Monitoring Mining Impact for Geosites Using Time Series NDVI and Run-off in the Eastern Part of Southern Java Mountains, Indonesia
DOI:
https://doi.org/10.23917/forgeo.v38i2.2996Keywords:
Time Series, NDVI, Run Off, Geosite, Google Earth EngineAbstract
Several geosites in the Eastern Part of the Southern Mountains of Java which are currently being mined are important geosites because they have recorded tectonic processes in the tertiary period. However, mining activities without environmental monitoring could be lead loss of rock outcrops and alteration of mineralscontained in the geosite. This study aims to monitor the vegetation index and run off in karst geosites and gold mined hills. We used Sentinel 2A Imagery on the Google Earth Engine (GEE) to get the vegetation index (NDVI) and run off values temporally. The Sentinel 2A data acquisition pro-cess in both 2018 and 2022 was carried out on the Google Earth Engine with specific steps consisting import data from cloud collection, cloud masking, and customing date acquistion. The results show that there has been a decrease in the vegetation index in the period 2018-2022 which is indicated by the decrease in the vegetation index value in the mined area. Another impact found is that there has been an increase in the run-off value in 2022 in both the Karst Puger Hills and the Tumpang Pitu Hills. The NDVI pattern on mined geosites has also changed significantly due to increasingly intense mining activities. The NDVI fluctuation pattern in the Karst Hills in 2018-2020 ranges from 0.41 to 0.74, while in 2021-2022 the fluctuation pattern is only in the range 0.05 to 0.4, respectively. The NDVI fluctuation pattern in the Tumpang Pitu Gold Hills in 2018-2019 is in the range 0.6 to 0.8, while in 2020-2022 it is in the range 0.38 to 0.52, respectively. Google Earth Engine is able to map the vegeta-tion index more efficiently by using a time series approach. These advancement is different compare to previous studies, where our study shows rapid acquisition during pre-processing, performing NDVI with rapid temporal analysis, and shows numerous degraded land in southern java mountains. There-fore, it can be concluded that there has been a decrease in the vegetation index and an increase in run off which can threaten the rock outcrop on the geosite. Furthermore, this study suggest that GEE should be considered as a main tool to identified degraded land, particularly for geosite conservation.
Downloads
References
Ahmadi, M., Derafshi, K., Mokhtari, D., Khodadadi, M., & Najafi, E. (2022). Geodiversity Assessments and Geoconser-vation in the Northwest of Zagros Mountain Range, Iran: Grid and Fuzzy Method Analysis. Geoheritage, 14(4), 1-16.
Aiuppa, A., Bani, P., Moussallam, Y., Di Napoli, R., Allard, P., Gunawan, H., ... & Tamburello, G. (2015). First determi-nation of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia). Journal of Volcano-logy and Geothermal Research, 304, 206-213. doi: 10.1016/j.jvolgeores.2015.09.008
Avelar, S., & Tokarczyk, P. (2014). Analysis of land use and land cover change in a coastal area of Rio de Janeiro using high-resolution remotely sensed data. Journal of Applied Remote Sensing, 8(1), 083631. doi: 10.1117/1.JRS.8.083631
Ballesteros, D., Caldevilla, P., Vila, R., Barros, X. C., Rodríguez-Rodríguez, L., García-Ávila, M., ... & Alemparte, M. (2022). A GIS-supported Multidisciplinary Database for the Management of UNESCOGlobal Geoparks: the Courel Mountains Geopark (Spain). Geoheritage, 14(2), 1-34.
Briggs, A., Dowling, R., & Newsome, D. (2021). Geoparks–learnings from Australia. Journal of Tourism Futures, 9(3), 351-365.
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote sensing of Environment, 91(3-4), 332-344.
Dede, M., Pramulatsih, G. P., Widiawaty, M. A., Ramadhan, Y. R. R., & Ati, A. (2019). Dinamika suhu permukaan dan kerapatan vegetasi di Kota Cirebon. Jurnal Meteorologi Klimatologi dan Geofisika, 6(1), 23-31.
Demir, S. (2023). Identification of burned areas using different threshold values of NDVI with Sentinel-2 satellite images on Google Earth Engine. Turkish Journal of Remote Sensing and GIS, 4(2), 262-275.
Demir, S., & Dursun, İ. (2023). Determining burned areas using different threshold values of NDVI with Sentinel-2 satel-lite images on GEE platform: A case study of Muğla province. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 7(2), 117-130.
Demir, S., & Dursun, İ. (2024). Assessment of pre-and post-fire erosion using the RUSLE equation in a watershed af-fected by the forest fire on Google Earth Engine: the study of Manavgat River Basin. Natural Hazards, 1-29.
Fabre, S., Gimenez, R., Elger, A., & Rivière, T. (2020). Unsupervised monitoring vegetation after the closure of an ore processing site with multi-temporal optical remote sensing. Sensors, 20(17), 4800. doi: 10.3390/s20174800
Fu, H., Fu, B., Shi, P., & Zheng, Y. (2021). International geological significance of the potential Al-Medina volcanic UNESCO Global Geopark Project in Saudi Arabia revealed from multi-satellite remote sensing data. Heritage Science, 9(1), 1-10.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27. doi: 10.1016/j.rse.2017.06.031
Herrera-Franco, G., Apolo-Masache, B., Escandón-Panchana, P., Jácome-Francis, K., Morante-Carballo, F., Mata-Perelló, J., & Carrión-Mero, P. (2022). Perception of the Geological-Mining Heritage to Promote Geotourism in Guayaquil, Ecuador. Geosciences, 12(9), 322. doi: 10.3390/geosciences12090322
Hoang, Y. C., Yoshida, K., Tung, N. T., Danh, P. N., Ba, N., Hung, T. M. D., ... & Quy, N. T. M. (2018). Geological values of lava caves in Krongno volcano geopark, Dak Nong, Vietnam. Vietnam Journal of Earth Sciences, 40(4), 299-319. doi: 10.15625/0866-7187/40/4/13101
Hu, Y., & Dong, Y. (2018). An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS journal of photogrammetry and re-mote sensing, 146, 347-359. doi: 10.1016/j.isprsjprs.2018.10.008
Jankowski, P., Najwer, A., Zwoliński, Z., & Niesterowicz, J. (2020). Geodiversity assessment with crowdsourced data and spatial multicriteria analysis. ISPRS International Journal of Geo-Information, 9(12), 716. doi: 10.3390/ijgi9120716
Jia, Z., Wu, F., & Hou, D. (2023). Geodiversity, Geotourism, Geoconservation, and Sustainable Development in Lon-gyan Aspiring Geopark (China). Geoheritage, 15(1), 1-13.
Juanda, E. T., Martono, D. N., & Saria, L. (2021). Analysis vegetation change on coal mine reclamation using Norma-lized Difference Vegetation Index (NDVI). In IOP Conference Series: Earth and Environmental Science, 716, 012035. doi: 10.1088/1755-1315/716/1/012035
Julianto, F. D., Putri, D. P. D., & Safi’i, H. H. (2020). Analisis Perubahan Vegetasi dengan Data Sentinel-2 menggunakan Google Earth Engine (Studi Kasus Provinsi Daerah Istimewa Yogyakarta). Jurnal Penginderaan Jauh Indone-sia, 2(2), 13-18.
Kariuki, R. W., Munishi, L. K., Courtney-Mustaphi, C. J., Capitani, C., Shoemaker, A., Lane, P. J., & Marchant, R. (2021). Integrating stakeholders’ perspectives and spatial modelling to develop scenarios of future land use and land cover change in northern Tanzania. PloS One, 16(2), e0245516. doi: 10.1371/journal.pone.0245516
Kimijima, S., Sakakibara, M., Nagai, M., & Gafur, N. A. (2021). Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery. International Jour-nal of Environmental Research and Public Health, 18(18), 9441. doi: 10.3390/ijerph18189441
Kuchler, A. W. (1967). Vegetation Mapping. New York: Ronald Press Co.
Lei, S., Ren, L., & Bian, Z. (2016). Time–space characterization of vegetation in a semiarid mining area using empirical orthogonal function decomposition of MODIS NDVI time series. Environmental Earth Sciences, 75, 1-11. doi: 10.1007/s12665-015-5122-z
Leman, N., Ramli, M. F., & Khirotdin, R. P. K. (2016). GIS-based integrated evaluation of environmentally sensitive areas (ESAs) for land use planning in Langkawi, Malaysia. Ecological indicators, 61, 293-308. doi: 10.1016/j.ecolind.2015.09.029
Li, S., Sun, S., Yang, X., Sun, W., & Wu, Z. (2022). Detrital zircon U-Pb age perspective on the sediment provenance and its geological significance of sandstones in the Lamandau region, SW Borneo, Indonesia. Journal of Ocea-nology and Limnology, 40(2), 496-514.
Libassi, M. (2022). Gold conflict and contested conduct: Large-and small-scale mining subjectivities in Indonesia. Geoforum, 148, 103648. doi : 10.1016/j.geoforum.2022.10.005
Lunt, P. (2019). The origin of the East Java Sea basins deduced from sequence stratigraphy. Marine and Petroleum Geology, 105, 17-31. doi: 10.1016/j.marpetgeo.2019.03.038
Luo, X. (2015). An Integrated WebGIS-Based Mangement Platform of Geopark. The Open Construction & Building Technology Journal, 9(1).
Lupi, M., De Gori, P., Valoroso, L., Baccheschi, P., Minetto, R., & Mazzini, A. (2022). Northward migration of the Java-nese volcanic arc along thrust faults. Earth and Planetary Science Letters, 577, 117258. doi: 10.1016/j.epsl.2021.117258
Muslim, D., Zakaria, Z., Rachmat, H., Iqbal, P., Muslim, G. O., Sadewo, M. S., & Muslim, F. N. (2022). Identification of Geodiversity and Geosite Assessment around Geohazard Area of Suoh Aspiring Geopark in West Lampung, Sumatra, Indonesia. Resources, 11(11), 104. doi: 10.3390/resources11110104
Muzaky, H., & Jaelani, L. M. (2019). Analisis Pengaruh Tutupan Lahan terhadap Distribusi Suhu Permukaan: Kajian Urban Heat Island di Jakarta, Bandung dan Surabaya. Jurnal Penginderaan Jauh Indonesia, 1(2), 45-51.
Nakada, S., Maeno, F., Yoshimoto, M., Hokanishi, N., Shimano, T., Zaennudin, A., & Iguchi, M. (2019). Eruption sce-narios of active volcanoes in Indonesia. Journal of Disaster Research, 14(1), 40-50. doi: 10.20965/jdr.2019.p0040
Nazaruddin, D. A. (2017). Systematic studies of geoheritage in Jeli district, Kelantan, Malaysia. Geoheritage, 9(1), 19-33.
Negara, L. P., Lestari, D., Kurnianto, F. A., Ikhsan, F. A., Apriyanto, B., & Nurdin, E. A. (2021). An overview of deposi-tional environment between the mountains of southern java and the fold mountain of north java. In IOP Con-ference Series: Earth and Environmental Science, 683(1), 012005. doi: 10.1088/1755-1315/683/1/012005
Othman, H., Abdul Rasam, A. R., & Jaini, N. (2020). GeoPark Management and GIS: Geospatial Tree Information In-ventory System. In Charting the Sustainable Future of ASEAN in Science and Technology (pp. 553-567). Sprin-ger, Singapore.
Portal, C. (2018). Geodiversity and Anthropocene Landscapes: New Perceptions and Aesthetic Renewal of Some Euro-pean “Coalscapes”. Environment, Space, Place, 10(1), 89-110. doi: 10.5749/envispacplac.10.1.0089
Putri, R. A., & Supriatna, S. (2021). Land cover change modeling to identify critical land in the Ciletuh Geopark tourism area, Palabuhanratu, Sukabumi Regency. In IOP Conference Series: Earth and Environmental Science, 623(1), 012081. doi: 10.1088/1755-1315/623/1/012081
Reverte, F. C., Garcia, M. D. G. M., Brilha, J., & Pellejero, A. U. (2020). Assessment of impacts on ecosystem services provided by geodiversity in highly urbanised areas: A case study of the Taubaté Basin, Brazil. Environmental Science & Policy, 112, 91-106. doi: 10.1016/j.envsci.2020.05.015
Santos, D. S., Mansur, K. L., & Seoane, J. C. S. (2022). Classification Scheme for Geomorphosites’ GIS Database: Ap-plication to the Proposed Geopark Costões e Lagunas, Rio de Janeiro, Brazil. Geoheritage, 14(3), 1-15.
Sapiie, B., Nugraha, M. A., Wardana, R. K., & Rifiyanto, A. (2017). Fracture Characteristics of Melange Complex Ba-sement in Bantimala Area, South Sulawesi, Indonesia. Indonesian Journal on Geoscience, 4(3), 121-141.
Satyana, A. H. (2014). New Consideration on The Cretaceous Subduction Zone of Ciletuh-Luk Ulo-Bayat-Meratus: Implications for Southeast Sundaland Petroleum Geology. Retrieved from https://geologi.fitb.itb.ac.id/wp-content/uploads/sites/63/2021/09/IPA14-G-129.pdf
Scarsi, M., Crispini, L., Malatesta, C., Spagnolo, C., & Capponi, G. (2019). Geological map of a treasure chest of geodiversity: the Lavagnina Lakes Area (Alessandria, Italy). Geosciences, 9(5), 229. doi: 10.3390/geosciences9050229
Shrestha, A., Liang, D., Qu, Y., Ghimirey, Y., Panthi, S., Innes, J. L., & Wang, G. (2021). Mapping distribution and iden-tifying gaps in protected area coverage of vulnerable clouded leopard (Neofelis nebulosa) in Nepal: Implica-tions for conservation management. International Journal of Geoheritage and Parks, 9(4), 441-449. Doi: 10.1016/j.ijgeop.2021.11.001
Shui, W., & Xu, G. (2016). Analysis of the influential factors for changes to land use in China’s Xingwen Global Geo-park against a tourism development background. Geocarto International, 31(1), 22-41.
Singh, B. V. R., Sen, A., Verma, L. M., Mishra, R., & Kumar, V. (2021). Assessment of potential and limitation of Jhamarkotra area: A perspective of geoheritage, geo park and geotourism. International Journal of Geoheri-tage and Parks, 9(2), 157-171. doi: 10.1016/j.ijgeop.2021.04.001
Smyth, H. R., Hall, R., & Nichols, G. J. (2008). Cenozoic volcanic arc history of East Java, Indonesia: The stratigraphic record of eruptions on an active continental margin. Special Papers-Geological Society of America, 436, 199.
Smyth, H. R., Hamilton, P. J., Hall, R., & Kinny, P. D. (2007). The deep crust beneath island arcs: inherited zircons re-veal a Gondwana continental fragment beneath East Java, Indonesia. Earth and Planetary Science Letters, 258(1-2), 269-282. doi: 10.1016/j.epsl.2007.03.044
Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440. doi: 10.1016/j.rse.2004.02.003
Sun, X., Yuan, L., Liu, M., Liang, S., Li, D., & Liu, L. (2022). Quantitative estimation for the impact of mining activities on vegetation phenology and identifying its controlling factors from Sentinel-2 time series. International Jour-nal of Applied Earth Observation and Geoinformation, 111, 102814. doi: 10.1016/j.jag.2022.102814
Sunarta, I. N., & Saifulloh, M. (2022). Coastal Tourism: Impact For Built-Up Area Growth And Correlation To Vege-tation And Water Indices Derived From Sentinel-2 Remote Sensing Imagery. Geo Journal of Tourism and Geo-sites, 41(2), 509-516. doi: 10.30892/gtg.41223-857
Tang, Y., & Liang, Y. (2022). Staged authenticity and nostalgia of mining tourists in the Jiayang mining Geo-park of China. Journal of Tourism and Cultural Change, 1-19. doi: 10.1080/14766825.2022.2090259
Tian, F., Wang, Y., Fensholt, R., Wang, K., Zhang, L., & Huang, Y. (2013). Mapping and evaluation of NDVI trends from synthetic time series obtained by blending Landsat and MODIS data around a coalfield on the Loess Pla-teau. Remote Sensing, 5(9), 4255-4279. doi: 10.3390/rs5094255
Ummah, K., Sukiyah, E., Rosana, M. F., & Alam, B. Y. C. S. (2018). Remote sensing identification of possible meteorite impact crater on Ciletuh, West Jawa. International Journal on Advance Science Engineering Information Technology, 8(0), 5.
Utami, S. R., Mees, F., Dumon, M., Qafoku, N. P., & Van Ranst, E. (2019). Charge fingerprint in relation to mineralogi-cal composition of Quaternary volcanic ash along a climatic gradient on Java Island, Indonesia. Catena, 172, 547-557.
Wu, C., Zhang, Z., Rosana, M. F., Shu, Q., Zheng, C., Xu, J., ... & Jin, Z. (2019). The continental crust contributes to magmatic hydrothermal gold deposit in Ciemas, West Java, Indonesia: Constraints from Hf isotopes of zircons and in situ Pb isotopes of sulfides. Ore Geology Reviews, 112, 103010.
Xulu, S., Phungula, P. T., Mbatha, N., & Moyo, I. (2021). Multi-Year Mapping of Disturbance and Reclamation Pat-terns over Tronox’s Hillendale Mine, South Africa with DBEST and Google Earth Engine. Land, 10(7), 760.
Yang, Z., Shen, Y., Li, J., Jiang, H., & Zhao, L. (2021). Unsupervised monitoring of vegetation in a surface coal mining region based on NDVI time series. Environmental Science and Pollution Research, 1-10. doi: 10.1007/s11356-021-17696-9
Yongli, W. A. N. G., & Weihong, D. (2017). Application of ZY1-02C remote sensing data to the investigation of geo-parks: taking Jixian County, Tianjin City for example. Remote Sensing for Natural Resources, 29(1), 95-100.
Zhang, X., Estoque, R. C., & Murayama, Y. (2017). An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable cities and society, 32, 557-568. doi: 10.1016/j.scs.2017.05.005
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Fahmi Arif Kurnianto, Elan Artono Nurdin, Era Iswara Pangastuti, Syintia Bella
This work is licensed under a Creative Commons Attribution 4.0 International License.