., Lestari, J. S., Amanatinismi, K. H., Setiawan, D., & Ramadhani, S. (2022). Service Area Network Analysis for Location Planning of Microbusiness and Local Franchise in Urban Area: A Case Study in Malang City, East Java Provence, Indonesia. Economies, 10(5), 1-23. doi: 10.3390/economies10050103
Wan Jusoh, W. N., Tharima, A. F., Ghani, W., Mohamad Lukman, N. H., Visvasathan, S., Shamsudin, M. H., Mahmud Zuhudi, N. Z., & Mohd Nur, N. (2023). Initial Assessment of Fire Response Time between Different Categories of Fire Stations in Malaysia. Fire, 6(1), 1-14. doi: 10.3390/fire6010006
Widyantoro, B. A., & Santosa, P. B. (2021). Network Analysis to Determine the Optimal Route for Firefighters in Ma-kassar City. IOP Conference Series: Earth and Environmental Science, 936(1), 1–10. doi: 10.1088/1755-1315/936/1/012005
Xu, Z., Liu, D., & Yan, L. (2021). Evaluating spatial configuration of fire stations based on real-time traffic. Case Stud-ies in Thermal Engineering, 25, 100957. doi: 10.1016/J.CSITE.2021.100957
Yu, W., Chen, Y., Chen, Z., Xia, Z., & Zhou, Q. (2020). Service area delimitation of fire stations with fire risk analysis: Implementation and case study. International Journal of Environmental Research and Public Health, 17(6), 1-24. doi: 10.3390/ijerph17062030
Zainal, I., Lestari, F., Gunawan, S., Adiwibowo, A., Kadir, A., & Ramadhan, N. A. (2022). Fire Vehicle Route, Response Time, and Service Coverage Optimizations in Pekojan Urban Village, Tambora Subdistrict Fire Hotspot of Ja-karta City Indonesia. PREPOTIF : Jurnal Kesehatan Masyarakat, 6(2), 1454–1468. doi: 10.31004/prepotif.v6i2.5026
Zhang, X., Yao, J., Sila-Nowicka, K., & Jin, Y. (2020). Urban fire dynamics and its association with urban growth: Evi-dence from Nanjing, China. ISPRS International Journal of Geo-Information, 9(4), 1-19. doi : 10.3390/ijgi9040218
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Mohammad Raditia Pradana
This work is licensed under a Creative Commons Attribution 4.0 International License.