Impact of Climate Change on the Cryosphere of the Ugam Chatkal National Park, Bostonliq District, Uzbekistan, During the Post-Soviet Period, Based on Remote Sensing and Statistical Analysis
DOI:
https://doi.org/10.23917/forgeo.v38i3.4405Keywords:
cryosphere, Uzbekistan, NDSI, remote sensing, climate changeAbstract
The cryosphere, including glaciers, snow cover, and ice sheets, plays a crucial role in global climate regulation. Therefore, monitoring is crucial for understanding climate dynamics at both regional and global scales. According to scientists studying global climate change, Central Asia is vulnerable to global temperature increases. However, research aimed at analyzing the impact of climate change on the regional cryosphere is lacking. This study investigated the impact of climate change on the cryosphere of the Ugam Chatkal National Park in Uzbekistan's Bostonliq District, focusing on the period following the dissolution of the Soviet Union (1991–2022). This study used remote sensing data and statistical analyses, such as the Mann–Kendall test and Sen's slope calculations, to evaluate trends in snow and ice cover, glacier extent, and vegetation health. Key indices, such as normalized difference vegetation index, normalized difference snow index, normalized difference glacier index, and normalized difference snow-ice index, were used to measure the mean values of these environmental parameters. The findings indicate a significant decrease in snow/ice cover (slope =-0.0048, tau =-0.193), underscoring the profound effects of climate warming on the region's water resources and ecological balance. The analysis highlights the urgency of implementing adaptive management strategies to mitigate these impacts, ensure the sustainability of water supply, and preserve biodiversity in Central Asia's vulnerable mountain ecosystems.
Downloads
References
Alikhanov, B., Alikhanova, S., Oymatov, R., Fayzullaev, Z., & Pulatov, A. (2020). Land cover change in Tashkent pro- vince during 1992 – 2018. IOP Conference Series: Materials Science and Engineering, 883(1), 012088. doi: 10.1088/1757-899X/883/1/012088
Alikhanov, B., Juliev, M., Alikhanova, S., & Mondal, I. (2021). Assessment of influencing factor method for delineation of groundwater potential zones with geospatial techniques. Case study of Bostanlik district, Uzbekistan. Ground- water for Sustainable Development, 12, 100548. doi: 10.1016/j.gsd.2021.100548
Barandun, M., Fiddes, J., Scherler, M., Mathys, T., Saks, T., Petrakov, D., & Hoelzle, M. (2020). The state and future of the cryosphere in Central Asia. Water Security, 11, 100072. doi: 10.1016/j.wasec.2020.100072
Choubin, B., Heydari Alamdarloo, E., Mosavi, A., Sajedi Hosseini, F., Ahmad, S., Goodarzi, M., & Shamshirband, S. (2019). Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountai- nous regions. Cold Regions Science and Technology, 167, 102870. doi: 10.1016/j.coldregions.2019.102870
Diebold, A. (2013). The impact of glaciers melting on national and trans-boundary water systems in Central Asia [Semi- nar report].
Florath, J., Keller, S., Abarca-del-Rio, R., Hinz, S., Staub, G., & Weinmann, M. (2022). Glacier Monitoring Based on Multi-Spectral and Multi-Temporal Satellite Data: A Case Study for Classification with Respect to Different Snow and Ice Types. Remote Sensing, 14(4), 845. doi: 10.3390/rs14040845
Frolov, D. M., Koshurnikov, A. V., Gagarin, V. E., Dodoboev, E. I., & Nabiev, I. A. (2023). Modern studies of the cryosphere of the Zeravshan and Gissar Ranges (Tien Shan). E3S Web of Conferences, 411, 02053. doi: 10.1051/e3sconf/202341102053
Gabban, A., Liberta, G., San-Miguel-Ayanz, J., & Barbosa, P. (2004). Forest fire risk estimation from time series analisys of NOAA NDVI data. SPIE Digital Library, 5232, 1-9. doi: 10.1117/12.511003
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., Van Den Broeke, M. R., & Paul, F. (2013). A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340(6134), 852–857. doi: 10.1126/science.1234532
Gascoin, S., Barrou Dumont, Z., Deschamps-Berger, C., Marti, F., Salgues, G., López-Moreno, J. I., Revuelto, J., Michon, T., Schattan, P., & Hagolle, O. (2020). Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sensing, 12(18), 2904. doi: 10.3390/rs12182904
Gul, J., Muhammad, S., Liu, S., Ullah, S., Ahmad, S., Hayat, H., & Tahir, A. A. (2020). Spatio-temporal changes in the six major glaciers of the Chitral River basin (Hindukush Region of Pakistan) between 2001 and 2018. Journal of Mountain Science, 17(3), 572–587. doi: 10.1007/s11629-019-5728-9
Haeberli, W. (2004). Glaciers and ice caps: Historical background and strategies of worldwide monitoring. In J. L. Bam- ber & A. J. Payne (Eds.), Mass Balance of the Cryosphere. Cambridge University Press, 1, 559–578. doi: 10.1017/CBO9780511535659.017
Hall, D. K., & Riggs, G. A. (2011). Normalized-Difference Snow Index (NDSI). In V. P. Singh, P. Singh, & U. K. Hari- tashya (Eds.), Encyclopedia of Snow, Ice and Glaciers. Springer Netherlands, 779–780. doi: 10.1007/978-90- 481-2642-2_376
Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2), 127–140. doi: 10.1016/0034-4257(95)00137-P
He, Q., Zhang, Z., Ma, G., & Wu, J. (2020). Glacier Identification From Landsat8 Oli Imagery Using Deep U-Net. Isprs Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 3, 381–386. doi: 10.5194/isprs- annals-V-3-2020-381-2020
Hill, E. A., Carr, J. R., & Stokes, C. R. (2017). A Review of Recent Changes in Major Marine-Terminating Outlet Glaciers in Northern Greenland. Frontiers in Earth Science, 4, 111. doi: 10.3389/feart.2016.00111
Hussien, K., Kebede, A., Mekuriaw, A., Beza, S. A., & Erena, S. H. (2023). Spatiotemporal trends of NDVI and its response to climate variability in the Abbay River Basin, Ethiopia. Heliyon, 9(3), e14113. doi: 10.1016/j.he- liyon.2023.e14113
Juliev, M., Pulatov, A., Fuchs, S., & Hübl, J. (2019). Analysis of Land Use Land Cover Change Detection of Bostanlik District, Uzbekistan. Polish Journal of Environmental Studies, 28(5), 3235–3242. doi: 10.15244/pjoes/94216
Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H., & Phillips, M. (2019). Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps. The Cryosphere, 13(7), 1925–1941. doi: 10.5194/tc-13-1925-2019
Keshri, A. K., Shukla, A., & Gupta, R. P. (2009). ASTER ratio indices for supraglacial terrain mapping. International Journal of Remote Sensing, 30(2), 519–524. doi: 10.1080/01431160802385459
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. doi: 10.2307/1907187
Mohammadi, B., Pilesjö, P., & Duan, Z. (2023). The superiority of the Adjusted Normalized Difference Snow Index (ANDSI) for mapping glaciers using Sentinel-2 multispectral satellite imagery. GIScience & Remote Sensing, 60(1), 2257978. doi: 10.1080/15481603.2023.2257978
NSIDC. (2024). National Snow and Ice Data Center. Retrived from https://nsidc.org/
Nüsser, M. (2017). Socio-hydrology: A New Perspective on Mountain Waterscapes at the Nexus of Natural and Social Processes. Mountain Research and Development, 37(4), 518–520. doi: 10.1659/MRD-JOURNAL-D-17-00101.1 Parajka, J., Pepe, M., Rampini, A., Rossi, S., & Blöschl, G. (2010). A regional snow-line method for estimating snow cover from MODIS during cloud cover. Journal of Hydrology, 381(3–4), 203–212. doi: 10.1016/j.jhy- drol.2009.11.042
Petrov, M. A., Sabitov, T. Y., Tomashevskaya, I. G., Glazirin, G. E., Chernomorets, S. S., Savernyuk, E. A., Tutubalina, O. V., Petrakov, D. A., Sokolov, L. S., Dokukin, M. D., Mountrakis, G., Ruiz-Villanueva, V., & Stoffel, M. (2017). Glacial lake inventory and lake outburst potential in Uzbekistan. Science of The Total Environment, 592, 228–242. doi: 10.1016/j.scitotenv.2017.03.068
Robson, B. A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P., & Schaffer, N. (2020). Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 250, 112033. doi: 10.1016/j.rse.2020.112033
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. doi: 10.1080/01621459.1968.10480934
Shahgedanova, M., Afzal, M., Severskiy, I., Usmanova, Z., Saidaliyeva, Z., Kapitsa, V., Kasatkin, N., & Dolgikh, S. (2018). Changes in the mountain river discharge in the northern Tien Shan since the mid-20th Century: Results from the analysis of a homogeneous daily streamflow data set from seven catchments. Journal of Hydrology, 564, 1133–1152. doi: 10.1016/j.jhydrol.2018.08.001
Singh, V. P., Singh, P., & Haritashya, U. K. (2011). Encyclopedia of Snow, Ice and Glaciers. Springer Netherlands.
Sood, V., Singh, S., Taloor, A. K., Prashar, S., & Kaur, R. (2020). Monitoring and mapping of snow cover variability using topographically derived NDSI model over north Indian Himalayas during the period 2008–19. Applied Computing and Geosciences, 8, 100040. doi: 10.1016/j.acags.2020.100040
Sorg, A., Kääb, A., Roesch, A., Bigler, C., & Stoffel, M. (2015). Contrasting responses of Central Asian rock glaciers to global warming. Scientific Reports, 5(1), 8228. doi: 10.1038/srep08228
Stoffel, M., & Huggel, C. (2012). Effects of climate change on mass movements in mountain environments. Progress in Physical Geography: Earth and Environment, 36(3), 421–439. doi: 10.1177/0309133312441010
Velicogna, I., & Wahr, J. (2013). Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophysical Research Letters, 40(12), 3055–3063. doi: 10.1002/grl.50527
Wang, H., Yang, R., Li, X., & Cao, S. (2017). Glacier parameter extraction using Landsat 8 images in the eastern Kara- korum. IOP Conference Series: Earth and Environmental Science, 57, 012004. doi: 10.1088/1755- 1315/57/1/012004
Worni, R., Huggel, C., Clague, J. J., Schaub, Y., & Stoffel, M. (2014). Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomorphology, 224, 161–176. doi: 10.1016/j.geomorph.2014.06.031
Xiong, Q., Wang, Y., Liu, D., Ye, S., Du, Z., Liu, W., Huang, J., Su, W., Zhu, D., Yao, X., & Zhang, X. (2020). A Cloud Detection Approach Based on Hybrid Multispectral Features with Dynamic Thresholds for GF-1 Remote Sensing Images. Remote Sensing, 12(3), 450. doi: 10.3390/rs12030450
Zhang, G., Yao, T., Xie, H., Kang, S., & Lei, Y. (2013). Increased mass over the Tibetan Plateau: From lakes or glaciers?. Geophysical Research Letters, 40(10), 2125–2130. doi: 10.1002/grl.50462
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Bokhir Alikhanov, Bakhtiyor Pulatov, Luqmon Samiev
This work is licensed under a Creative Commons Attribution 4.0 International License.