Optimized Artificial Intelligence-Based Algorithm for Groundwater Potential Mapping in Trenggalek Regency, Indonesia
DOI:
https://doi.org/10.23917/forgeo.v39i3.12279Keywords:
groundwater potential mapping, machine learning, deep learning, stacking learning, hyperparameter optimizationsAbstract
Groundwater management is essential as more than one-third of the world's population relies on groundwater as a source of freshwater. Exploration of groundwater potential serves as a practical im-plementation to ensure accessibility to freshwater. Therefore, this study developed a machine learning (ML), deep learning (DL), and stacking learning (SL) based model for groundwater potential mapping in Trenggalek Regency, Indonesia. A total of 740 spring locations were used as training data, and 18 variables were considered in the modelling. The eighteen parameters were classified into geological, topographic, land cover, climatological, hydrological, and geophysical factors. We used several algo-rithms, including gradient boosting decision trees (GBDT), random forest (RF), recurrent neural net-work (RNN), convolutional neural network (CNN), SL GBDT-RF, SL CNN-RNN, and SL GBDT-RF-CNN-RNN. This study optimized each basic learning task through hyperparameter fine-tuning using a tree-Parzen structured estimator (TPE) method. Models were evaluated using four metrics: accuracy (Acc), Cohen's kappa (CK), Matthews correlation coefficient (MCC), and receiver operating character-istic (ROC) area under the curve (AUC). Of the seven models generated, SL GBDT-RF achieved the best performance on the test data, with Acc, MCC, CK, and AUC values of 0.957, 0.915, 0.915, and 0.990, respectively. The geological unit parameter has the highest relative contribution rate in all pre-diction models. Based on the best model, the study area is dominated by the low-potential class, accounting for 31.29%. This study contributes to providing a benchmark for the development of groundwater potential prediction using ML, DL, and SL algorithms across various case studies. In addition, this study can be used by concerned stakeholders in sustainable water resource planning, drought disaster management, and the prevention of inappropriate groundwater exploration.
Downloads
References
Abdelouhed, F., Ahmed, A., Abdellah, A., Yassine, B., & Mohammed, I. (2021). Using GIS and remote sensing for the mapping of potential groundwater zones in fractured environments in the CHAOUIA-Morocco area. Remote Sensing Applications: Society and Environment, 23, 100571. doi: 10.1016/j.rsase.2021.100571.
Abijith, D., Saravanan, S., Singh, L., Jennifer, J. J., Saranya, T., & Parthasarathy, K. S. S. (2020). GIS-based multi-criteria analysis for identification of potential groundwater recharge zones-a case study from Ponnaniyaru wa-tershed, Tamil Nadu, India. HydroResearch, 3, 1–14.
Ahmed, Z., Ansari, M. T., Zahir, M., Shakir, U., & Subhan, M. (2020). Hydrogeophysical investigation for groundwater potential through Electrical Resistivity Survey in Islamabad, Pakistan. Journal of Geography and Social Sciences (JGSS), 2(2), 147–163.
Al-Abadi, A. M., Al-Temmeme, A. A., & Al-Ghanimy, M. A. (2016). A GIS-based combining of frequency ratio and in-dex of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustainable Water Resources Management, 2, 265–283.
Alshehri, F., & Mohamed, A. (2023). Investigation of groundwater potential using gravity data in Wadi Fatimah and its surroundings, Western Saudi Arabia. Frontiers in Earth Science, 11, 1225992. doi: 10.3389/feart.2023.1225992.
Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: A corrected feature importance measure. Bioinformatics, 26(10), 1340–1347. doi: 10.1093/bioinformatics/btq134
Andualem, T. G., & Demeke, G. G. (2019). Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies, 24, 100610. doi: 10.1016/j.ejrh.2019.100610.
Arabameri, A., Lee, S., Tiefenbacher, J. P., & Ngo, P. T. (2020). Novel Ensemble of MCDM-Artificial Intelligence Tech-niques for Groundwater-Potential Mapping in Arid and Semi-Arid Regions (Iran). Remote Sensing, 12(3), 490. doi: 10.3390/rs12030490.
Aslam, B., Maqsoom, A., Hassan, U., Maqsoom, S., Alaloul, W. S., Musarat, M. A., Shahzaib, M., & Irfan, M. (2025). Comparison Between Machine Learning and Bivariate Statistical Models for Groundwater Recharge Zones. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 49(1), 853–876. doi: 10.1007/s40996-024-01721-1.
Bai, Z., Liu, Q., & Liu, Y. (2022). Groundwater Potential Mapping in Hubei Region of China Using Machine Learning, Ensemble Learning, Deep Learning and AutoML Methods. Natural Resources Research, 31(5), 2549–2569. doi: 10.1007/s11053-022-10100-4.
Benjmel, K., Amraoui, F., Aydda, A., Tahiri, A., Yousif, M., Pradhan, B., Abdelrahman, K., Fnais, M. S., & Abioui, M. (2022). A multidisciplinary approach for groundwater potential mapping in a fractured semi-arid terrain (Ker-dous Inlier, Western Anti-Atlas, Morocco). Water, 14(10), 1553.
Berhanu, K. G., & Hatiye, S. D. (2020). Identification of groundwater potential zones using proxy data: Case study of Megech Watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28, 100676.
Bi, B., Li, J., Luo, T., Wang, B., Yang, C., & Shen, L. (2025). Positive–Unlabeled Learning-Based Hybrid Models and In-terpretability for Groundwater Potential Mapping in Karst Areas. Water, 17(10). doi: 10.3390/w17101422.
Bora Okay, H., & Özacar, A. A. (2023). A New Vs30 Prediction Strategy Taking Topography, Geology, Terrain and Wa-ter Saturation into Account: Application to Türkiye and California. EGU General Assembly Conference Abs-tracts, EGU-7445.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Chen, T., Zhu, L., Niu, R., Trinder, C. J., Peng, L., & Lei, T. (2020). Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. Journal of Mountain Science, 17(3), 670–685. doi: 10.1007/s11629-019-5839-3.
Chen, W., Li, Y., Tsangaratos, P., Shahabi, H., Ilia, I., Xue, W., & Bian, H. (2020). Groundwater Spring Potential Map-ping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alterna-ting Decision Tree Models. Applied Sciences, 10(2), 425. doi: 10.3390/app10020425.
Chen, Y., Chen, W., Chandra Pal, S., Saha, A., Chowdhuri, I., Adeli, B., Janizadeh, S., Dineva, A. A., Wang, X., & Mosa-vi, A. (2022). Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. Geocarto International, 37(19), 5564–5584. doi: 10.1080/10106049.2021.1920635.
Das, B., Rathore, P., Roy, D., Chakraborty, D., Jatav, R. S., Sethi, D., & Kumar, P. (2022). Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. CATENA, 217, 106485. doi: 10.1016/j.catena.2022.106485.
Demir, S., & Sahin, E. K. (2024). The effectiveness of data pre-processing methods on the performance of machine learning techniques using RF, SVR, Cubist, and SGB: a study on undrained shear strength prediction. Sto-chastic Environmental Research and Risk Assessment.
Echogdali, F. Z., Boutaleb, S., Bendarma, A., Saidi, M. E., Aadraoui, M., Abioui, M., Ouchchen, M., Abdelrahman, K., Fnais, M. S., & Sajinkumar, K. S. (2022). Application of the analytical hierarchy process and geophysical method for groundwater potential mapping in the Tata basin, Morocco. Water, 14(15), 2393.
Esen, H. (2023). Analytical Hierarchy Process Problem Solution. In Analytic Hierarchy Process—Models, Methods, Concepts, and Applications [Working Title]. Retrieved From https://doi.org/10.5772/intechopen.1001072.
Fan, M., Xiao, K., Sun, L., Zhang, S., & Xu, Y. (2022). Automated Hyperparameter Optimization of Gradient Boosting Decision Tree Approach for Gold Mineral Prospectivity Mapping in the Xiong’ershan Area. Minerals, 12(12). https://doi.org/10.3390/min12121621.
Fang, Z., Wang, Y., Peng, L., & Hong, H. (2020). Integration of a convolutional neural network and conventional ma-chine learning classifiers for landslide susceptibility mapping. Computers & Geosciences, 139, 104470. doi: 10.1016/j.cageo.2020.104470.
FAO. (2022). Water withdrawal by source [Data set]. Retrieved From https://api.data.apps.fao.org/api/v2/bigquery?sql_ url=https://data.apps.fao.org/catalog/dataset/945666e6-7803-4621-b8ef-cfd885a84596/resource/4a000a1b-24f0-4328-aab6-b9b525892090/download/query_en.sql.
Ferrouhi, E. M., & Bouabdallaoui, I. (2024). A comparative study of ensemble learning algorithms for high-frequency trading. Scientific African, 24, e02161. https://doi.org/10.1016/j.sciaf.2024.e02161.
Ghiat, I., Mackey, H. R., & Al-Ansari, T. (2021). A Review of Evapotranspiration Measurement Models, Techniques, and Methods for Open and Closed Agricultural Field Applications. Water, 13(18), 2523. doi: 10.3390/w13182523.
Hakim, W. L., Nur, A. S., Rezaie, F., Panahi, M., Lee, C.-W., & Lee, S. (2022). Convolutional neural network and long short-term memory algorithms for groundwater potential mapping in Anseong, South Korea. Journal of Hydro-logy: Regional Studies, 39, 100990. doi: 10.1016/j.ejrh.2022.100990.
Halder, K., Srivastava, A. K., Ghosh, A., Nabik, R., Pan, S., Chatterjee, U., Bisai, D., Pal, S. C., Zeng, W., Ewert, F., Gai-ser, T., Pande, C. B., Islam, A. R. Md. T., Alam, E., & Islam, M. K. (2024). Application of bagging and boosting ensemble machine learning techniques for groundwater potential mapping in a drought-prone agriculture region of eastern India. Environmental Sciences Europe, 36(1), 155. doi: 10.1186/s12302-024-00981-y.
Handayani, L., Wardhana, D. D., Hartanto, P., Delinom, R., Sudaryanto, Bakti, H., & Lubis, R. (2018). Gravity survey of groundwater characterization at Labuan Basin. IOP Conference Series: Earth and Environmental Science, 118, 012015. doi: 10.1088/1755-1315/118/1/012015.
Hasan, Md. M., Rana, M. M. S. P., & Ferdous, M. T. (2025). Prediction of Groundwater Potential Zone Using Machine Learning and Geospatial Approaches for an Industry-Dominated Area in Narayanganj, Bangladesh. Journal of the Indian Society of Remote Sensing, 53, 3635–3651. doi: 10.1007/s12524-025-02177-0
Hossen, S., Uddin, M. S., Ali, Y., & Rana, P. (2025). Integrated analysis of land use and land cover changes and landslide susceptibility: A machine learning approach in Rangamati Sadar, Bangladesh. Natural Hazards, 121(16), 19387–19408. doi: 10.1007/s11069-025-07580-x.
Ishii, A., Yamamoto, A., & Yamanaka, A. (2023). DMC-TPE: tree-structured Parzen estimator-based efficient data as-similation method for phase-field simulation of solid-state sintering. Science and Technology of Advanced Ma-terials: Methods, 3(1), 2239133. doi: 10.1080/27660400.2023.2239133.
Islam, R., Sultana, A., & Tuhin, MD. N. (2024). A comparative analysis of machine learning algorithms with a tree-structured Parzen estimator for liver disease prediction. Healthcare Analytics, 6, 100358. doi: 10.1016/j.health.2024.100358.
Jafari, A., Alesheikh, A. A., Rezaie, F., Panahi, M., Shahsavar, S., Lee, M.-J., & Lee, S. (2023). Enhancing a convolutio-nal neural network model for land subsidence susceptibility mapping using hybrid meta-heuristic algorithms. In-ternational Journal of Coal Geology, 277, 104350. doi: 10.1016/j.coal.2023.104350.
Jamell Ivor Samuels. (2024). One-Hot Encoding and Two-Hot Encoding: An Introduction. Retrieved From https://doi.org/10.13140/RG.2.2.21459.76327.
Ji, J., Zhou, Y., Cheng, Q., Jiang, S., & Liu, S. (2023). Landslide Susceptibility Mapping Based on Deep Learning Algo-rithms Using Information Value Analysis Optimization. Land, 12(6). doi: 10.3390/land12061125.
Jin, B., Liu, S., Zeng, T., Li, Y., Wang, T., Gui, L., Zhao, B., & Yin, K. (2024). Spatio-temporal forecasting of landslide hazard in Chongqing National Transmission Protection Regions, China. International Journal of Digital Earth, 17(1), 2392843. doi: 10.1080/17538947.2024.2392843.
Kamali Maskooni, E., Naghibi, S. A., Hashemi, H., & Berndtsson, R. (2020). Application of advanced machine learning algorithms to assess groundwater potential using remote sensing-derived data. Remote Sensing, 12(17), 2742.
Kaneko, H. (2022). Cross‐validated permutation feature importance considering correlation between features. Analyti-cal Science Advances, 3(9–10), 278–287. doi: 10.1002/ansa.202200018.
Kanwar, M., Pokharel, B., & Lim, S. (2025). A new random forest method for landslide susceptibility mapping using hyperparameter optimization and grid search techniques. International Journal of Environmental Science and Technology, 22(11), 10635–10650. doi: 10.1007/s13762-024-06310-3.
Khalilidermani, M., & Knez, D. (2024). Shear Wave Velocity Applications in Geomechanics with Focus on Risk As-sessment in Carbon Capture and Storage Projects. Energies, 17(7). doi: 10.3390/en17071578.
Khoshkroodi, A., Parvini Sani, H., & Aajami, M. (2024). Stacking Ensemble-Based Machine Learning Model for Predic-ting Deterioration Components of Steel W-Section Beams. Buildings, 14(1). doi: 10.3390/buildings14010240.
Khosravi, K., Sartaj, M., Tsai, F. T.-C., Singh, V. P., Kazakis, N., Melesse, A. M., Prakash, I., Tien Bui, D., & Pham, B. T. (2018). A comparison study of DRASTIC methods with various objective methods for groundwater vulnerabi-lity assessment. Science of The Total Environment, 642, 1032–1049. doi: 10.1016/j.scitotenv.2018.06.130.
Kilic, K., Ikeda, H., Narihiro, O., Adachi, T., & Kawamura, Y. (2024). A soft ground micro TBM’s specific energy predic-tion using an eXplainable neural network through Shapley additive explanation and Optuna. Bulletin of Engi-neering Geology and the Environment, 83(5), 175. doi: 10.1007/s10064-024-03670-5.
Kramer, R., Lu, Y., & Bokelmann, G. (2023). Interaction of Air Pressure and Groundwater as Main Cause of Sub-Daily Relative Seismic Velocity Changes. Geophysical Research Letters, 50(7). doi: 10.1029/2022GL101298.
Lai, Y. (2024). Application and Effectiveness Evaluation of Bayesian Optimization Algorithm in Hyperparameter Tu-ning of Machine Learning Models. 351–355. doi: 10.1109/PEEEC63877.2024.00070.
Lei, X., Liu, J., Du, Y., Liu, L., Yuan, Y., Zhao, X., Guo, Z., & Wu, X. (2025). Optimizing machine learning and bagging-based hybrid models for landslide susceptibility mapping: A case study in Chenggu County, China. Retrieved From https://doi.org/10.1038/s41598-025-30136-9.
Li, H., Fan, Y., Gong, Z., & Zhou, D. (2020). Water accessibility assessment of freshwater wetlands in the Yellow River Delta National Nature Reserve, China. Ecohydrology & Hydrobiology, 20(1), 21–30. doi: 10.1016/j.ecohyd.2019.02.006.
Li, W., Finsa, M. M., Laskey, K. B., Houser, P., & Douglas-Bate, R. (2023). Groundwater Level Prediction with Machine Learning to Support Sustainable Irrigation in Water Scarcity Regions. Water, 15(19), 3473. doi: 10.3390/w15193473.
Lu, M., Hou, Q., Qin, S., Zhou, L., Hua, D., Wang, X., & Cheng, L. (2023). A Stacking Ensemble Model of Various Ma-chine Learning Models for Daily Runoff Forecasting. Water, 15(7), 1265. doi: 10.3390/w15071265.
Lundberg, S., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Retrieved From https://doi.org/10.48550/arXiv.1705.07874.
Lv, F., Yu, J., Zhang, J., Yu, P., Tong, D., & Wu, B. (2022). A novel stacking-based ensemble learning model for drilling efficiency prediction in earth-rock excavation. Journal of Zhejiang University-SCIENCE A, 23(12), 1027–1046. doi: 10.1631/2023.A2200297.
Meneisy, A. M., Hamed, A., Khalifa, M., Bohoty, M. E., Ghamry, E., & Taha, A. (2023). Geotechnical Zonation and Vs30 Classification of Soil for Seismic Site Effects Evaluation in the Western Extension of New Aswan City, Egypt. Pure and Applied Geophysics, 180(11), 3813–3833. doi: 10.1007/s00024-023-03370-3.
Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent Neural Networks: A Comprehensive Review of Architec-tures, Variants, and Applications. Information, 15(9). doi: 10.3390/info15090517.
Moughani, S. K., Osmani, A., Nohani, E., Khoshtinat, S., Jalilian, T., Askari, Z., Heddam, S., Tiefenbacher, J. P., & Ha-tamiafkoueieh, J. (2023). Groundwater spring potential prediction using a deep-learning algorithm. Acta Geo-physica, 72(2), 1033–1054. doi: 10.1007/s11600-023-01053-0.
Muavhi, N., Thamaga, K. H., & Mutoti, M. I. (2022). Mapping groundwater potential zones using relative frequency ra-tio, analytic hierarchy process and their hybrid models: Case of Nzhelele-Makhado area in South Africa. Geocarto International, 37(21), 6311–6330.
Muthu, K., & Sudalaimuthu, K. (2021). Integration of Remote sensing, GIS, and AHP in demarcating groundwater po-tential zones in Pattukottai Taluk, Tamilnadu, India. Arabian Journal of Geosciences, 14(17), 1748. doi: 10.1007/s12517-021-08110-2.
Nguyen, D., Chou, T., Hoang, T., & Chen, M. (2023). Flood susceptibility mapping using machine learning algorithms: A case study in Huong Khe District, Ha Tinh Province, Vietnam. International Journal of Geoinformatics, 19(7), 1–15.
Nguyen, H. D., Nguyen, Q.-H., Dang, D. K., Nguyen, T. G., Truong, Q. H., Nguyen, V. H., Bretcan, P., Șerban, G., Bui, Q.-T., & Petrisor, A.-I. (2024). Integrated machine learning and remote sensing for groundwater potential mapping in the Mekong Delta in Vietnam. Acta Geophysica, 72(6), 4395–4413. doi: 10.1007/s11600-024-01331-5.
Nugroho, J. T., Lestari, A. I., Gustiandi, B., Sofan, P., Suwarsono, Prasasti, I., Rahmi, K. I. N., Noviar, H., Sari, N. M., Manalu, R. J., Arifin, S., & Taufiq, A. (2024). Groundwater potential mapping using machine learning approach in West Java, Indonesia. Groundwater for Sustainable Development, 27, 101382. doi: 10.1016/j.gsd.2024.101382.
Nugroho, W. H. A., Nurwatik, N., & Kusuma Widya, L. (2024). Groundwater Potential Mapping Using Random Forest and Extreme Gradient Boosting Algorithms. IOP Conference Series: Earth and Environmental Science, 1418(1), 012035. doi: 10.1088/1755-1315/1418/1/012035.
Nurwatik, N., Ummah, M. H., Cahyono, A. B., Darminto, M. R., & Hong, J.-H. (2022). A Comparison Study of Landslide Susceptibility Spatial Modeling Using Machine Learning. ISPRS International Journal of Geo-Information, 11(12). doi: 10.3390/ijgi11120602.
Ouali, L., Kabiri, L., Namous, M., Hssaisoune, M., Abdelrahman, K., Fnais, M. S., Kabiri, H., El Hafyani, M., Ou-baassine, H., Arioua, A., & Bouchaou, L. (2023). Spatial Prediction of Groundwater Withdrawal Potential Using Shallow, Hybrid, and Deep Learning Algorithms in the Toudgha Oasis, Southeast Morocco. Sustainability, 15(5). doi: 10.3390/su15053874.
Parasar, P., Moral, P., Srivastava, A., Krishna, A. P., Majumdar, S., Bhattacharjee, R., Mishra, A. P., Mustafi, D., Ra-thore, V. S., Sharma, R., & Mustafi, A. (2025). Integrating genetic algorithms and machine learning for spatio-temporal groundwater potential zoning in fractured aquifers. Journal of Hydrology: Regional Studies, 62, 102800. doi: 10.1016/j.ejrh.2025.102800.
Pham, B. T., Jaafari, A., Prakash, I., Singh, S. K., Quoc, N. K., & Bui, D. T. (2019). Hybrid computational intelligence models for groundwater potential mapping. CATENA, 182, 104101. doi: 10.1016/j.catena.2019.104101.
Pokhrel, A., Khanal, A., & Khanal, A. (2024). Groundwater potential mapping of Rupandehi District using geographic information system and remote sensing. International Journal of Energy and Water Resources, 9, 1067–1093. doi: 10.1007/s42108-024-00327-7
Prasad, P., Gogoi, D., Gogoi, D., Kumar, T., & Chandra, P. (2025). Threshold-based inventory for flood susceptibility as-sessment of the world’s largest river island using multi-temporal SAR data and ensemble machine learning al-gorithms. Stochastic Environmental Research and Risk Assessment, 39(1), 251–269. doi: 10.1007/s00477-024-02860-7.
Prasad, P., Loveson, V. J., Kotha, M., & Yadav, R. (2020). Application of machine learning techniques in groundwater potential mapping along the west coast of India. GIScience & Remote Sensing, 57(6), 735–752. doi: 10.1080/15481603.2020.1794104.
Ragragui, H., Aouragh, M. H., El-Hmaidi, A., Ouali, L., Saouita, J., Iallamen, Z., Ousmana, H., Jaddi, H., & El Ouali, A. (2024). Mapping and modeling groundwater potential using machine learning, deep learning and ensemble learning models in the Saiss basin (Fez-Meknes region, Morocco). Groundwater for Sustainable Development, 26, 101281. doi: 10.1016/j.gsd.2024.101281.
Regional Disaster Management Agency Of Trenggalek Regency. (2024). Trenggalek district disaster infographic [Data set].
Rehman, A., Islam, F., Tariq, A., Ul Islam, I., Brian J, D., Bibi, T., Ahmad, W., Ali Waseem, L., Karuppannan, S., & Al-Ahmadi, S. (2024). Groundwater potential zone mapping using GIS and Remote Sensing based models for sus-tainable groundwater management. Geocarto International, 39(1). doi: 10.1080/10106049.2024.2306275.
Ribeiro, M. H. D. M., & dos Santos Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Applied Soft Computing, 86, 105837. doi: 10.1016/j.asoc.2019.105837.
Rong, G., Li, K., Su, Y., Tong, Z., Liu, X., Zhang, J., Zhang, Y., & Li, T. (2021). Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment. Re-mote Sensing, 13(22). doi: 10.3390/rs13224694.
Rustadi, R., Darmawan, I., Nandi Haerudin, N. H., Agus Setiawan, A., & Suharno, S. (2022). Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indone-sia. Journal of Groundwater Science and Engineering, 10(1), 10–18.
Sarkar, S. K., Rudra, R. R., Talukdar, S., Das, P. C., Nur, Md. S., Alam, E., Islam, M. K., & Islam, A. R. Md. T. (2024). Future groundwater potential mapping using machine learning algorithms and climate change scenarios in Bangladesh. Scientific Reports, 14(1), 10328. doi: 10.1038/s41598-024-60560-2
Seifi, F., & Niaki, S. T. A. (2023). Extending the hypergradient descent technique to reduce the time of optimal solution achieved in hyperparameter optimization algorithms. International Journal of Industrial Engineering Compu-tations, 14(3), 501–510. doi: 10.5267/j.ijiec.2023.4.004
Senapati, U., & Das, T. K. (2021). Assessment of basin-scale groundwater potentiality mapping in drought-prone upper Dwarakeshwar River basin, West Bengal, India, using GIS-based AHP techniques. Arabian Journal of Geos-ciences, 14(11), 960.
Shams, M. Y., Elshewey, A. M., El-kenawy, E.-S. M., Ibrahim, A., Talaat, F. M., & Tarek, Z. (2024). Water quality pre-diction using machine learning models based on grid search method. Multimedia Tools and Applications, 83(12), 35307–35334. doi: 10.1007/s11042-023-16737-4
Shapley, L. S. (1953). A value for n-person games.
Sikora, R. (2017). A modified stacking ensemble machine learning algorithm using genetic algorithms. In Artificial in-telligence: Concepts, methodologies, tools, and applications (pp. 395–405). IGi Global.
Silver, P. G., Daley, T. M., Niu, F., & Majer, E. L. (2007). Active source monitoring of cross-well seismic travel time for stress-induced changes. Bulletin of the Seismological Society of America, 97(1 B), 281–293. doi: 10.1785/0120060120
Statistical Centre Of East Java Province. (2024). Percentage Distribution of Households by District/City and Source of Drinking Water in East Java Province, 2023. Retrieved From https://jatim.bps.go.id/id/statistics-table/3/YzBa MlduSlFVbTVrUnpWeU9YRTJka0pVTTFkU1FUMDkjMw==/distribusi-persentase-rumah-tangga-menurut-kabupaten-kota-dan-sumber-air-minum-di-provinsi-jawa-timur--2023.html?year=2023
Stern, R. H. (2021). Interpretation of the area under the ROC curve for risk prediction models. arXiv Preprint ar-Xiv:2102.11053.
Sun, X., Chen, J., Bao, Y., Han, X., Zhan, J., & Peng, W. (2018). Landslide Susceptibility Mapping Using Logistic Regres-sion Analysis along the Jinsha River and Its Tributaries Close to Derong and Deqin County, Southwestern Chi-na. ISPRS International Journal of Geo-Information, 7(11). doi: 0.3390/ijgi7110438
Tharwat, A. (2018). Classification Assessment Methods: A detailed tutorial. https://doi.org/10.1016/j.aci.2018.08.003.
Tolche, A. D. (2021). Groundwater potential mapping using geospatial techniques: A case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes, 5(1), 65–80. doi: 10.1080/24749508.2020.1728882.
Vrba, J., & Salamat, A. (2007). Groundwater for emergency situations. UNESCO.
Wang, W., Gu, M., Li, Z., Hong, Y., Zang, H., & Xu, D. (2024). A stacking ensemble machine learning model for impro-ving monthly runoff prediction. Earth Science Informatics, 18(1), 120. doi: 10.1007/s12145-024-01544-8
Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., & Deng, S.-H. (2019). Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology, 17(1), 26–40. doi: 10.11989/JEST.1674-862X.80904120
Wu, X., & Wang, J. (2022). Application of bagging, boosting and stacking ensemble and EasyEnsemble methods to landslide susceptibility mapping in the Three Gorges Reservoir area of China. EGUsphere, 2022, 1–31.
Yang, K., Niu, R., Song, Y., Dong, J., Zhang, H., & Chen, J. (2024). Dynamic Hazard Assessment of Rainfall-Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China. Water, 16(12). doi: 10.3390/w16121638
Yariyan, P., Avand, M., Omidvar, E., Pham, Q. B., Linh, N. T. T., & Tiefenbacher, J. P. (2022). Optimization of statisti-cal and machine learning hybrid models for groundwater potential mapping. Geocarto International, 37(13), 3877–3911. doi: 10.1080/10106049.2020.1870164
Yeo, I., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometri-ka, 87(4), 954–959
Zaenudin, A., Risman, R., Darmawan, I. G. B., & Yogi, I. B. S. (2020). Analysis of gravity anomaly for groundwater ba-sin in Bandar Lampung city based on 2D gravity modeling. Journal of Physics: Conference Series, 1572(1), 012006. doi: 10.1088/1742-6596/1572/1/012006
Zhang, S., Bai, L., Li, Y., Li, W., & Xie, M. (2022). Comparing Convolutional Neural Network and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study in Wenchuan County. Frontiers in Environmental Science, 10, 886841. doi: 10.3389/fenvs.2022.886841
Zhao, X., Xiong, Z., Karlshöfer, P., Tziolas, N., Wiesmeier, M., Heiden, U., & Zhu, X. X. (2025). Soil organic carbon esti-mation using spaceborne hyperspectral composites on a large scale. International Journal of Applied Earth Observation and Geoinformation, 140, 104504. doi: 10.1016/j.jag.2025.104504
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Hidayatul Ummah, Diyono Diyono

This work is licensed under a Creative Commons Attribution 4.0 International License.















