Visual and Contextual Learning for Deep Learning Education: A Unified Tool for Theory–Practice Integration

Authors

  • Itang Enrico Pradana Mahardhika 3Faculty of Teacher Training and Education, Universitas Muhammadiyah Surakarta
    Indonesia
  • Harun Joko Prayitno Faculty of Teacher Training and Education, Universitas Muhammadiyah Surakarta
    Indonesia
  • Indri Indri Faculty of Teacher Training and Education, Universitas Muhammadiyah Surakarta
    Indonesia
  • Muhammad Ramadhan Fitriyan Faculty of Communication and Informatics, Universitas Muhammadiyah Surakarta
    Indonesia

Keywords:

deep learning, experiential learning, image classification, instructional tool, interactive visualization, natural language processing

Abstract

The rapid advancements in artificial intelligence, particularly in deep learning, demand learning methods that are not only theoretical but also applicative and intuitive. This study aims to design and develop an interactive deep learning instructional tool that integrates real-world case studies and dynamic visualizations to enhance users’ conceptual understanding and practical skills. The research employs a development methodology with a mixed-methods approach, adopting the ADDIE model and iterative formative evaluation based on Tessmer’s framework. The developed tool incorporates three primary case studies: image classification, sentiment analysis, and time-series prediction. Each case study features an interactive interface that allows users to explore data, adjust model parameters, and visualize training processes and results in real time. Formative evaluation results demonstrate the tool’s effectiveness in improving learning engagement, understanding of deep learning model mechanisms, and motivation to explore the topic further. These findings underscore the significance of experiential and visualization-based approaches in cutting-edge technology education while contributing to the development of adaptive AI-based learning media.

Downloads

Download data is not yet available.

References

Adhantoro, M. S., Anif, S., Sutopo, A., Umardhani, N. S. Z., Ulya, W., & Sopianti, H. (2025). Pelatihan Desain Digital Berbasis Canva bagi Anak Migran Indonesia di SB Kulim, Penang: Upaya Peningkatan Literasi Teknologi dan Rasa Percaya Diri. Jurnal Ilmiah Kampus Mengajar, 95-110.

Adhantoro, M. S., Gunawan, D., Prayitno, H. J., Riyanti, R. F., Purnomo, E., & Jufriansah, A. (2025). Strategic technological innovation through ChatMu: transforming information accessibility in Muhammadiyah. Frontiers in Artificial Intelligence, 8, 1446590.

Agustina, P., Astuti, R., & Agustina, L. (2025). Keterampilan Mahasiswa Calon Guru Biologi dalam Menerapkan Kurikulum Merdeka Berdasarkan Pengembangan Perangkat Pembelajaran. Proceeding Biology Education Conference, 1, 37–42.

Andyani, R. A., Shobri, M. Q., Baihaqi, M. A., Al-Kubro, P. B., & Adhantoro, M. S. (2024). Aplikasi Metode Ward dengan Berbagai Pengukuran Jarak (Studi Kasus: Klasifikasi Tingkat Perekonomian di Indonesia). Jurnal Ilmiah Kampus Mengajar, 177-190.

Baskara, F. R., Puri, A. D., & Wardhani, A. R. (2023). ChatGPT and the Pedagogical Challenge: Unveiling the Impact on Early-Career Academics in Higher Education. Indonesian Journal on Learning and Advanced Education (IJOLAE), 5(3), 311–322. https://doi.org/10.23917/ijolae.v5i3.22966

Branch, R. M. (2009). Instructional design: The ADDIE approach. Springer Science & Business Media.

Byron, L., & Wattenberg, M. (2008). Stacked Graphs–Geometry & Semantics. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1245-1252.

Chen, W., Saad, F., Yuille, A. L., & Xing, E. P. (2020). Interactive Machine Learning Education: A Visual Analytics Approach. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3313831.3376486

Chollet, F. (2018). Deep Learning with Python. Manning Publications. https://www.manning.com/books/deep-learning-with-python

Davis, L., & Wilson, S. (2024). Teaching Time Series Prediction with Deep learning: Practical Case Studies. International Conference on Deep learning for Education, Proceedings

Fata, Z., Su’ad, S., & Murtono, M. (2021). Pola Pembelajaran Guru pada Masa Pandemi Corona (Covid-19) SD Negeri Kramat 3 Kecamatan Dempet Kabupaten Demak. Profetika: Jurnal Studi Islam, 22(1), 109–118. https://doi.org/10.23917/profetika.v22i1.14769

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT press.

Hanifah, D., Prayitno, H. J., Adhantoro, M. S., Purnomo, E., Pradana, F. G., & Kurniaji, G. T. (2024, July). Utilization of" Wordwall" Media in Increasing Digital Literacy in Third-grade Students at Pajang III State Elementary School. In International Conference on Education for All (Vol. 2, No. 1, pp. 165-179).

Herreid, C. F. (2011). Case study teaching. New Directions for Teaching and Learning, 2011(128), 31–40. https://doi.org/10.1002/tl.465

Hohne, K. H., & Kroger, W. (2006). Visualization in Medicine An Overview. IEEE Transactions on Visualization and Computer Graphics, 12(5), 780-794.

Jayanti, I. T., Cahyo, A. N., Setyaningsih, E., Purnomo, E., Winarti, A., & Mawardi, M. (2022). Penguatan Pendidikan Karakter Religius di TPA (Taman Pendidikan Al-Qur’an) Nurul Yaqin Desa Jagoan. Buletin KKN Pendidikan, 4(1), 69–79. https://doi.org/10.23917/bkkndik.v4i1.19184

Jonassen, D. H. (1991). Objectivism Versus Constructivism: Do We Need A New Philosophical Paradigm? Educational Technology Research and Development, 39(3), 5–14.

https://doi.org/10.1007/BF02296434

Kahng, M., Andrews, P. Y., Kalro, A., & Chau, D. H. (2018). ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models. IEEE Transactions on Visualization and Computer Graphics, 24(1), 88–97. https://doi.org/10.1109/TVCG.2017.2744878

Kim, T., Shafto, P., & Tenenbaum, J. B. (2018). Teaching Machines Human Strategies for Learning. Trends in Cognitive Sciences, 22(8), 643–654. https://doi.org/10.1016/j.tics.2018.05.006

Kolb, D. A. (1984). Experiential learning: Experience as the Source of Learning and Development. Prentice Hall.

Kolodner, J. L. (1993). Case-Based Reasoning. Morgan Kaufmann.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444.

Liu, S., Maljovec, D., Wang, B., Bremer, P. T., & Pascucci, V. (2017). Visualizing High-Dimensional Data: Advances in the Past Decade. IEEE Transactions on Visualization and Computer Graphics, 23(3), 1249–1268. https://doi.org/10.1109/TVCG.2016.2640960

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.

https://doi.org/10.1016/j.asej.2014.04.011

Prayitno, H. J., Fitriany, D. N., Purnomo, E., Andyani, R. A., Adhantoro, M. S., Kurniaji, G. T., & Jufriansah, A. (2024, July). The Use of Audiovisual Learning Media to Enhance Digital Literacy Competence in Indonesian Language Learning Among Fifth-Grade Students at SDN 02 Baleharjo. In International Conference on Education for All (Vol. 2, No. 1, pp. 71-87).

Prince, M., & Felder, R. (2006). Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases. Journal of Engineering Education, 95(2), 123–138.

https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

Setyaningsih, N., Khotimah, R. P., Jannati, A. A., & Davi, D. R. (2024). Pendampingan Penyusunan Perangkat Pembelajaran berbasis Problem Based Learning untuk Meningkatkan Komunikasi Matematika Siswa. PengabdianMu: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 9(7), 1247–1252.

Smith, J., Brown, K., & Davis, L. (2023). Visual Case Studies in Deep learning Education. Journal of Educational Technology.

Tessmer, M. (1993). Planning and Conducting Formative Evaluations: Improving the Quality of Education and Training. Kogan Page.

Tufte, E. R. (2001). The Visual Display of Quantitative Information. Graphics press.

Zhang, L., Wang, S., & Liu, B. (2018). Deep Learning for Sentiment Analysis: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253.

https://doi.org/10.1002/widm.1253

Zhang, Q., Yang, L., & Wang, Y. (2021). Bridging the Gap between Theory and Practice in Deep Learning Education: A Case-Based Pedagogical Framework. IEEE Transactions on Education, 64(2), 111–120. https://doi.org/10.1109/TE.2021.3059432

Zhang, Y., Chen, H., & Liu, D. (2024). Integrating NLP Case Studies into Deep learning Curricula. Journal of Natural Language Processing in Education.

Downloads

Submitted

2025-07-02

Accepted

2025-07-02

Published

2025-06-30

Issue

Section

Articles