Indonesia Climate Change: Observations and Future Projections in IPCC AR6 WG I and Beyond
DOI:
https://doi.org/10.23917/forgeo.v39i3.12760Keywords:
Indonesia, Future Climate Changes, IPCC, AR6, WGI, ExtremeAbstract
This study aimed to comprehensively review and synthesize results specific to the Indonesian archipelago from the IPCC Sixth Assessment Report (AR6) Working Group I, "The Physical Science Basis." At the heart of the Indo-Pacific maritime continent, Indonesia's climate was undergoing significant anthropogenic alteration owing to complex atmospheric and oceanic processes. The review distilled pertinent observations, trends, and projections, while also offering a detailed analysis of the underlying physical science. The observed changes included a significant rise in tropospheric ozone since the 1990s, a persistent trend towards a La Niña-like state in the Pacific Walker Circulation, accelerated warming of surrounding tropical oceans, and increased multi-decadal variability in the Indonesian Throughflow. The regional water cycle was also intensifying, marked by an increase in rainfall extremes which occurred against a background of powerful climate variability modes such as El Niño-Southern Oscillation and Indian Ocean Dipole, contributing to severe events such as the 2015-2016 drought and fire crisis. Future projections assessed with high confidence pointed towards a decrease in annual mean precipitation with particularly severe drying of up to 30% projected for the summer months over key islands. These multifaceted changes have profound implications for Indonesia's environmental stability, socioeconomic development, and population well-being, underscoring the critical urgency for science-informed, targeted climate adaptation and mitigation strategies.
Downloads
References
Ansari, A., Pranesti, A., Telaumbanua, M., Alam, T., Taryono, T., Wulandari, R. A., Nugroho, B. D., & Supriyanta, S. (2023). Evaluating the effect of climate change on rice production in Indonesia using multimodelling approach. Heliyon, 9(9), e19639. doi: 10.1016/j.heliyon.2023.e19639
As-syakur, A. R., Adnyana, I. W. S., Mahendra, M. S., Arthana, I. W., Merit, I. N., Kasa, I. W., Ekayanti, N. W., Nuarsa, I. W., & Sunarta, I. N. (2014). Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). International Journal of Climatology, 34(15), 3825-3839. doi: 10.1002/joc.3939
Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). (2024a). BMKG 2024 Jadi Tahun Terpanas Sepanjang Se-jarah: Perubahan Iklim Kian Membahayakan Kesehatan Publik. Retrieved From https://www.bmkg.go.id/siaran-pers/bmkg-2024-jadi-tahun-terpanas-sepanjang-sejarah-perubahan-iklim-kian-membahayakan-kesehatan-publik
Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). (2024b). Climate Outlook 2025: ENSO dan IOD Netral, Tid-ak Ada Anomali Iklim. Retrieved From https://www.bmkg.go.id/berita/utama/climate-outlook-2025-enso-dan-iod-netral-tidak-ada-anomali-iklim
Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). (2024c). Catatan Iklim dan Kualitas Udara Indonesia 2024. Retrieved From https://iklim.bmkg.go.id/bmkgadmin/storage/buletin/Catatan%20Iklim%20dan%20Kualitas%20 Udara%202024%20BMKG.pdf
Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). (2024d). BMKG Hadirkan Produksi Informasi Kualitas Udara. Retrieved From https://pressrelease.kontan.co.id/news/bmkg-hadirkan-produk-informasi-kualitas-udara
Cooper, O. R., Schultz, M. G., Schröder, S. (2020). Multi-decadal surface ozone trends at globally distributed remote lo-cations. Elem Sci Anth, 8(23). doi: 10.1525/elementa.420
Dewi, R. G., Kobashi, T., Matsuoka, Y., Gomi, K., Ehara, T., Kainuma, M., & Fujino, J. (2010). Low Carbon Society Scenario toward 2050: Indonesia Energy Sector. Global Partnership: Nairobi, Kenya.
Dong, C., Noyelle, R., Messori, G. (2024). Indo-Pacific regional extremes aggravated by changes in tropical weather pat-terns. Nature Geoscience, 17, 979–986. doi: 10.1038/s41561-024-01537-8
Feng, M., Zhang, N., Liu, Q. (2018). The Indonesian throughflow, its variability and centennial change. Geosciences Let-ters, 5(3). doi: 10.1186/s40562-018-0102-2
Field, R. D., van der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, D., Jethva, H., ... & Worden, J. R. (2016). Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño–induced drought. Proceed-ings of the National Academy of Sciences, 113(33), 9204-9209. doi: 10.1073/pnas.1524888113
Fox-Kemper, B. (2021). Ch. 9 Ocean, Cryosphere and Sea Level Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, et al. (eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth As-sessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, doi:10.1017/9781009157896.011.
Gaborit, P. (2022). Climate adaptation to Multi-Hazard climate related risks in ten Indonesian Cities: Ambitions and challenges. Climate Risk Management, 37, 100453. doi: 10.1016/j.crm.2022.100453
Gaudel, A. (2020). Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Science Advances, 6, eaba8272. doi:10.1126/sciadv.aba8272
Guo, Y., Li, Y., & Wang, F. (2023). Destinations and Pathways of the Indonesian Throughflow Water in the Indian Ocean. Journal of Climate, 36, 3717–3735. doi: 10.1175/JCLI-D-22-0631.1
Gutiérrez, J. M., Jones, R. G., Narisma, G. T., et al. (2021). Atlas. In V. Masson-Delmotte, P. Zhai, A. Pirani, et al. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1927–2058). Cambridge University Press. doi: 10.1017/9781009157896.021
Hapsari, A. T., Sopaheluwakan, A., Wati, T. (2022). Future changes of extreme rainfall over Java Island based on CORDEX-Southeast Asia. AIP Conference Proceedings, 2468(1), 040003. doi: 10.1063/5.0096696
Hariadi, M. H., van der Schrier, G., Steeneveld, G.-J., Sutanto, S. J., Sutanudjaja, E., Ratri, D. N., Sopaheluwakan, A., & Klein Tank, A. (2024). A high-resolution perspective of extreme rainfall and river flow under extreme climate change in Southeast Asia. Hydrology and Earth System Science, 28, 1935–1956. doi: 10.5194/hess-28-1935-2024
Harjupa, W., & Nakakita, E. (2025). Investigation and future projections of warm rain during the winter monsoon in the Western Java Sea, Indonesia. Frontiers in Climate, 7, 1581382. doi: 10.3389/fclim.2025.1581382
Han, W., Zhang, L., Meehl, G. A., Kido, S., Tozuka, T., Li, Y., et al. (2022). Sea level extremes and compounding marine heatwaves in coastal Indonesia. Nature Communications, 13(1), 6410. doi: 10.1038/s41467-022-34003-3
Hein, L., Spadaro, J. V., Ostro, B., Hammer, M., Sumarga, E., Salmayenti, R., Boer, R., Tata, H., Atmoko, D., & Castañeda, J. P. (2022). The health impacts of Indonesian peatland fires. Environmental Health, 21(1), 62. doi: 10.1186/s12940-022-00872-w
Hendrawan, V. S. A., Mawandha, H. G., Sakti, A. D., Karlina, K., Andika, N., Shahid, S., & Jayadi, R. (2025). Future ex-posure of rainfall and temperature extremes to the most populous island of Indonesia: A projection based on CORDEX simulation. International Journal of Climatology. doi: 10.1002/joc.8537
Hendrawan, V. S. A., Rahardjo, A. P., Mawandha, H. G., Aldrian, E., Muhari, A., & Komori, D. (2025). Review article: Past and future climate–related hazards in Indonesia [Preprint]. EGUsphere. doi: 10.5194/egusphere-2025-584
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth As-sessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (eds.)]. Cambridge University Press. doi:10.1017/9781009157896
IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth As-sessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Lee, H. & Romero, J. (eds.)]. IPCC. doi: 10.59327/IPCC/AR6-9789291691647
Liu, Q. Y., Feng, M., Wang, D., & Wijffels, S. (2015). Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data. Journal of Geophysical Research: Oceans, 120(12), 8270-8282. doi: 10.1002/2015JC011351
Kobashi, T., Jittrapirom, P., Yoshida, T., Hirano, Y., & Yamagata, Y. (2021). SolarEV City concept: Building the next urban power and mobility systems. Environmental Research Letters, 16(2), 430. doi: 10.1088/1748-9326/abd430
Marzuki, M., Ramadhan, R., Yusnaini, H., Juneng, L., Tangang, F., Vonnisa, M., Afdal, A., Abdillah, M. R., & Hidayat, R. (2025). Future projections of extreme precipitation over Indonesia's new capital under climate change sce-nario using CORDEX-SEA regional climate models. Atmospheric Research, 327, 108389. doi: 10.1016/j.atmosres.2025.108389
McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M., Jin, F.-F., & Chikamoto, Y. (2014). Re-cent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888–892. doi: 10.1038/nclimate2330
Murazaki, K., Nakaegawa, T., & Kawase, H. (2025). Reproducibility and trends of extreme climate indices in Japan: in-sights from dynamical JRA-55 downscaling. International Journal of Climatology, 45(10), e8892. doi: 10.1002/joc.8892
Nakaegawa, T., & Murazaki, K. (2022). Historical trends in climate indices relevant to surface air temperature and pre-cipitation in Japan for recent 120 years. International Journal of Climatology, 42(16), 8950-8970. doi: 10.1002/joc.7784
Nosaka, M., Murata, A., Sasaki, H., et al. (2024). Future Changes in Diurnal Cycle of Precipitation Due to Global Warming in Jakarta [Preprint]. Research Square. doi: 10.21203/rs.3.rs-5704029/v1
Nur’utami, M. N., & Hidayat, R. (2016). Influences of IOD and ENSO to Indonesian rainfall variability: role of atmos-phere-ocean interaction in the Indo-Pacific sector. Procedia Environmental Sciences, 33, 196-203. doi: 10.1016/j.proenv.2016.03.070
Sa’adi, Z., Rohmat, F. I. W., Stamataki, I., Shahid, S., Iqbal, Z., Yaseen, Z. M., Alias, N. E., Yusop, Z., Noor, Z. Z., Ke-marau, R. A., & Shiru, M. S. (2025). Assessing the temporal reliability of CMIP6 GCMs in projecting future rainfall for the Majalaya Basin, West Java. Natural Hazards. doi: 10.1007/s11069-025-07592-7
Peng, Q., Xie, S., Huang, R. X., Wang, W., Zu, T., & Wang, D. (2023). Indonesian Throughflow Slowdown under Global Warming: Remote AMOC Effect versus Regional Surface Forcing. Journal of Climate, 36, 1301–1318. doi: 10.1175/JCLI-D-22-0331.1
Pratama, K. R., Radjawane, I. M., & Pratama, B. E. (2025). Effect of El-Niño Southern Oscillation (ENSO) on Heat Transport in The Indonesia Throughflow Passages and Ocean Heat Content in The Banda Sea. ILMU KELAU-TAN: Indonesian Journal of Marine Sciences, 30(1), 92-102. doi:10.14710/ik.ijms.30.1.92-102
Rosanka, S., Franco, B., Clarisse, L., Coheur, P. F., Pozzer, A., Wahner, A., & Taraborrelli, D. (2021). The impact of or-ganic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition. At-mospheric Chemistry and Physics, 21(14), 11257-11288. doi: 10.5194/acp-21-11257-2021
Sasmito, S. D., Basyuni, M., Kridalaksana, A., Saragi-Sasmito, M. F., Lovelock, C. E., & Murdiyarso, D. (2023). Chal-lenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia’s mangroves. Nature Ecology & Evolution, 7(1), 62-70. doi: 10.1038/s41559-022-01926-5
Sen Gupta, A., McGregor, S., Van Sebille, E., Ganachaud, A., Brown, J. N., & Santoso, A. (2016). Future changes to the Indonesian Throughflow and Pacific circulation: The differing role of wind and deep circulation changes. Geo-physical Research Letters, 43(4), 1669-1678. doi: 10.1002/2016GL067757
Seneviratne, S. I., Zhang, X., Adnan, M. (2021) Ch. 11 Weather and climate extreme events in a changing climate. In V. Masson-Delmotte, P. Zhai, A. Pirani, et al. (Eds.), Climate Change 2021: The Physical Science Basis. Contribu-tion of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1513–1766.
Sulistiawati, L.Y. (2024). Climate change related litigation in Indonesia. Commun Earth Environ 5, 522. doi: 10.1038/s43247-024-01684-1
Supari, Tangang, F., Juneng, L., & Aldrian, E. (2017). Observed changes in extreme temperature and precipitation over Indonesia. International Journal of Climatology, 37(4), 1979-1997. https://doi.org/10.1002/joc.4829
Supari, Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A., & Juneng, L. (2020). Projected changes in precipita-tion and temperature over the Indonesian maritime continent under CMIP5 models. International Journal of Climatology, 40(3), 1613-1635.
Tangang, F., Chung, J. X., Juneng, L., Supari, S., Salimun, E., Ngai, S. T., Kumar, P. (2020). Projected future changes in rainfall in Southeast Asia based on CORDEX-SEA multi-model simulations. Climate Dynamics, 55(5–6), 1247–1267. doi: 10.1007/s00382-020-05322-2
Tangang, F. T., Supari, S., Chung, J. X., et al. (2018). Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C. APN Science Bulletin, 8(1), 3-8. https://doi.org/10.30852/sb.2018.436
Xie, M., Wang, J. Z., Zhang, L., Han, W., Wang, C., Fan, H., & Liu, H. (2025). Pattern asymmetry in extreme Indian Ocean dipoles shapes marine heat-height compound extremes around coastal Indonesia. Communications Earth & Environment, 6(1), 229. doi: 10.1038/s43247-025-02184-6
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Tosiyuki NAKAEGAWA, Takuro Kobashi

This work is licensed under a Creative Commons Attribution 4.0 International License.















