Enhancing Digital Elevation Model Accuracy for Flood Modelling – A Case Study of the Ciberes River in Cirebon, Indonesia
DOI:
https://doi.org/10.23917/forgeo.v38i1.1839Keywords:
Detailing DEM, Digital Elevation Model, DEM Filtering, Digital Surface Model, Slope Based FilteringAbstract
Topographic conditions represented by the Digital Elevation Model (DEM) are essential in flood inundation models. The DEM, which is categorised as a Digital Surface Model (DSM) stores the height information, besides the ground and non-ground elevation required for preprocessing before being employed in hydrologic applications, particularly in relation to flood modelling by removing non-ground elevation along the floodplain and river channels. The improvement in the accuracy of flood inundation modelling is crucial in reducing the impact of flood disasters. This study aims to compare the accuracy level of the DEM based on TerraSAR-X data with the filtering process using slope-based filtering and combining the cross-sectional river profile from the field measurement with the filtered DEM. The result confirms that the accuracy of the DEM product is improved via filtering to remove non-ground elevations, and there is a significant improvement in accuracy by means of fused river profile information for the filtered DEM. The results of adding river information to the DEM could provide a representation closer to the cross-sectional profile of the river based on field measurements within the accuracy level Mean Absolute Error 2.51 m, 2.72 m, and 1.91 m in the left overbank, right overbank and centre of the river, respectively. The performance results of the 2- dimensional flood hydrodynamic modelling using HEC-RAS derived from the DEM before filtering, after filtering, and the addition of river information show increasing accuracy in flood depth at each stage of the DEM processing. There is an improvement in accuracy in flood depth of approximately 11.67% using the filtered DEM, besides an increase in accuracy in flood depth by 24.98% utilising the filtered DEM with added river channel information.
Downloads
References
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171–182. doi: 10.1002/2016EF000485
Ardıçlıoğlu, M., & Kuriqi, A. (2019). Calibration of channel roughness in intermittent rivers using HEC-RAS model: case of Sarimsakli creek, Turkey. SN Applied Sciences, 1(9), 1–9. doi: 10.1007/s42452-019-1141-9.
BNPB. (2022). Indeks Risiko Bencana Indonesia (IRBI) Tahun 2022 (Vol. 01). https://bpbd.sukabumikota.go.id/buku-irbi-2022/.
BNPB. (2023). Data Kejadian Bencana Banjir. Badan Nasional Penanggulangan Bencana. Retrived From https://dibi.bnpb.go.id.
Carra, K. A., and Curtin, M. (2017). Posttraumatic Growth Among Australian Farming Women After a Flood After a Flood. Journal of Loss and Trauma, 22, 453–463. doi: 10.1080/15325024.2017.1310506
Casas, A., Benito, G., Thorndycraft, V. R., & Rico, M. (2006). The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms, 31, 444–456. doi : 10.1002/esp.1278.
Chen, C., Guo, J., Wu, H., Li, Y., & Shi, B. (2021). Performance comparison of filtering algorithms for high-density airborne lidar point clouds over complex landscapes. Remote Sensing, 13(14). doi: 10.3390/rs13142663.
Chymyrov, A. (2021). Comparison of different DEMs for hydrological studies in the mountainous areas. Egyptian Journal of Remote Sensing and Space Science, 24(3), 587–594. doi: 10.1016/j.ejrs.2021.08.001.
Cloke, H. L. (2013). Modelling climate impact on floods with ensemble climate projections. Quarterly Journal of the Royal Meteorological Society, 139(671), 282–297. doi: 10.1002/qj.1998.
Danoedoro, P., Gupita, D. D., Afwani, M. Z., Hadi, H. A., & Mahendra, W. K. (2022). Preliminary Study on the Use of Digital Surface Models for Estimating Vegetation Cover Density in Mountainous Area. In-donesian Journal of Geography, 54(3), 333–343. doi: 10.22146/ijg.60659.
Elkhrachy, I. (2017). Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models : A case study of Najran city , Saudi Arabia. Ain Shams Engineering Journal, 2, 1–11. doi: 10.1016/j.asej.2017.01.007.
Fernandez, A., Black, J., Jones, M., Wilson, L., & Salvador-carulla, L. (2015). Flooding and Mental Health : A Systematic Mapping Review. PLOS ONE, 10, 1–20. doi : 10.1371/journal.pone.0119929.
Gichamo, T. Z., Popescu, I., Jonoski, A., & Solomatine, D. (2012). River cross-section extraction from the ASTER global DEM for flood modeling. Environmental Modelling and Software, 31, 37–46. doi: 10.1016/j.envsoft.2011.12.003.
Harto, S. B. (1993). Analisis Hidrologi (1st ed.). Penerbit Gramedia Pustaka Utama.
Hawker, L., Bates, P., Jeffrey, N., & Rougier, J. (2018). Perspectives on Digital Elevation Model (DEM) Simu-lation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM. Frontiers in Earth Science, 6, 1–9. doi: 10.3389/feart.2018.00233.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816–821. doi: 10.1038/nclimate1911.
Ihsan, H. M., & Sahid, S. S. (2021). Vertikal Accuracy Assessment On Sentinel-1, Alos Palsar, And Demnas In The Ciater Basin. Jurnal Geografi Gea, 21(1), 16–25. doi: 10.17509/gea.v21i1.29931.
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., & Sherstyukov, B. (2014). Flood risk and climate change: global and regional perspec-tives. Hydrological Sciences Journal, 59(1), 1–28. doi: 10.1080/02626667.2013.857411.
Kuriqi, A., Koçileri, G., & Ardiçlioğlu, M. (2020). Potential of Meyer-Peter and Müller approach for estima-tion of bed-load sediment transport under different hydraulic regimes. Modeling Earth Systems and Environment, 6(1), 129–137. doi: 10.1007/s40808-019-00665-0.
Lee, S., Wolberg, G., & Shin, S. Y. (1997). Scattered data interpolation with multilevel B-Splines. IEEE Trans-actions on Visualization and Computer Graphics, 3(1), 228 - 244. doi: 10.1109/2945.620490.
Meyerink, A, M. . (1970). Chapter VII.3 ITC Textbook of Photo-Interpretation in hydrology, A Geomorpholoi-cal Approach (Netherlands (ed.)). ITC. Retrived From https://books.google.co.id/books/about/Photointerpretation _in_Hydroogy.html?id=a-owHAAACAAJ&redir_esc=y
Moghim, S., Gharehtoragh, M. A., & Safaie, A. (2023). Performance of the flood models in different topogra-phies. Journal of Hydrology, 620(PA), 129446. doi: 10.1016/j.jhydrol.2023.129446.
Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Eleva-tion Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596. doi: 10.1016/j.jhydrol.2021.126088.
Natakusumah, D. K., Hatmoko, W., & Harlan, D. (2011). Prosedur Umum Perhitungan Hidrograf Satuan Sin-tetis dengan Cara ITB dan Beberapa Contoh Penerapannya. Jurnal Teknik Sipil, 18, 251–291. doi : 10.5614/jts.2011.18.3.6S
Prasad, R. N., & Pani, P. (2017). Geo-hydrological analysis and sub watershed prioritization for flash flood risk using weighted sum model and Snyder ’ s synthetic unit hydrograph. Modeling Earth Systems and Environment, 3, 1491–1502. doi : 10.1007/s40808-017-0354-4.
Purwandari, T., Hadi, M. P., & Kingma, N. C. (2011). a Gis Modelling Approach for Flood Hazard Assess-ment in Part of Surakarta City, Indonesia. Indonesian Journal of Geography, 43, 63–80.
Sahid, Arifati, A., Nurrohman, A. W., Ihsan, H. M., & Arifin, M. Z. (2017). Vertical Accuracy Assessment for SRTM V.4 and ATER GLOBAL Digital Elevation Models V.2: A Case Study of Padang Regency, West Sumatera. Seminar Nasional Geomatika 2017, 399–408.
Santos, F. M. dos, Lollo, J. A. de, & Mauad, F. F. (2017). Estimating the surface runoff from natural envi-ronment data. Management of Environment Quality: An International Journal, 28, 515–531. doi: 10.1108/MEQ-07-2015-0137
Sarido, L., Hardwinarto, S., & Aipassa, M. I. (2008). Debit Banjir Rancangan dan Kawasan Genangan. Jurnal KehutananTropika Humida, 1, 35–48.
Sarkar, D., & Mondal, P. (2020). Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Applied Water Science, 10(1), 1–13. doi: 10.1007/s13201-019-1102-x
Sithole, G. (2001). Filtering of laser altimetry data using a slope adaptive filter. … Archives of Photogramme-try Remote Sensing and …, XXXIV, 22–24. Retrived From http://lr.tudelft.nl/fileadmin/Faculteit/ LR/Organisatie/Afdelingenen_Leerstoelen/Afdeling_RS/Optical_and_Laser_Remote_Sensing/Publications/Papers/018-2001 /doc/sithole_annapolis.pdf
Snyder, F. F. (1938). Synthetic Unit Hydrographs. Transactions American Geophysical Union, 19, 447–454. doi: 10.1029/TR019i001 p00447
Stephenson, J., Vaganay, M., Cameron, R., & Joseph, P. (2014). The long-term health impacts of repeated flood events. WIT Transactions on Ecology and The Environment, 184, 201–212. doi: 10.2495/FRIAR140171
Tran, T. N. D., Nguyen, B. Q., Vo, N. D., Le, M. H., Nguyen, Q. D., Lakshmi, V., & Bolten, J. D. (2023). Quantification of global Digital Elevation Model (DEM) – A case study of the newly released NASADEM for a river basin in Central Vietnam. Journal of Hydrology: Regional Studies, 45(1), 101282. doi: 10.1016/j.ejrh.2022.101282
Vashist, K., & Singh, K. K. (2023). HEC-RAS 2D modeling for flood inundation mapping: a case study of the Krishna River Basin. Water Practice and Technology, 18(4), 831–844. doi: 10.2166/wpt.2023.048
Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, XXXIII(Part B3/2), 935–942. doi : 10.1016/S0924-2716(98)00009-4.
Vosselman, G., & Maas, H. (2001). Adjustment and filtering of raw laser altimetry data. Proceedings OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, 62–72.
Wilkerson, J., & Merwade, V. (2010). Determination of Unit Hydrograph Parameters for Indiana Watersheds. Joint Transportation Research Program, September, 114. doi: 10.5703/1288284314266.
Wohl, E. (2014). Rivers in The Landscape Science and Management (1st ed.). JohnWiley & Sons, Ltd.
Xafoulis, N., Kontos, Y., Farsirotou, E., Kotsopoulos, S., Perifanos, K., Alamanis, N., Dedousis, D., & Katsi-farakis, K. (2023). Evaluation of Various Resolution DEMs in Flood Risk Assessment and Practical Rules for Flood Mapping in Data-Scarce Geospatial Areas: A Case Study in Thessaly, Greece. Hydrol-ogy, 10(4). doi: 10.3390/hydrology10040091.
Zahidi, I., Yusuf, B., Cope, M., Ahmed Mohamed, T., & Mohd Shafri, H. Z. (2017). Effects of depth-varying vegetation roughness in two-dimensional hydrodynamic modelling. International Journal of River Ba-sin Management, 16(4), 413-426. doi: 10.1080/15715124.2017.1394313.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Sahid
This work is licensed under a Creative Commons Attribution 4.0 International License.