Spatial Analysis of Flood-Prone Areas in Padang Terap, Kedah: Integrating Spatial Autocorrelation and Optimized Hotspot Analysis

Authors

  • Azizul Ahmad Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Universiti Malaysia Sarawak (UNIMAS), Datuk Mohammad Musa Road, 94300 Kota Samarahan, Sarawak
    Malaysia
    https://orcid.org/0000-0003-3710-5626
  • Mohd Zulhafiz Said Faculty of Human Ecology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
    Malaysia
    https://orcid.org/0000-0002-2605-6921
  • Salfarina Abdul Gapor School of Business and Social Sciences, Albukhary International University, Jalan Tun Abdul Razak, 05200, Alor Setar, Kedah
    Malaysia
    https://orcid.org/0000-0002-7945-5854
  • Lindah Roziani Jamru Geographic Section, Faculty Social Sciences & Humanities, Universiti Malaysia Sabah (UMS), 88400 Kota Kinabalu, Sabah
    Malaysia
    https://orcid.org/0000-0002-2870-884X
  • Norita Jubit Borneo Institute for Indigenous Studies (BorIIS), Universiti Malaysia Sabah (UMS), 88400 Kota Kinabalu, Sabah
    Malaysia
    https://orcid.org/0000-0003-3105-9665
  • Sumayyah Aimi Mohd Najib Faculty of Human Sciences, Universiti Pendidikan Sultan Idris (UPSI), 35900 Tanjung Malim, Perak
    Malaysia
    https://orcid.org/0000-0003-3684-9754
  • Tarmiji Masron Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Universiti Malaysia Sarawak (UNIMAS), Datuk Mohammad Musa Road, 94300 Kota Samarahan, Sarawak
    Malaysia
    https://orcid.org/0009-0003-8390-2236
  • Nur Afiqah Ariffin HS Innovators Sdn Bhd, No. 5U-1A-04, Level 1, Block 5, Pusat Daerah Seksyen 6, Jalan Cenderawasih 6/7, Seksyen 6, 40000 Shah Alam, Selangor
    Malaysia
    https://orcid.org/0009-0002-0833-5473
  • Yaniza Shaira Zakaria Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu
    Malaysia
    https://orcid.org/0009-0004-0161-057X

DOI:

https://doi.org/10.23917/forgeo.10133

Keywords:

flood prone area, optimized hotspot analysis, padang terap, spatial analysis, spatial autocorrelation

Abstract

Flooding increasingly threatens socio-economic resilience in Malaysia, particularly in vulnerable districts such as Padang Terap, Kedah. Using a GIS-based framework integrating Spatial Autocorrelation (Moran’s I) and Optimized Hotspot Analysis (Getis-Ord Gi*), this study quantifies spatial clustering of flood-prone areas across four inundation levels (0.3 m–3.7 m). Results reveal intensifying positive spatial autocorrelation with rising flood depths, reflecting hydrological connectivity and topographic controls. Hotspots are consistently concentrated in Belimbing Kanan, Belimbing Kiri, and Padang Temak, emphasizing severe spatial heterogeneity in flood risk distribution. These findings demonstrate that flood hazards are not randomly dispersed but spatially structured, necessitating geographically targeted risk mitigation strategies. Incorporating hotspot insights into planning can optimize resource allocation, strengthen adaptive capacity, and inform flood-resilient urban development. This research advocates for integrating fine-scale spatial analyses into national disaster frameworks to enhance Malaysia’s climate resilience agenda. Future work should embed socio-economic vulnerability metrics and spatiotemporal models to refine flood risk governance and promote equitable, anticipatory disaster management.

Downloads

Download data is not yet available.

Author Biography

Azizul Ahmad, Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences & Humanities (FSSH), Universiti Malaysia Sarawak (UNIMAS), Datuk Mohammad Musa Road, 94300 Kota Samarahan, Sarawak

 

 

References

Abante, A. M. R. (2021). Geophilosophical Realness of Risk: A Case Study in National Housing Authority Resettlement Sites in Albay, Philippines. SN Applied Sciences, 3(4), 494. doi: 10.1007/s42452-021-04442-6

Abid, S. K., Sulaiman, N., Al-Wathinani, A. M., & Goniewicz, K. (2024). Community-based Flood Mitigation in Malay-sia: Enhancing Public Participation and Policy Effectiveness for Sustainable Resilience. Journal of Global Health, 14, 04290. doi: 10.7189/jogh.14.04290

Ahmad Azami, N. I., Yusoff, N., & Ku-Mahamud, K. R. (2017). Data Acquisition and Discretization for Flood Correla-tion Model. Journal of Theoretical and Applied Information Technology, 95(4), 879–889.

Ahmad, A., Masron, T., Junaini, S. N., Jamian, M. A. H., Barawi, M. H., Kimura, Y., Jubit, N., & Rainis, R. (2025). Ana-lyzing Burglary Dynamics through Land Use in Selangor, Kuala Lumpur, and Putrajaya: A Space-Time EHSA Approach. Indonesian Journal of Geography, 57(2). doi: 10.22146/ijg.101678

Ahmad, A., Masron, T., Mohd Ali, A. S., Barawi, M. H., Nordin, Z. S., Abg Ahmad, A. I., Redzuan, M. S., & Bismelah, L. H. (2024). Exploring the Potential of Geographic Information System (GIS) Application for Understanding Spatial Distribution of Violent Crime Related to United Nations Sustainable Development Goals-16 (SDGS-16). Journal of Sustainability Science and Management, 19(9), 35–63. doi: 10.46754/jssm.2024.09.003

An, T. T., Raghavan, V., Long, N. V., Izuru, S., & Tsutsumida, N. (2021). A GIS-based Approach for Flood Vulnerability Assessment in Hoa Vang District, Danang City, Vietnam. IOP Conference Series: Earth and Environmental Science, 652(012003). doi: 10.1088/1755-1315/652/1/012003

Apnews. (2024). Floods Wreak Havoc in Malaysia, Southern Thailand with Over 30 Killed, Tens of thousands displa-ced. Retrieved from https://apnews.com/article/malaysia-southern-thailand-floods-monsoon714ec6e29e11 a30a217c11a582c00a69

ArcGIS Pro 3.3. (2024a). How Optimized Hot Spot Analysis Works. Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-optimized-hot-spot-analysis-works.htm

ArcGIS Pro 3.3. (2024b). Optimized Hot Spot Analysis (Spatial Statistics). Redlands, California: Environmental Sys-tems Research Institute, Inc. (ESRI). Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/optimized-hot-spot-analysis.htm

ArcMap 10.8. (2022). Hot Spot Analysis (Getis-Ord Gi*). Redlands, California: Environmental Systems Research Insti-tute, Inc. (ESRI). Retrieved from https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/hot-spot-analysis.htm

Ariffin, N. A. (2022). Pemodelan Ruang Masa Penyakit Tuberkulosis di Pulau Pinang [Tesis ini diserahkan untuk me-menuhi keperluan bagi Ijazah Doktor Falsafah]. Universiti Sains Malaysia.

Baky, M. A. Al, Islam, M., & Paul, S. (2020). Flood Hazard, Vulnerability and Risk Assessment for Different Land Use Classes Using a Flow Model. Earth Systems and Environment, 4, 225–244. doi: 10.1007/s41748-019-00141-w

Balek, J. (1983). Hydrology and Water Resources in Tropical Regions, Developments in Water Science. Elsevier Science. Retrieved from https://shop.elsevier.com/books/hydrology-and-water-resources-in-tropical-regions/balek/978-0-444-99656-5

Baykal, T. M. (2025). Performance Assessment of GIS-Based Spatial Clustering Methods in Forest Fire Data. Natural Hazards, 121, 8445–8477. doi: 10.1007/s11069-025-07135-0

Berita Harian. (2007). Kerajaan Rugi RM1.5b. Retrieved from https://www.bharian.com.my/m/BHarian/Tuesday/Mukadepan/20070129235113/Article/

Bernama, R. (2010). Aid For Farmers Affected by Floods In Kedah, Perlis. https://www.bernama.com/bernama/v5/newsindex.php?id=541292

Bodoque, J. M., Esteban-Muñoz, Á., & Ballesteros-Cánovas, J. A. (2023). Overlooking Probabilistic Mapping Renders Urban Flood Risk Management Inequitable. Communications Earth & Environment, 4(279). doi: 10.1038/s43247-023-00940-0

Brunner, M. I., Gilleland, E., Wood, A., Swain, D. L., & Clark, M. (2020). Spatial Dependence of Floods Shaped by Spa-tiotemporal Variations in Meteorological and Land‐Surface Processes. Geophysical Research Letters, 47(13). doi: 10.1029/2020GL088000

Bukvic, A., Rohat, G., Apotsos, A., & de Sherbinin, A. (2020). A Systematic Review of Coastal Vulnerability Mapping. Sustainability, 12(7), 2822. doi: 10.3390/su12072822

Buslima, F. S., Omar, R. C., Jamaluddin, T. A., & Taha, H. (2018). Flood and Flash Flood Geo-Hazards in Malaysia. In-ternational Journal of Engineering & Technology, 7(4.35), 760–764. doi: 10.14419/ijet.v7i4.35.23103

Carto. (2025). Hotspot Analysis. Retrieved from https://carto.com/glossary/hotspot-analysis

Cea, L., & Costabile, P. (2022). Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology, 9(3), 50. doi: 10.3390/hydrology9030050

Chen, Y. (2023). Spatial Autocorrelation Equation based on Moran’s Index. Scientific Reports, 13(19296). doi: 10.1038/s41598-023-45947-x

De Risi, R., Jalayer, F., De Paola, F., & Lindley, S. (2018). Delineation of Flooding Risk Hotspots Based on Digital Eleva-tion Model, Calculated and Historical Flooding Extents: The Case of Ouagadougou. Stochastic Environmental Research and Risk Assessment, 32, 1545–1559. doi: 10.1007/s00477-017-1450-8

ESRI. (2022a). How Hot Spot Analysis (Getis-Ord Gi*) Works. Redlands, California: Environmental Systems Research Institute, Inc. (ESRI). Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-sta-ti.htm#:~:text=The%20Hot%20Spot%20Analysis%20tool,the%20context%20of%20neighboring%20features.

ESRI. (2022b). Spatial Autocorrelation (Global Moran’s I) (Spatial Statistics). Environmental Systems Research Insti-tute, Inc. (ESRI). Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/spatial-autocorrelation.htm

Evelpidou, N., Cartalis, C., Karkani, A., Saitis, G., Philippopoulos, K., & Spyrou, E. (2023). A GIS-Based Assessment of Flood Hazard through Track Records over the 1886–2022 Period in Greece. Climate, 11(11), 226. doi: 10.3390/cli11110226

Eze, J. N., Vogel, C., & Ibrahim, P. A. (2018). Assessment of Social Vulnerability of Households to Floods in Niger State, Nigeria. International Letters of Social and Humanistic Sciences, 84, 22–34. doi: 10.18052/www.scipress.com /ILSHS.84.22

Fema.Gov. (2021). Identifying Flood Risk “Hot Spots” for Mitigation Action. Retrieved from https://www.fema.gov/sites/default/files/documents/fema_identifying-flood-risk-hot-spots_mitigation-ation_region-three_06-2021.pdf

Fizri, F. F. A., Rahim, A. A., Sibly, S., Koshy, K. C., & Nor, N. M. (2014). Strengthening the Capacity of Flood-Affected Rural Communities in Padang Terap, State of Kedah, Malaysia. In Sustainable Living with Environmental Risks, 137–145. doi: 10.1007/978-4-431-54804-1_12

Fox, S., Agyemang, F., Hawker, L., & Neal, J. (2024). Integrating Social Vulnerability into High-Resolution Global Flood Risk Papping. Nature Communications, 15(3155). doi: 10.1038/s41467-024-47394-2

Gasim, M. B., Surif, S., Mokhtar, M., Toriman, Mohd. E., Abd. Rahim, S., & Bee, C. H. (2010). Analisis Banjir Disember 2006: Tumpuan di Kawasan Bandar Segamat, Johor (Flood Analysis of December 2006: Focus at Segamat Town, Johor). Sains Malaysiana, 39(3).

Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3), 189–206. doi: 10.1111/j.1538-4632.1992.tb00261.x

Gnecco, I., Pirlone, F., Spadaro, I., Bruno, F., Lobascio, M. C., Sposito, S., Pezzagno, M., & Palla, A. (2024). Participato-ry Mapping for Enhancing Flood Risk Resilient and Sustainable Urban Drainage: A Collaborative Approach for the Genoa Case Study. Sustainability, 16(5), 1936. doi: 10.3390/su16051936

Hassan, M. M., Ash, K., Abedin, J., Paul, B. K., & Southworth, J. (2020). A Quantitative Framework for Analyzing Spa-tial Dynamics of Flood Events: A Case Study of Super Cyclone Amphan. Remote Sensing, 12(20), 3454. doi: 10.3390/rs12203454

Hilmy, I. (2024). Flood Victims in Kedah and Perlis Continue to Increase, Relief Centres See Rising Numbers. The Star. Retrieved from https://www.thestar.com.my/news/nation/2024/11/30/flood-victims-in-kedah-and-perlis-continue-to-increase-relief-centres-see-rising-numbers?utm

Hooker, H., Dance, S. L., Mason, D. C., Bevington, J., & Shelton, K. (2023). Assessing the Spatial Spread–Skill of En-semble Flood Maps with Remote-Sensing Observations. Natural Hazards and Earth System Sciences, 23(8), 2769–2785. doi: 10.5194/nhess-23-2769-2023

Hummel, M. A., Akom, A., Cruz, T., Hope, A., Torres, A. J., Chow, A., & White, A. (2025). Leveraging Community-Generated Data to Enhance Flood Resilience Assessments. Natural Hazards, 121, 17391–17410. doi: 10.1007/s11069-025-07475-x

Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engi-neers, 116(1), 770–799. doi: 10.1061/TACEAT.0006518

Hussain, A. H. M. B., Islam, M., Ahmed, K. J., Haq, S. M. A., & Islam, M. N. (2021). Financial Inclusion, Financial Re-silience, and Climate Change Resilience. Handbook of Climate Change Management, 2085–2107. doi: 10.1007/978-3-030-57281-5_19

Jamru, L. R., Hashim, M., Phua, M. H., Jafar, A., Sakke, N., Eboy, O. V., Imang, U., Natar, M., Ahmad, A., & Mohd Na-jid, S. A. (2024). Exploring Intensity Metrics in Raw LiDAR Data Processing for Tropical Forest. IOP Confe-rence Series: Earth and Environmental Science, 12th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing 29/04/2024 - 30/04/2024 Kuala Lumpur, Malaysia, 1412(012005), 1–13. doi: 10.1088/1755-1315/1412/1/012005

jps@komuniti. (2011). 1. Profil Daerah: JPS Padang Terap. Retrieved from https://web.archive.org/web/20170205122827/http://apps.water.gov.my/jpskomuniti/dokumen/PDG%20TERAP_%20PROFIL_%20APRIL_%202011.pdf

Jubit, N., Masron, T., Redzuan, M. S., Ahmad, A., & Kimura, Y. (2024). Revealing Adolescent Drug Trafficking and Addiction: Exploring School Disciplinary and Drug Issues in The Federal Territory of Kuala Lumpur and Selan-gor, Malaysia. International Journal of Geoinformatics, 20(6), 1–12. doi: 10.52939/ijg.v20i6.3327

Jubit, N., Masron, T., Soda, R., Ahmad, A., & Nordin, M. N. (2025). Exploring Spatial Relationship in Criminal Beha-vior: A Spatial Analysis of Offenders’ Homes and Theft Locations in Kuching, Sarawak, Malaysia. Forum Geografi, 39(2), 222–237. https://doi.org/10.23917/forgeo.v39i2.8104

Karim, A. H. M. Z., Hazizan, Md. N., Diah, N. M., Tajuddin, N. A., & Mustari, S. (2016). Torrential Floods in Malaysia: Assessing the Loss and Vulnerabilities in Three Kelantan Villages. Mediterranean Journal of Social Sciences, 7(5), 192–201. doi: 10.5901/mjss.2016.v7n5p192

Kashyap, S., & Mahanta, R. (2021). Socioeconomic Vulnerability to Urban Floods in Guwahati, Northeast India: An Indicator-Based Approach. In Economic Effects of Natural Disasters: Theoretical Foundations, Methods, and Tools, 457–475. doi: 10.1016/B978-0-12-817465-4.00027-3

Kathirgugan, K. (2021). Malaysia Drowning in Decades of Flood Mitigation Failures. Free Malaysia Today (FMT). Re-trieved from https://www.freemalaysiatoday.com/category/highlight/2021/01/12/malaysia-drowning-in-decades-of-flood-mitigation-failures/?utm

Keya, T. A., Sreeramanan, S., Siventhiran, S., Maheswaran, S., Selvan, S., Fernandez, K., An, L. J., Leela, A., Prahan-kumar, R., Lokeshmaran, A., & Boratne, A. (2024). Flood Susceptibility Mapping for Kedah State, Malaysia: Geographics Information System-Based Machine Learning Approach. Medical Journal of Dr. D.Y. Patil Vi-dyapeeth, 17(5), 990–1003. doi: 10.4103/mjdrdypu.mjdrdypu_985_23

Khodaei, H., Nasiri Saleh, F., Nobakht Dalir, A., & Zarei, E. (2025). Future Flood Susceptibility Mapping Under Climate and Land Use Change. Scientific Reports, 15(12394). doi: 10.1038/s41598-025-97008-0

Kim, H., Lee, D.-K., & Sung, S. (2016). Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability. Sustainability, 8(2), 134. doi: 10.3390/su8020134

Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C. J. H., Apel, H., Aronica, G. T., Arnbjerg‐Nielsen, K., Bouwer, L. M., Bubeck, P., Caloiero, T., Chinh, D. T., Cortès, M., Gain, A. K., Giampá, V., Kuhlicke, C., Kundzewicz, Z. W., Llasat, M. C., Mård, J., Matczak, P., … Merz, B. (2017). Adaptation to Flood Risk: Results of International Paired Flood Event Studies. Earth’s Future, 5(10), 953–965. doi: 10.1002/2017EF000606

Krichene, H., Vogt, T., Piontek, F., Geiger, T., Schötz, C., & Otto, C. (2023). The Social Costs of Tropical Cyclones. Na-ture Communications, 14(1), 7294. doi: 10.1038/s41467-023-43114-4

Kumaresen, M., Teo, F. Y., Selvarajoo, A., Sivapalan, S., & Falconer, R. A. (2025). Assessing Community Perception, Preparedness, and Adaptation to Urban Flood Risks in Malaysia. Water, 17(15), 2323. doi: 10.3390/w17152323

Landwehr, T., Dasgupta, A., & Waske, B. (2024). Towards robust validation strategies for EO flood maps. Remote Sen-sing of Environment, 315, 114439. doi: 10.1016/J.RSE.2024.114439

Leeonis, A. N., Ahmed, M. F., Halder, B., Mokhtar, M. Bin, Lim, C. K., Juneng, L., & Khirotdin, R. P. K. (2024). Mitiga-ting Flood Risk at Shah Alam, Malaysia for Sustainable Development. Discover Sustainability, 5(352). doi: 10.1007/s43621-024-00504-y

Lessy, M. R., Wahiddin, N., & Nagu, N. (2018). Flood Risk Assessment and Its Vulnerability in Coastal Villages, Central Halmahera District – North Maluku. Proceedings of the International Conference on Science and Technology (ICST 2018). doi: 10.2991/icst-18.2018.79

Liu, Y., & Huang, Y. (2020). Why Flash Floods Occur Differently across Regions? A Spatial Analysis of China. Water, 12(12), 3344. doi: 10.3390/w12123344

Madhuri, R., Raja, Y. S. L. S., Raju, K. S., Punith, B. S., & Manoj, K. (2021). Urban Flood Risk Analysis of Buildings Using HEC-RAS 2D in Climate Change Framework. H2Open Journal, 4(1), 262–275. doi: 10.2166/h2oj.2021.111

Malay Mail. (2024). Almost All 114 Hotspot Areas in Kedah Affected by Floods, says Civil Defence Force. Malay Mail. Retrieved from https://www.malaymail.com/news/malaysia/2024/10/09/almost-all-114-hotspot-areas-in-kedah-affected-by-floods-says-civil-defence-force/153067?utm

Masafu, C., & Williams, R. (2024). Satellite Video Remote Sensing for Flood Model Validation. Water Resources Research, 60(1). doi: 10.1029/2023WR034545

Masron, T., Ahmad, A., Abdillah, K. K., Junaini, S. N., Jubit, N., Kimura, Y., & Rainis, R. (2025). Analyzing Property Crime Movements in Urban Malaysia: The Role of Standard Deviational Ellipse (SDE) and Mean Center (MC) Techniques. Journal of Sustainability Science and Management, 20(12). doi: 10.46754/jssm.2025.12.003

Masron, T., Ahmad, A., Abdillah, K. K., Mohd Ali, A. S., Junaini, S. N., & Kimura, Y. (2025). Deciphering Property Crime through OLS Regression: A Demographic Study. International Social Science Journal, 75(256), 395–412. doi: 10.1111/issj.12558

Masron, T., Ahmad, A., Jubit, N., Sulaiman, M. H., Rainis, R., Redzuan, M. S., Junaini, S. N., Jamian, M. A. H., Mohd Ali, A. S., Salleh, M. S., Zaini, F., Soda, R., & Kimura, Y. (2024). Crime Map Book. Centre for Spatially Inte-grated Digital Humanities (CSIDH), Faculty of Social Sciences and Humanities, Universiti Malaysia Sarawak. Retrieved from https://www.researchgate.net/publication/384572873_Crime_Map_Book

Masron, T., Ahmad, A., Mohd Sahid, M. F., Junaini, S. N., Kimura, Y., & Zaini, F. (2025). Mapping Danger Zones: GIS-Based Spatiotemporal Analysis of Assaults in Kuala Lumpur and Putrajaya, Malaysia. International Social Science Journal, 75(257), 731–749. doi: 10.1111/issj.12583

Masron, T., Ahmad, A., Zanudin, K., Zainun, N., & Rainis, R. (2025). Urban Property Crime: Examining the Rela-tionship Between Property Crime With Land Use and Demographic Factor. International Social Science Jour-nal, 75(257), 521–535. doi: 10.1111/issj.12568

Masron, T., Marzuki, A., Yaakub, N. F., Nordin, M. N., & Jubit, N. (2021). Spatial Analysis of Crime Hot-Spot in the Northeast Penang Island District and Kuching District, Malaysia. Planning Malaysia: Journal of the Malaysian Institute of Planners, 19(5), 26–39. doi: 10.21837/pm.v19i19.1057

Masron, T., Wan Hussin, W. M. T., Nordin, M. N., Yaakub, N. F., & Jamian, M. A. H. (2019). Applying GIS in Analysing Black Spot Areas in Penang, Malaysia. Indonesian Journal of Geography, 50(2), 113–114. doi: 10.22146/ijg.27440

Mohamad Rasidi, M. N., Sahani, M., Othman, H., Hod, R., Idrus, S., Mohd Ali, Z., Choy, E. A., & Rosli, M. H. (2013). Aplikasi Sistem Maklumat Geografi untuk Pemetaan Reruang-Masa: Suatu Kajian Kes Denggi di Daerah Se-remban, Negeri Sembilan, Malaysia. Sains Malaysiana, 42(8), 1073–1080.

Mohamad Rosni, R. I. (2024). MYS: Flood - 11-2024 - Monsoon Transition Phase Flood 2024. Retrieved from https://go.ifrc.org/field-reports/17392?utm

Mohd Ali, A. S., Masron, T., Junaini, S. N., Kimura, Y., Ahmad, A., & Bismelah, L. H. (2025). Aging in Motion: Mapping the Dynamic Interplay Between Urban Growth and Senior Citizen Density in Sarawak, Malaysia (1980-2020). International Social Science Journal. doi: 10.1111/issj.12594

Muhadi, N. A., Abdullah, A. F., Bejo, S. K., Mahadi, M. R., & Mijic, A. (2020). The Use of LiDAR-Derived DEM in Flood Applications: A Review. Remote Sensing, 12(14), 2308. doi: 10.3390/rs12142308

Muhamad Ludin, A. N., Abd. Aziz, N., Hj Yusoff, N., & Wan Abd Razak, W. J. (2013). Impacts of Urban Land Use on Crime Patterns Through GIS Application. Planning Malaysia: Journal of the Malaysian Institute of Planners. (Special Issue 2: 2013, Geospatial Analysis in Urban Planning), 11(2), 1–22. doi: 10.21837/pm.v11i2.113

Müller, A., Reiter, J., & Weiland, U. (2011). Assessment of Urban Vulnerability Towards Floods Using an Indicator-Based Approach – A Case Study for Santiago de Chile. Natural Hazards and Earth System Sciences, 11(8), 2107–2123. doi: 10.5194/nhess-11-2107-2011

Nair, D. G., & Aravind, N. P. (2020). Association between Rainfall and the Prevalence of Clinical Cases of Dengue in Thiruvananthapuram District, India. International Journal of Mosquito Research, 7(6), 46–50. doi: 10.22271/23487941.2020.v7.i6a.488

Nasiri, H., Mohd Yusof, M. J., & Mohammad Ali, T. A. (2016). An Overview to Flood Vulnerability Assessment Methods. Sustainable Water Resources Management, 2(3), 331–336. doi: 10.1007/s40899-016-0051-x

Nasution, B. I., Saputra, F. M., Kurniawan, R., Ridwan, A. N., Fudholi, A., & Sumargo, B. (2022). Urban Vulnerability to Floods Investigation in Jakarta, Indonesia: A Hybrid Optimized Fuzzy Spatial Clustering and News Media Analysis Approach. International Journal of Disaster Risk Reduction, 83(103407). doi: 10.1016/J.IJDRR.2022.103407

Nordin, M. N., Masron, T., Jubit, N., & Yunos, N. (2022). The Spatial Relationship Between Drug Abuse and Home Bur-glaries: Northeast District of Penang. International Journal of Current Science Research and Review, 5(7). doi: 10.47191/ijcsrr/V5-i7-11

Nugraha, A. L. (2018). Peningkatan Akurasi dan Presisi Analisa Spasial Pemodelan Banjir Kota Semarang Mengguna-kan Kombinasi Sistem Informasi Geografis Dan Metode Logika Fuzzy (Pemetaan Ancaman Banjir Kota Se-marang Menggunakan Fuzzy Logic dan SIG). Teknik: Jurnal Ilmiah Bidang Ilmu Kerekayasan, 39(1), 16–24. doi: 10.14710/teknik.v39i1.16524

O’Connell, E., O’Donnell, G., & Koutsoyiannis, D. (2022). The Spatial Scale Dependence of The Hurst Coefficient in Global Annual Precipitation Data, and Its Role in Characterising Regional Precipitation Deficits within a Natu-rally Changing Climate. Hydrology, 9(11), 199. doi: 10.3390/hydrology9110199

Papoulakos, K., Iliopoulou, T., Dimitriadis, P., Tsaknias, D., & Koutsoyiannis, D. (2025). Spatiotemporal Clustering of Streamflow Extremes and Relevance to Flood Insurance Claims: A Stochastic Investigation for the Contiguous USA. Natural Hazards, 121(1), 447–484. doi: 10.1007/s11069-024-06766-z

Pappalardo, V., & La Rosa, D. (2023). Spatial Analysis of Flood Exposure and Vulnerability for Planning More Equal Mitigation Actions. Sustainability, 15(10), 7957. doi: 10.3390/su15107957

Peiris, M. T. O. V. (2024). Assessment of Urban Resilience to Floods: A Spatial Planning Framework for Cities. Sustai-nability, 16(20), 9117. doi: 10.3390/su16209117

Pejabat Daerah dan Tanah Padang Terap. (2016). Profail Daerah Padang Terap. Laman Rasmi. Retrieved from https://web.archive.org/web/20171219153106/http://ptpt.kedah.gov.my/index.php/profail-jabatan/mengenai-kami/43-perhidmatan

Redzuan, M. S., Masron, T., Ahmad, A., Abdillah, K. K., Yusuf, A., Junaini, S. N., Jamian, M. A. H., Kimura, Y., Rainis, R., & Jubit, N. (2025). Assessing Malaysia’s Urban Security through EHSA: A Spatiotemporal Investigation of Burglary Patterns within Police Jurisdictions of Selangor, Kuala Lumpur, and Putrajaya. International Journal of Geoinformatics, 21(3), 29–49. foi: 10.52939/ijg.v21i3.3991

Reliefweb. (2010). Malaysia: Floods - Aug 2010. Retrieved from https://reliefweb.int/disaster/fl-2010-000161-mys

Reliefweb. (2024). Malaysia: Floods - Nov 2024. Retrieved from https://reliefweb.int/disaster/fl-2024-000218-mys?utm

Reliefweb. (2025). Malaysia Flood 2024 - DREF Operational Update (MDRMY011). Retrieved from https://reliefweb.int/report/malaysia/malaysia-flood-2024-dref-operational-update-mdrmy011?utm

Rezende, O. M., Ribeiro da Cruz de Franco, A. B., Beleño de Oliveira, A. K., Miranda, F. M., Pitzer Jacob, A. C., Martins de Sousa, M., & Miguez, M. G. (2020). Mapping the Flood Risk to Socioeconomic Recovery Capacity Through a Multicriteria Index. Journal of Cleaner Production, 255(120251). doi: 10.1016/j.jclepro.2020.120251

Romali, N. S., & Yusop, Z. (2021). Establishment of Flood Damage Function Model for Urban Area in Kuantan: A Pre-liminary Study. IOP Conference Series: Materials Science and Engineering, 1144(012066). doi: 10.1088/1757-899X/1144/1/012066

Rosmadi, H. S., Ahmed, M. F., Mokhtar, M. Bin, & Lim, C. K. (2023). Reviewing Challenges of Flood Risk Manage-ment in Malaysia. Water, 15(13), 2390. doi: 10.3390/w15132390

Rubio, C. J., Yu, I. S., Kim, H. Y., & Jeong, S. M. (2020). Index-based Flood Risk Assessment for Metro Manila. Water Supply, 20(3), 851–859. doi: 10.2166/ws.2020.010

Said, M. Z. (2017). Vulnerability and Adaptation of Flood Victims in Padang Terap District, Kedah [Unpublished PhD Thesis]. Universiti Sains Malaysia.

Said, M. Z., Abdul Gapor, S., & Hamat, Z. (2024). Flood Vulnerability and Adaptation Assessment in Padang Terap District, Kedah, Malaysia. Planning Malaysia: Journal of the Malaysian Institute of Planners, 22(2), 1–16. doi: 10.21837/pm.v22i31.1450

Salignac, F., Hanoteau, J., & Ramia, I. (2022). Financial Resilience: A Way Forward Towards Economic Development in Developing Countries. Social Indicators Research, 160(1), 1–33. doi: 10.1007/s11205-021-02793-6

Satriano, V., Ciancia, E., Pergola, N., & Tramutoli, V. (2024). A First Extension of the Robust Satellite Technique RST-FLOOD to Sentinel-2 Data for the Mapping of Flooded Areas: The Case of the Emilia Romagna (Italy) 2023 Event. Remote Sensing, 16(18), 3450. doi: 10.3390/rs16183450

Seifi, M., Haron, S. H., Abdullah, A., Masron, T., Nordin, M. N., Seifi, M., & Salah, T. (2020). Applying Geographic In-formation System to Locate the Residential Burglary Hotspots in Penang Island, Malaysia. Test Engineering & Management, 83, 13840–13846.

Shahrulnizam, M., Adzim, S., & Kamaruddin, S. (2020). Flood Mitigation Measures in Urban Areas of Malaysia Using the Integrated Catchment Modelling Approach. IOP Conference Series: Earth and Environmental Science, 479(012014). doi: 10.1088/1755-1315/479/1/012014

Shrestha, S., Dahal, D., Poudel, B., Banjara, M., & Kalra, A. (2025). Flood Susceptibility Analysis with Integrated Geo-graphic Information System and Analytical Hierarchy Process: A Multi-Criteria Framework for Risk As-sessment and Mitigation. Water, 17(7), 937. doi: 10.3390/w17070937

Sibandze, P., Kalumba, A. M., H. Aljaddani, A., Zhou, L., & Afuye, G. A. (2025). Geospatial Mapping and Meteorologi-cal Flood Risk Assessment: A Global Research Trend Analysis. Environmental Management, 75, 137–154. doi: 10.1007/s00267-024-02059-0

Singer, M. (2018). Climate Change and Social Inequality. Routledge. doi: 10.4324/9781315103358

Stock, A. (2025). Choosing Blocks for Spatial Cross-Validation: Lessons from a Marine Remote Sensing Case Study. Frontiers in Remote Sensing, 6(1531097). doi: 10.3389/frsen.2025.1531097

Tanoue, M., Taguchi, R., Alifu, H., & Hirabayashi, Y. (2021). Residual Flood Damage under Intensive Adaptation. Na-ture Climate Change, 11, 823–826. doi: 10.1038/s41558-021-01158-8

The Star. (2010). Floods: More Evacuated in Kedah and Perlis. The Star. Retrieved from https://www.thestar.com.my/news/nation/2010/11/04/floods-more-evacuated-in-kedah-and-perlis?utm

United Nations Office for Disaster Risk Reduction (UNDRR). (2025). Vulnerability: Understanding Disaster Risk. Pre-vention Web. Retrieved from https://www.preventionweb.net/understanding-disaster-risk/component-risk/vulnerability#

United Nations. (2023). Flood Management and Climate Change Adaptation in Malaysia. Department of Economic and Social Affairs, Sustainable Development. Retrieved from https://sdgs.un.org/partnerships/flood-management-and-climate-change-adaptation-malaysia

Utama, L., Amrizal, Berd, I., & Zuherna. (2019). Flood Debit Analysis Based on Land Use: A Case of Batang Arau Wa-tershed, Padang. IOP Conference Series: Earth and Environmental Science, 343(012003), 1–5. doi: 10.1088/1755-1315/343/1/012003

Wang, N., Sun, F., Koutsoyiannis, D., Iliopoulou, T., Wang, T., Wang, H., Liu, W., Sargentis, G. ‐Fivos, & Dimitriadis, P. (2023). How can Changes in the Human‐Flood Distance Mitigate Flood Fatalities and Displacements? Geo-physical Research Letters, 50(20). doi: 10.1029/2023GL105064

Wang, Y., Li, H., Shi, Y., & Yao, Q. (2022). A Study on Spatial Accessibility of the Urban Stadium Emergency Response under the Flood Disaster Scenario. Sustainability, 14(24), 17041. doi: 10.3390/su142417041

Wing, O. E. J., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., Neal, J. C., Porter, J. R., & Kousky, C. (2022). Inequitable Patterns of US Flood Risk in the Anthropocene. Nature Climate Change, 12, 156–162. doi: 10.1038/s41558-021-01265-6

Yusoff, N. A., Shafii, H., & Omar, R. (2017). The Impact of Floods in Hospital and Mitigation Measures: A Literature Review. IOP Conference Series: Materials Science and Engineering, 271(012026). doi: 10.1088/1757-899X/271/1/012026

Zakaria, Y. S., Ahmad, A., Said, M. Z., Epa, A. E., Ariffin, N. A., M Muslim, A., Akhir, M. F., & Hussin, R. (2023). GIS and Oil Spill Tracking Model in Forecasting Potential Oil Spill-Affected Areas Along Terengganu and Pahang Coastal Area. Planning Malaysia: Journal of the Malaysian Institute of Planners, 21(4), 250–264. doi: 10.21837/pm.v21i28.1330

Zakaria, Y. S., Akhir, M. F., Muslim, A. M., Ariffin, N. A., & Ahmad, A. (2025). Estimating Forest Aboveground Bio-mass Density Using Remote Sensing and Machine Learning: A RSME Approach. Land Degradation & Deve-lopment. Land Degradation & Development, 36(18), 6514-6527. doi: 10.1002/ldr.70087

Zakaria, Y. S., Ariffin, N. A., Ahmad, A., Rainis, R., M. Muslim, A., & Wan Ibrahim, W. M. M. (2025). Optimizing Tu-berculosis Treatment Predictions: A Comparative Study of XGBoost with Hyperparameter in Penang, Malay-sia (Mengoptimumkan Peramalan Rawatan Tuberkulosis: Suatu Kajian Perbandingan XGBoost dengan Hiperparameter di Penang, Malaysia). Sains Malaysiana, 54(1), 3743–3754. doi: 10.17576/jsm-2025-5401-22

Zhang, H., Luo, J., Wu, J., & Yu, M. (2022). Spatial-Temporal Characteristics and Driving Factors of Flash Floods in Shaanxi Province Considering Regional Differentiation. Hydrology Research, 53(1), 156–174. doi: 10.2166/nh.2021.103

Zhou, C., Shen, H., Wu, H., Li, J., Wang, C., & Du, S. (2025). A Spatial-Explicit Analysis of Influencing Factors of Ob-served Floods in the Yangtze River Delta, China. Landscape Ecology, 40(180). doi: 10.1007/s10980-025-02201-1

Zhou, X., Ma, W., Echizenya, W., & Yamazaki, D. (2021). The Uncertainty of Flood Frequency Analyses in Hydrody-namic Model Simulations. Natural Hazards and Earth System Sciences, 21(3), 1071–1085. doi: 10.5194/nhess-21-1071-2021

Downloads

Submitted

2025-04-27

Accepted

2025-12-03

Published

2026-01-22

Issue

Section

Research article