Balancing Urban Growth and Food Autonomy: An Integrated Machine Learning and Agricultural Statistics Framework for Local Rice Self-Sufficiency in the PNAR of Purwokerto, Indonesia
DOI:
https://doi.org/10.23917/forgeo.v39i3.11234Keywords:
paddy field conversion, rice self-sufficiency, random forest classification, CA–ANN simulation, machine learningAbstract
Rapid peri-urbanization intensifies competition between settlement growth and farmland, creating structural risks to local food security. This study integrates machine learning–based spatial modeling, agricultural statistics, and policy-relevant scenarios to examine how land use trajectories influence local rice self-sufficiency in the Proposed New Autonomous Region (PNAR) of Purwokerto, Indonesia. Multi-temporal Sentinel-2 imagery served as input for Random Forest–based classification of existing land use, whereas CA–ANN was used to simulate transitions and predict land use in 2029. The Random Forest classification model achieved an overall accuracy of 84% with a Kappa coefficient of 0.81, while CA–ANN model validation through hindcasting for 2015–2024 reached 82% spatial agreement, with strong class stability for paddy fields (0.853) and built-up areas (0.973). Under the business-as-usual path, paddy fields decline from 8,506 ha (2015) to 6,512 ha (2029), shifting the rice balance from a +3,791 tons surplus to a –12,520 tons deficit. A combined scenario cropping index of 250, a 2% conversion reduction, and 4% population moderation restores near-equilibrium (+190 tons). These findings confirm that safeguarding peri-urban food resilience requires coordinated land use regulation, demographic control, and agrotechnological intensification. The validated CA–ANN framework offers a transferable decision-support tool for sustainable land-food governance in rapidly growing regions of the Global South.
Downloads
References
Ahmed, N., & Turchini, G. M. (2021). The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production. Sustainability Science, 16(4), 1375–1390. doi: 10.1007/s11625-021-00924-z
Alikhanov, B., Pulatov, B., & Samiev, L. (2024). The Detection of Past and Future Land Use and Land Cover Change in Ugam Chatkal National Park, Uzbekistan, Using CA-Markov and Random Forest Machine Learning Algo-rithms. Forum Geografi, 38(2), 121–137. doi: 10.23917/FORGEO.V38I2.4221
Allen, A. (2003). Environmental planning and management of the peri-urban interface: perspectives on an emerging field. Retrieved From www.ucl.ac.uk/dpu/pui
Arfasa, G. F., Owusu-Sekyere, E., & Doke, D. A. (2023). Predictions of land use/land cover change, drivers, and their implications on water availability for irrigation in the Vea catchment, Ghana. Geocarto International, 38(1). doi: 10.1080/10106049.2023.2243093
Arianto Patunru, by A., Szami Ilman, A., & Patunru Assyifa Szami Ilman, A. A. (2019). A Perspective on the ASEAN Economic Community Political Economy of Rice Policy in Indonesia. A Perspective on the ASEAN Economic Community.
Audina Irawan, I., Supriatna, S., Manessa, M., & Ristya, Y. (2019). Prediction Model of Land Cover Changes using the Cellular Automata – Markov Chain Affected by the BOCIMI Toll Road in Sukabumi Regency. KnE Enginee-ring. Retrieved From https://doi.org/10.18502/keg.v4i3.5860
Ayalew, S. E., & Nigussie, T. A. (2023). Historical and projected land use / land cover changes of the Welmel River Wa-tershed, Genale Dawa Basin, Ethiopia. Journal of Water and Land Development, 58, 89–98. doi: 10.24425/jwld.2023.146601
Baig, M. F., Mustafa, M. R. U., Baig, I., Takaijudin, H. B., & Zeshan, M. T. (2022). Assessment of Land Use Land Co-ver Changes and Future Predictions Using CA-ANN Simulation for Selangor, Malaysia. Water (Switzerland), 14(3). doi: 10.3390/w14030402
Banyumas Communication and Informatics Department. (2025). Data and Information of Banyumas Regency 2025 (Vol. 9). Banyumas Communication and Informatics Department.
Cumming, G. S., Buerkert, A., Hoffmann, E. M., Schlecht, E., Von Cramon-Taubadel, S., & Tscharntke, T. (2014). Im-plications of agricultural transitions and urbanization for ecosystem services. Nature Publishing Group, 515( 7525), 50–57. doi: 10.1038/nature13945
Dawe, D. (2008). Can indonesia trust the world rice market?. Bulletin of Indonesian Economic Studies, 44(1), 115–132. doi: 10.1080/00074910802008053
Destiarni, R. P., Arifiyanti, N., & Jamil, A. S. (2024). An Almost Ideal Demand System approach in analysing demand for Indonesian imported rice. BIO Web of Conferences, 119. doi: 10.1051/bioconf/202411902014
Dumdumaya, C. E., & Cabrera, J. S. (2023). Determination of future land use changes using remote sensing imagery and artificial neural network algorithm: A case study of Davao City, Philippines. Artificial Intelligence in Geosciences, 4, 111–118. doi: 10.1016/j.aiig.2023.08.002
Entahabu, H. H., Minale, A. S., & Birhane, E. (2023). Modeling and Predicting Land Use/Land Cover Change Using the Land Change Modeler in the Suluh River Basin, Northern Highlands of Ethiopia. Sustainability (Switzerland), 15(10). doi: 10.3390/su15108202
Etim, N. M., Ivo, H. C., & Attah, A. U. (2024). Effects of Urban Growth on Peri-Urban Agriculture: A Review. In Inter-national Journal of Research Publication and Reviews Journal homepage, 5(5).
Fahri, A., Kolopaking, L. M., Dedi, D., & Hakim, B. (2014). The Rate of Paddy Field Conversion into Oil Palm Planta-tions, Its Determinant Factors, and Its Impact on Rice Production in Kampar Regency, Riau. In Jurnal Pengka-jian dan Pengembangan Teknologi Pertanian, 17(1).
FAO. (1995). Dimensions of Need: An Atlas of Food and Agriculture (T. Loftas, Ed.). Food and Agriculture Organiza-tion of United Nations. Retrieved From https://ia800205.us.archive.org/
Gilbert, K. M., & Shi, Y. (2024). Urban Growth Monitoring and Prediction Using Remote Sensing Urban Monitoring In-dices Approach and Integrating CA-Markov Model: A Case Study of Lagos City, Nigeria. Sustainability (Swit-zerland), 16(1). doi: 10.3390/su16010030
Jiang, L., Wu, S., Liu, Y., & Yang, C. (2021). Grain security assessment in Bangladesh based on supply-demand balance analysis. PLoS ONE, 16(5 May). doi: 10.1371/journal.pone.0252187
Kayitesi, N. M., Guzha, A. C., Tonini, M., & Mariethoz, G. (2024). Land use land cover change in the African Great Lakes Region: a spatial–temporal analysis and future predictions. Environmental Monitoring and Assessment, 196(9). doi: 10.1007/s10661-024-12986-4
Kou, J., Wang, J., Ding, J., & Ge, X. (2023). Spatial Simulation and Prediction of Land Use/Land Cover in the Transna-tional Ili-Balkhash Basin. Remote Sensing, 15(12). doi: 10.3390/rs15123059
Manjarrez-Domínguez, C., Uc-Campos, M. I., Esparza-Vela, M. E., Baray-Guerrero, M. D. R., Giner-Chávez, O., & San-tellano-Estrada, E. (2023). Geospatial-Temporal Dynamics of Land Use in the Juárez Valley: Urbanization and Displacement of Agriculture. Sustainability (Switzerland), 15(11). doi: 10.3390/su15118499
Michael Lipton. (1976). Why Poor People Stay Poor Urban Bias in World Development. Australian National University Press.
Molla, M. B., Gelebo, G., & Girma, G. (2024). Urban expansion and agricultural land loss: a GIS-Based analysis and po-licy implications in Hawassa city, Ethiopia. Frontiers in Environmental Science, 12. doi: 10.3389/fenvs.2024.1499804
Munibah, K., Ambarwulan, W., Studi Pengelolaan Sumberdaya Alam dan Lingkungan, P., Pascasarjana, S., Sain dan Teknologi, F., Purwokerto, U., & Badan Riset dan Inovasi Nasional, P. (2024). Policy Directions Toward Rice Self-Sufficiency in Banyumas Regency, Central Java. Risalah Kebijakan Pertanian Dan Lingkungan. IOP Conference Series: Earth and Environmental Science, 11(1), 33–45.
Oort, P. A. J. Van, Saito, K., Tanaka, A., Amovin-Assagba, E., & ... (2015). Assessment of rice self-sufficiency in 2025 in eight African countries. … Food Security. Retriefed From https://www.sciencedirect.com/science/article/pii/S2211912415000036
Owubah, C. (2024). 2024 Hunger Funding Gap Report. Retriefed From https://www.actionagainsthunger.org/app/uploads/2024/01/Action-Against-Hunger-2024-Hunger-Funding-Gap-Report.pdf
Park, M., Lee, J., & Won, J. (2024). Navigating Urban Sustainability: Urban Planning and the Predictive Analysis of Bu-san’s Green Area Dynamics Using the CA-ANN Model. Forests, 15(10). doi: 10.3390/f15101681
Pratami, M., Susiloningtyas, D., & Supriatna. (2019). Modelling cellular automata for the development of settlement area Bengkulu City. IOP Conference Series: Earth and Environmental Science, 311(1). doi: 10.1088/1755-1315/311/1/012073
Purbiyanti, E., Yazid, M., & Januarti, I. (2017). Paddy Field Conversion in Indonesia and Its Influence on the Govern-ment Rice Procurement Price (HPP) Policy. Jurnal Manajemen Dan Agribisnis. Retrieved From https://doi.org/10.17358/jma.14.3.209. In Indonesia
Rizqi, B., & Manessa, M. D. M. (2025). Urban expansion and rice supply vulnerability: a modeling approach in propo-sed new autonomous region (PNAR) of Purwokerto, Indonesia. IOP Conference Series: Earth and Environ-mental Science, 1556(1). doi: 10.1088/1755-1315/1556/1/012095
Saleh, T. W., Lakitan, B., Budianta, D., Yamin, M., Sulastri, M. A., Cahya, G., & Huanza, M. (2025). The Impact of Rice Import Policy on Grain and Rice Prices in Indonesia (Case Study of Rice Import Data 2017-2023). IOP Conference Series: Earth and Environmental Science, 1482(1). doi: 10.1088/1755-1315/1482/1/012035
Setiadi, H., Dimyati, M., Rizqihandari, N., Restuti, R. C., Indratmoko, S., & Handayani, T. (2021). Paddy Field Conver-sion In Indonesia In A Contemporary Geographic Perspective: A Conceptual Overview Of Human-Nature Dia-lectics. Jurnal Geografi, 13(2), 195–210.
Setiartiti, L. (2021). Critical Point of View: The Challenges of Agricultural Sector on Governance and Food Security in Indonesia. E3S Web of Conferences, 232. doi: 10.1051/e3sconf/202123201034
Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of Ame-rica, 109(40), 16083–16088. doi: 10.1073/pnas.1211658109
Simon, D. (2008). Urban environments: Issues on the peri-urban fringe. Annual Review of Environment and Resources, 33, 167–185. doi: 10.1146/annurev.environ.33.021407.093240
Siregar, R. K. (2018). Analysis of the Factors Influencing Rice Imports in Indonesia [Institut Agama Islam Negeri Pa-dasidimpuan]. Retrieved From https://etd.uinsyahada.ac.id/1424/1/14%20402%2000035.pdf. In Indonesia
Siti Syamsiar. (2013). Rice Production and the Availability of Agricultural Land Resources to Strengthen Food Self-Sufficiency in the Special Region of Yogyakarta (DIY). SEPA : Vol. 9, 183–189. In Indonesia
Skar, S. L. G., Pineda-Martos, R., Timpe, A., Pölling, B., Bohn, K., Külvik, M., Delgado, C., Pedras, C. M. G., Paço, T. A., Ćujic, M., Tzortzakis, N., Chrysargyris, A., Peticila, A., Alencikiene, G., Monsees, H., & Junge, R. (2020). Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Systems, 2(1), 1–27. doi: 10.2166/bgs.2019.931
Statistics Indonesia. (2025). Rice Imports by Major Country of Origin, 2017–2024. Retrieved From https://www.bps.go.id
Sugandhi, N., Supriatna, S., Kusratmoko, E., & Rakuasa, H. (2022). Prediction of Land Cover Change in Sirimau Dis-trict, Ambon City Using Cellular Automata–Markov Chain. JPG (Jurnal Pendidikan Geografi), 9(2). doi: 10.20527/jpg.v9i2.13880. In Indoneisa
Susanto, S., & Suhono, A. H. B. (2019). An analysis of irrigated paddy land contribution to maintain regional self suffi-ciency of food (rice) at Bantul regency of the special province of Yogyakarta. IOP Conference Series: Earth and Environmental Science, 355(1). doi: 10.1088/1755-1315/355/1/012016
Uddin, M. S., Mahalder, B., & Mahalder, D. (2023). Assessment of Land Use Land Cover Changes and Future Predic-tions Using CA-ANN Simulation for Gazipur City Corporation, Bangladesh. Sustainability (Switzerland), 15(16). doi: 10.3390/su151612329
Valero Medina, J. A., & Alzate Atehortúa, B. E. (2019). Comparison of maximum likelihood, support vector machines, and random forest techniques in satellite images classification. Tecnura, 23(59), 13–26. doi: 10.14483/22487638.14826
Wahyunto, & Widiastuti, F. (2014). The Role of Paddy Field on Food Resilience and National Food Self Sufficency. Jurnal Sumberdaya Lahan Edisi Khusus, 12, 17–30.
Woltjer, J. (2014). A Global Review on Peri-Urban Development and Planning. Jurnal Perencanaan Wilayah Dan Kota, 25(1), 1–16.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Bayu Rizqi, Masita Dwi Mandini Manessa

This work is licensed under a Creative Commons Attribution 4.0 International License.















