Flash Flood Susceptibility Mapping in Phuket Province, Thailand: An Integrated Geo-Information Technology and Logistic Regression Approach
DOI:
https://doi.org/10.23917/forgeo.v39i3.11904Keywords:
Flash Flood, Coastal Tourist City, Geo-Information Technology, Logistic Regression, PhuketAbstract
In the past 2 years, Phuket has experienced more frequent flash floods, resulting in significant damage to life and property for the people of Phuket. This research aimed to assess flash flood susceptibility us-ing Geo-information technology (GIS) and logistic regression analysis in Phuket Province. The statistical results from the logistic regression analysis were subsequently processed using the geographically weighted regression method within GIS. The results of the study found that the factors with the most influence on flash flood occurrence were Topographic wetness index (TWI), Stream frequency (SF), Drainage density (DD), Infiltration number (IN), Slope, Distance to road, Mean annual precipitation, Elevation, Land use, Sediment transport index (STI), Stream power index (SPI), Distance to stream, and Geology, respectively. All these variables are shown from the exp β value coefficient, when com-piled into a flash flood susceptibility map, it was found that very high flash flood susceptibility level covers an area of up to 43.40 km2 (8.04% of the total area). Most of it covers the areas along the major rivers of Phuket Island. The most obvious is the mountainous terrain with rivers flowing through it, the piedmont and intermontane plains in the northern part of Phuket, which is the Thalang District and Kathu Sub-district. The coastal plain landscape of the eastern part of Phuket Island also shows areas of very high flash flood susceptibility level scattered along major waterways in the Ko Kaew, Talat Yai, Talat Nuea, Wichit, Chalong, and Rawai sub-districts. However, the top three variables influencing flash flood occurrences in Phuket were the TWI, SF, and DD. This highlights the high susceptibility of the study area's coastal foothill regions to flash flooding, primarily due to their function as a con-fluence point for multiple stream branches. The findings of this research indicate that the TWI, SF, and DD are significant variables contributing to flash flood occurrences in terrains characterized by narrow coastal plains adjacent to major mountain ranges. The results of this research are to creat a flash flood risk map, intended to inform and enhance upcoming flood monitoring strategies.
Downloads
References
Akkajit, P., Tipmanee, D., Cherdsukjai, P., Suteerasak, T., & Thongnonghin, S. (2021). Occurrence and distribution of microplastics in beach sediments along Phuket coastline. Marine Pollution Bulletin, 169, 112496. doi: 10.1016/j.marpolbul.2021.112496
Akkajit, P., Yuankerd, S., & Sukkuea, A. (2024). Exploring Microplastics in Seawater and Zooplankton on the Eastern Coast of Thailand: A Case Study in Phuket Province. Applied Environmental Research, 46(1), 007. doi: 10.35762/AER.2024007
Al–Kindi, K. M., & Alabri, Z. (2024). Investigating the role of the key conditioning factors in flood susceptibility map-ping through machine learning approaches. Earth Systems and Environment, 8(1), 63-81. doi: 10.1007/s41748-023-00369-7.
Al–Shwani, J. K. M., Saleh, S. A., & Al-Manmi, D. A. M. A. (2025) Identifying Areas Exposed to Potential Flash Floods and Drawing Map for Them Using Multi-Criteria Decision-Making Depending on GIS and AHP for Er-bil Sub-Basin, Northern Iraq. Iraqi National Journal of Earth Science, 25(2), 93-113. doi: 10.33899/earth.2024.145160.1188
Allegri, E., Zanetti, M., Torresan, S., & Critto, A. (2024). Pluvial flood risk assessment for 2021–2050 under climate change scenarios in the Metropolitan City of Venice. Science of the Total Environment, 914, 169925. doi: 10.1016/j.scitotenv.2024.169925.
Andimuthu, R., Kandasamy, P., Mudgal, B. V., Jeganathan, A., Balu, A., & Sankar, G. (2019). Performance of urban storm drainage network under changing climate scenarios: Flood mitigation in Indian coastal city. Scientific re-ports, 9(1), 7783. doi: 10.1038/s41598-019-43859-3.
Archana, T. R., Vinod, D., & Mahesha, A. (2024). Decadal trends and climatic influences on flash droughts and flash floods in Indian cities. Urban Climate, 58, 102143. doi: 10.1016/j.uclim.2024.102143.
Arnous, M. O., El-Rayes, A. E., El-Nady, H., & Helmy, A. M. (2022). Flash flooding hazard assessment, modeling, and management in the coastal zone of Ras Ghareb City, Gulf of Suez, Egypt. Journal of Coastal Conservation, 26(6), 77. doi: 10.1007/s11852-022-00916-w.
Bahrami, S., Ehteshami-Moinabadi, M., & Tuyserkani, M. S. (2024). Quantitative evaluation of morphometric parame-ters of drainage system in the forelimb and backlimb of the Asmari Anticline, Zagros, Iran. Journal of Structural Ge-ology, 184, 105151. doi: 10.1016/j.jsg.2024.105151.
Bangkokbiznews (2024). Phuket floods, help flood victims. Retrieved from https://www.bangkokbiznews.com/news/news-update/1133795
Barbosa, S. A., Wang, Y., & Goodall, J. L. (2025). Exploring infiltration effects on coastal urban flooding: Insights from nuisance to extreme events using 2D/1D hydrodynamic modeling and crowdsourced flood reports. Science of The Total Environment, 968, 178908. doi: 10.1016/j.scitotenv.2025.178908.
Chanalert, W., Buntoung, S., Nunez, M., Itsara, M., Nimnuan, P., Choosri, P., Charuchittipan, D., Janjai, S., & Cao, J. (2022). The Greater Mekong Subregion (GMS) and tropical expansion: A regional study of convection and pre-cipitation. Advances in Space Research, 69(6), 2443-2459. doi: 10.1016/j.asr.2021.12.042.
Chen, A., Giese, M., & Chen, D. (2020). Flood impact on Mainland Southeast Asia between 1985 and 2018—The role of tropical cyclones. Journal of Flood Risk Management, 13(2), e12598. doi: 10.1111/jfr3.12598.
Chen, L., Chen, Z., & Chen, N. (2024). PDFID: A high-resolution flood inundation dataset with a long time series. Jour-nal of Hydrology: Regional Studies, 52, 101715. doi: 10.1016/j.ejrh.2024.101715
Chen, Y., Zhang, X., Yang, K., Zeng, S., & Hong, A. (2023). Modeling rules of regional flash flood susceptibility pre-dic-tion using different machine learning models. Frontiers in Earth Science, 11, 1117004. doi: 10.3389/feart.2023.1117004.
Chen, Z., & Huang, G. (2024). Numerical simulation study on the effect of underground drainage pipe network in typi-cal urban flood. Journal of Hydrology, 638, 131481. doi: 10.1016/j.jhydrol.2024.131481
Chowdhury, M. S. (2024). Flash flood susceptibility mapping of north-east depression of Bangladesh using different GIS based bivariate statistical models. Watershed Ecology and the Environment, 6, 26-40. doi: 10.1016/j.wsee.2023.12.002.
Costache, R., Pham, Q. B., Sharifi, E., Linh, N. T. T., Abba, S. I., Vojtek, M., Vojteková, J., Nhi, P.P.T., & Khoi, D. N. (2019). Flash-flood susceptibility assessment using multi-criteria decision making and machine learning support-ed by remote sensing and GIS techniques. Remote Sensing, 12(1), 106. doi: 10.3390/rs12010106.
Costache, R., & Zaharia, L. (2017). Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment–case study: Bâsca Chiojdului River cat-chment (Ro-mania). Journal of Earth System Science, 126(4), 59. doi: 10.1007/s12040-017-0828-9.
Demissie, Z., Rimal, P., Seyoum, W. M., Dutta, A., & Rimmington, G. (2024). Flood susceptibility mapping: integrating machine learning and GIS for enhanced risk assessment. Applied Computing and Geosciences, 100183. doi: 10.1016/j.acags.2024.100183.
Dhiman, R., VishnuRadhan, R., Eldho, T. I., & Inamdar, A. (2019). Flood risk and adaptation in Indian coastal cities: re-cent scenarios. Applied Water Science, 9(1), 5. doi: 10.1007/s13201-018-0881-9.
Effat, H. A., Ramadan, M. S., & Ramadan, R. H. (2022). A spatial model for assessment of urban vulnerability in the light of the UN New Urban Agenda guidelines: case study of Assiut City, Egypt. Modeling Earth Systems and Environment, 8(3), 3687-3706. doi: 10.1007/s40808-021-01281-7
Elghouat, A., Algouti, A., Algouti, A., Baid, S., Ezzahzi, S., Kabili, S., & Agli, S. (2024). Integrated approaches for flash flood susceptibility mapping: spatial modeling and comparative analysis of statistical and machine learning mod-els. A case study of the Rheraya watershed, Morocco. Journal of Water and Climate Change, 15(8), 3624-3646. doi: 10.2166/wcc.2024.726.
Elkhrachy, I. (2015). Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, 18(2), 261-278. doi: 10.1016/j.ejrs.2015.06.007.
Gascón, E., Laviola, S., Merino, A., & Miglietta, M. M. (2016). Analysis of a localized flash-flood event over the central Mediterranean. Atmospheric Research, 182, 256-268. doi: 10.1016/j.atmosres.2016.08.007.
Gebremichael, A., Gebremariam, E., & Desta, H. (2025). Assessment of soil erosion and sediment transport index in the Awash River Basin, Ethiopia: an application of the USLE model and GIS techniques. Discover Sustainability, 6(1), 367. doi: 10.1007/s43621-025-01018-x.
Hadipour, V., Vafaie, F., & Deilami, K. (2020). Coastal flooding risk assessment using a GIS-based spatial multi-criteria decision analysis approach. Water, 12(9), 2379. doi: 10.3390/w12092379.
Hoa, P. V., Binh, N. A., Hong, P. V., An, N. N., Thao, G. T. P., Hanh, N. C., Ngo, P.T.T. & Bui, D. T. (2024). One-dimensional deep learning driven geospatial analysis for flash flood susceptibility mapping: a case study in North Central Vietnam. Earth Science Informatics, 17(5), 4419-4440. doi: 10.1007/s12145-024-01285-8
Hoang, D. V., & Liou, Y. A. (2024). Assessing the influence of human activities on flash flood susceptibility in moun-tainous regions of Vietnam. Ecological Indicators, 158, 111417. doi: 10.1016/j.ecolind.2023.111417.
Hu, H., Yu, M., Zhang, X., & Wang, Y. (2024). Urban hydrological model (UHM) developed for an urban flash flood simulation and analysis of the flood intensity sensitivity to urbanization. Geomatics, Natural Hazards and Risk, 15(1), 2302561. doi: 10.1080/19475705.2024.2302561.
Hydro Informatics Institute (2024). Flooding incident record in Phuket Province from 29-30 June 2024. Retrieved from https://www.thaiwater.net/uploads/contents/current/2024/floodPHUKET_June2024/news.html
Islam, R., & Chowdhury, P. (2024). Local-scale flash flood susceptibility assessment in northeastern Bangladesh using machine learning algorithms. Environmental Challenges, 14, 100833. doi: 10.1016/j.envc.2023.100833.
Janizadeh, S., Avand, M., Jaafari, A., Phong, T. V., Bayat, M., Ahmadisharaf, E., Prakash, I., Pham, B. T., & Lee, S. (2019). Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh wa-tershed, Iran. Sustainability, 11(19), 5426. doi: 10.3390/su11195426.
Jean Louis, M., Crosato, A., Mosselman, E., & Maskey, S. (2024). Effects of urbanization and deforestation on flooding: Case study of Cap‐Haïtien City, Haiti. Journal of Flood Risk Management, 17(4), e13020. doi: 10.1111/jfr3.13020.
Kulsoontornrat, J., & Puangkaew, N. (2025). Assessing the Impacts of Land Use and Land Cover Changes on Sediment Yield Using the SWAT Model: A Case Study in the Khlong Bang Yai Watershed, Phuket Island, Thailand. In-ternational Journal of Geoinformatics, 21(5), 62-79. doi: 10.52939/ijg.v21i5.4161
Leeonis, A. N., Ahmed, M. F., Mokhtar, M. B., Lim, C. K., and Halder, B. (2024). Challenges of Using a Geographic In-formation System (GIS) in Managing Flash Floods in Shah Alam, Malaysia. Sustainability, 16(17), 7528. doi: 10.3390/su16177528.
Le Guillou, A., & Niculescu, S. (2025). Detection and pre-localization of coastal wetlands in Brittany, France using to-po-graphical indices from altimetric and remote sensing data. Frontiers in Remote Sensing, 6, 1566144. doi: 10.3389/frsen.2025.1566144
Lin, K., Chen, H., Xu, C. Y., Yan, P., Lan, T., Liu, Z., & Dong, C. (2020). Assessment of flash flood risk based on im-proved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. Journal of Hydrology, 584, 124696. doi: 10.1016/j.jhydrol.2020.124696.
Long, G., Tantanee, S., Nusit, K., & Sooraksa, P. (2025). Flood susceptibility mapping in the Yom River Basin, Thai-land: stacking ensemble learning using multi-year flood inventory data. Geocarto International, 40(1), 2461531. doi: 10.1080/10106049.2025.2461531.
Luo, Z., Tian, J., Zeng, J., & Pilla, F. (2023). Assessing the spatial pattern of supply-demand mismatches in ecosystem flood regulation service: a case study in Xiamen. Applied geography, 160, 103113. doi: 10.1016/j.apgeog.2023.103113.
Luo, Z., Tian, J., Zeng, J., & Pilla, F. (2024). Flood risk evaluation of the coastal city by the EWM-TOPSIS and machine learning hybrid method. International Journal of Disaster Risk Reduction, 106, 104435. doi: 10.1016/j.ijdrr.2024.104435.
Masoud, M. H., Basahi, J. M., Alqarawy, A., Schneider, M., Rajmohan, N., Niyazi, B. A., & Karthikeyan, B. (2024). Flash flood prediction in Southwest Saudi Arabia using GIS technique and surface water models. Applied Water Science, 14(3), 61. doi: 10.1007/s13201-024-02117-2.
Matichon Online (2022). Phuket is flooded again, with flooding in Patong, making travel difficult. Retrieved from https://www.matichon.co.th/region/news_3679634
Mazarakis, V., Tsanakas, K., Greenbaum, N., Batzakis, D. V., Sorrentino, A., Tsodoulos, I., Valkanou, K., & Karymba-lis, E. (2025). Flood-Hazard Assessment in the Messapios River Catchment (Central Evia Island, Greece) by Inte-grating GIS-Based Multi-Criteria Decision Analysis and Analytic Hierarchy Process. Land, 14(3), 658. doi: 10.3390/land14030658.
Mekkaoui, O., Morarech, M., Bouramtane, T., Barbiero, L., Hamidi, M., Akka, H., & Rengasamy, R. P. M. (2025). Un-veiling Urban Flood Vulnerability: A Machine Learning Approach for Mapping High Risk Zones in Tetouan Ci-ty, Northern Morocco. Urban Science, 9(3), 70. doi: 10.3390/urbansci9030070.
MGR Online. (2022). Flash flooding in Phuket continues to affect the entire province. Tourist attractions in the old town area are crowded with people taking photos. Retrieved from https://mgronline.com/south/detail/9650000098988
Moukomla, S., & Marome, W. (2025). Tourism-Induced Urbanization in Phuket Island, Thailand (1987–2024): A Spa-tio-temporal Analysis. Urban Science, 9(3), 55. doi: 10.3390/urbansci9030055
Nagamani, K., Mishra, A. K., Meer, M. S., & Das, J. (2024). Understanding flash flooding in the Himalayan Region: a case study. Scientific Reports, 14(1), 7060. doi: 10.1038/s41598-024-53535-w.
Nandam, V., & Patel, P. L. (2025). Comprehensive analysis of data aggregation techniques for flood vulnerability and bivariate flood risk mapping of a coastal urban floodplain. International Journal of Disaster Risk Reduction, 119, 105330. doi: 10.1016/j.ijdrr.2025.105330.
Oddo, P. C., Bolten, J. D., Kumar, S. V., & Cleary, B. (2024). Deep Convolutional LSTM for improved flash flood pre-diction. Frontiers in Water, 6, 1346104. doi: 10.3389/frwa.2024.1346104.
Pakoksung, K., Latcharote, P., Suttinon, P., Bunditsakulchai, P., Suppasri, A., & Imamura, F. (2022). The probability of community-scale building damage and economic loss in Thailand increased after the 2004 Indian Ocean tsuna-mi. International Journal of Disaster Risk Reduction, 79, 103171. https://doi.org/10.1016/j.ijdrr.2022.103171
Popa, M. C., Peptenatu, D., Drăghici, C. C., & Diaconu, D. C. (2019). Flood hazard mapping using the flood and flash-flood potential index in the Buzău River catchment, Romania. Water, 11(10), 2116. doi: 10.3390/w11102116.
Ramadan, M. S., Almurshidi, A. H., Razali, S. F. M., Ramadan, E., Tariq, A., Bridi, R. M., Rahman, M.A., Albedwawi, S., Alshamsi, M., Alshamisi, M., Alrashdi, S., Alnaqbi, S., Alhammadi, H., & Al Hosani, N. (2025). Spatial de-ci-sion-making for urban flood vulnerability: A geomatics approach applied to Al-Ain City, UAE. Urban Cli-mate, 59, 102297. doi: 10.1016/j.uclim.2025.102297.
Rahman, Z. U., Zhang, M., Chen, F., Ullah, S., Ahmad, M., Feroz, A., Danhassan, S.S. & Azzam, A. (2025). Flood sus-ceptibility mapping using supervised machine learning models: insights into predictors’ significance and models’ performance. Geomatics, Natural Hazards and Risk, 16(1), 2516728. doi: 10.1080/19475705.2025.2516728
Riaz, R., & Mohiuddin, M. (2025). Application of GIS-based multi-criteria decision analysis of hydro-geomorphological factors for flash flood susceptibility mapping in Bangladesh. Water Cycle, 6, 13-27. doi: 10.1016/j.watcyc.2024.09.003.
Rifath, A. R., Muktadir, M. G., Hasan, M., & Islam, M. A. (2024). Flash flood prediction modeling in the hilly regions of Southeastern Bangladesh: A machine learning attempt on present and future climate scenarios. Environmental Challenges, 17, 101029. doi: 10.1016/j.envc.2024.101029.
Sahid, S. (2024). Enhancing Digital Elevation Model Accuracy for Flood Modelling–A Case Study of the Ciberes River in Cirebon, Indonesia. Forum Geografi, 38(1), 40-56. doi: 10.23917/forgeo.v38i1.1839.
Sahoo, S., Ramole, M. M., Dahiphale, P., Awasthi, S., & Pateriya, B. (2024). Geospatial technology based morphometric analysis and watershed prioritization of lower Satluj basin in India for groundwater recharge potential. Tropical Ecology, 65(1), 43-58. doi: 10.1007/s42965-023-00307-8.
Sellami, E. M., & Rhinane, H. (2024). Google Earth Engine and Machine Learning for Flash Flood Exposure Mapping—Case Study: Tetouan, Morocco. Geosciences, 14(6), 152. doi: 10.3390/geosciences14060152.
Shahabi, H., Shirzadi, A., Ronoud, S., Asadi, S., Pham, B. T., Mansouripour, F., Geertsema, M., Clague, J.J., & Bui, D. T. (2021). Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 12(3), 101100. doi: 10.1016/j.gsf.2020.10.007.
Singh, S., Swarnkar, S., & Sinha, R. (2025). Integrating sediment connectivity and stream power index with RUSLE for modelling soil erosion dynamics in a large Himalayan basin under modern and future climate scenarios. Earth Surface Processes and Landforms, 50(3), e70032. doi: 10.1002/esp.70032.
Solaimani, K., Darvishi, S., & Shokrian, F. (2024). Assessment of machine learning algorithms and new hybrid multi-criteria analysis for flood hazard and mapping. Environmental Science and Pollution Research, 31(22), 32950-32971. doi: 10.1007/s11356-024-33288-9.
Taherizadeh, M., Niknam, A., Nguyen-Huy, T., Mezősi, G., & Sarli, R. (2023). Flash flood-risk areas zoning using inte-gration of decision-making trial and evaluation laboratory, GIS-based analytic network process and satellite de-rived information. Natural Hazards, 118(3), 2309-2335. doi: 10.1007/s11069-023-06089-5.
Thaipost. (2022). Summary of Phuket flash flood damage, establishing a command center to solve the problem. Retrieved from https://www.thaipost.net/district-news/243943/
Tolentino, P. L. M., Williams, R. D., & Hurst, M. D. (2025). Natural Flood Risk Management in Tropical Southeast Asia: Prospects in the Biodiverse Archipelagic Nation of the Philippines. Wiley Interdisciplinary Reviews: Water, 12(1), e70000. doi: 10.1002/wat2.70000.
Tsumita, N., Piyapong, S., Kaewkluengklom, R., Jaensirisak, S., & Fukuda, A. (2025). Flood susceptibility mapping of urban flood risk: comparing autoencoder multilayer perceptron and logistic regression models in Ubon Ratcha-thani, Thailand. Natural Hazards, 121(15), 17833-17867. doi: 10.1007/s11069-025-07494-8
Ufimtsev, G.F. (2011). Coastal tropical morphogenesis of the Islands in the Andaman Sea (Thailand). Geography and Natural Resources, 32, 292–296. https://doi.org/10.1134/S1875372811030139
Van Dijk, A.I.J.M., Beck H.E., Boergens, E., de Jeu, R.A.M., Dorigo, W.A., Edirisinghe, C., Forootan, E., Guo, E., Güntner, A., Hou, J., Mehrnegar, N., Mo, S., Preimesberger, W., Rahman, J., & Rozas Larraondo P. (2025). Global Water Monitor 2024, Summary Report. Retrived From www.globalwater.online.
Váš, P., Bartok, J., Gaál, L., Jurašek, M., Melo, M., & Gera, M. (2025). Frequency shifts in thunderstorm patterns as key precursors to flash flood events. Journal of Hydrology and Hydromechanics, 73(1), 73-83. doi: 10.2478/johh-2025-0006.
Viet, H. P., An, B. N., Viet, H. P., Ngoc, A. N., Phuong, T. G. T., Cao, H. N., & Tien, B. D. (2025). Enhancing spatial prediction of flash floods with Balancing Composite Motion Optimized Random Forest: A case study in High-Frequency Torrential rainfall area. Vietnam Journal of Earth Sciences, 47(1), 133-150. doi: 10.15625/2615-9783/22189.
Wahba, M., Essam, R., El-Rawy, M., Al-Arifi, N., Abdalla, F., & Elsadek, W. M. (2024). Forecasting of flash flood sus-ceptibility mapping using random forest regression model and geographic information systems. Heliyon, 10(13). doi: 10.1016/j.heliyon.2024.e33982.
Waiyasusri, K., Wetchayont, P., Tananonchai, A., & Suwanmajo, D. (2023). Flood susceptibility mapping using logistic regression analysis in Lam Khan Chu watershed, Chaiyaphum Province, Thailand. Geography, Environment, Sustainability, 16(2), 41-56. doi: 10.24057/2071-9388-2022-159
Wang, W., Sang, G., Zhao, Q., Liu, Y., Shao, G., Lu, L., & Xu, M. (2024). Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning. Hydrology Research, 55(8), 801-814. doi: 10.2166/nh.2024.004.
Wilkho, R., Gharaibeh, N., & Chang, S. (2025). A GIS‐based tool for dynamic assessment of community susceptibility to flash flooding. Journal of Flood Risk Management, 18(1), e13049. doi: 10.1111/jfr3.13049.
Xu, K., Han, Z., Bin, L., Shen, R., & Long, Y. (2025). Rapid forecasting of compound flooding for a coastal area based on data-driven approach. Natural Hazards, 121(2), 1399-1421. doi: 10.1007/s11069-024-06846-0.
Yao, J., Zhang, X., Luo, W., Liu, C., & Ren, L. (2022). Applications of Stacking/Blending ensemble learning approaches for evaluating flash flood susceptibility. International Journal of Applied Earth Observation and Geoinforma-tion, 112, 102932. doi: 10.1016/j.jag.2022.102932.
Yukseler, U., Toprak, A., Gul, E., and Dursun, O. F. (2023). Flood hazard mapping using M5 tree algorithms and logis-tic regression: a case study in East Black Sea Region. Earth Science Informatics, 16(3), 2033-2047. doi: 10.1007/s12145-023-01013-8.
Youssef, A. M., Pradhan, B., and Sefry, S. A. (2016). Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environmental Earth Sciences, 75(1), 12. doi: 10.1007/s12665-015-4830-8.
Zhong, M., Xiao, L., Li, X., Mei, Y., Jiang, T., Song, L., and Chen, X. (2024). A study on compound flood prediction and inundation simulation under future scenarios in a coastal city. Journal of Hydrology, 628, 130475. doi: 10.1016/j.jhydrol.2023.130475.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Katawut Waiyasusri, Parichat Wetchayont

This work is licensed under a Creative Commons Attribution 4.0 International License.















