Evaluation of the Validity and Usability of the Mobile Application for Early Detection of Metabolic Syndrome: A Cross-Sectional Study

Authors

DOI:

https://doi.org/10.23917/bik.v19i1.13103

Abstract

Metabolic syndrome is a cluster of risk factors for cardiovascular disease and type 2 diabetes mellitus in adults. The development of a health application-based instrument is important. This study aims to evaluate the Content Validity Index (CVI) and System Usability Scale (SUS). This study used a cross-sectional study design. Content validity was analyzed using the Content Validity Index (CVI) method involving five experts. Researchers evaluated the usability of the application using the System Usability Scale (SUS) and tested it on nine users. Researchers analyzed the data descriptively to obtain CVI and SUS scores. The test results showed that the I-CVI value was 1.00 and the S-CVI/Average was 1.00, indicating that all items in the application were highly relevant. The SUS score was 76.11, and the application was categorized as acceptable (good), indicating that the application was easy to use and well received by users. This mobile application has excellent content validity and good usability, making it suitable for use as an early detection instrument for metabolic syndrome. This application has the potential to support health promotion and prevention efforts to reduce non-communicable diseases in the community

Downloads

Download data is not yet available.

References

Abdulrazzaq, N. A. (2022). Risk Factors Associations of Metabolic Syndrome. International Journal of Rural Development, Environment and Health Research. https://doi.org/10.22161/ijreh.6.6.1

Arifin, S. R. (2024). System Usability Scale (SUS) implementation in Ruang Baca Virtual – UT Library. MATRIX: Jurnal Manajemen Teknologi Dan Informatika, 14(1), 1–8. https://doi.org/10.31940/matrix.v14i1.1-8

Athar, M. (2024). Potentials of artificial intelligence in familial hypercholesterolemia: Advances in screening, diagnosis, and risk stratification for early intervention and treatment. International Journal of Cardiology, 132315. https://doi.org/10.1016/j.ijcard.2024.132315

Bovolini, A., Garcia, J., Andrade, M., & Duarte, J. (2020). Metabolic Syndrome Pathophysiology and Predisposing Factors. International Journal of Sports Medicine, 42, 199–214. https://doi.org/10.1055/a-1263-0898

Chen, Y., Xu, W., Zhang, W., Tong, R., Yuan, A., Li, Z., Jiang, H., Hu, L., Huang, L., Xu, Y., Zhang, Z., Sun, M., Yan, X., Chen, A., Qian, K., & Pu, J. (2023). Plasma metabolic fingerprints for large-scale screening and personalized risk stratification of metabolic syndrome. Cell Reports Medicine, 4. https://doi.org/10.1016/j.xcrm.2023.101109

Dewi, G. A. P. K., & Faozi, E. (2023). An Overview: Quality of Life of Diabetes Mellitus Type 2 Patients who Participate in The Prolanis Program in Sukoharjo Regency. Jurnal Berita Ilmu Keperawatan, 16(1 SE-Articles), 29–38. https://doi.org/10.23917/bik.v16i1.762

Duan, J., Wang, Y., Chen, L., Chen, C., & Zhang, R. (2023). Employing broad learning and non-invasive risk factor to improve the early diagnosis of metabolic syndrome. IScience, 27. https://doi.org/10.1016/j.isci.2023.108644

Elsayed, D., Al-Kuwari, M., Naeim, J., Al-Marri, A., Al-Thani, N., Al-Mohannadi, H., Al-Suliati, H., Al-Ali, A., & Doi, S. (2025). Lipid Accumulation Product Outperforms BMI and Waist Circumference in Metabolic Disorders. Metabolic Syndrome and Related Disorders. https://doi.org/10.1089/met.2024.0198

Gesteiro, E., Megía, A., Guadalupe-Grau, A., Fernández-Veledo, S., Vendrell, J., & González-Gross, M. (2021). Early identification of metabolic syndrome risk: A review of reviews and proposal for defining pre-metabolic syndrome status. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD. https://doi.org/10.1016/j.numecd.2021.05.022

Hayden, M. (2023). Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina, 59. https://doi.org/10.3390/medicina59030561

Hernández-Baixauli, J., Quesada-Vázquez, S., Mariné-Casadó, R., Cardoso, K. G., Caimari, A., Del Bas, J., Escoté, X., & Baselga-Escudero, L. (2020). Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients, 12. https://doi.org/10.3390/nu12030806

Huynh, P., Fleisch, E., Brändle, M., Kowatsch, T., & Jovanova, M. (2024). Digital health technologies for metabolic disorders in older adults: a scoping review protocol. BMJ Open, 14. https://doi.org/10.1136/bmjopen-2024-085797

Ismail, M. H., & Yulian, V. (2019). Pengaruh Dukungan Kelompok Terhadap Kualitas Hidup Penderita Diabetes Melitus. Jurnal Berita Ilmu Keperawatan, 12(2), 51–58. https://doi.org/https://doi.org/10.23917/bik.v12i2.9806

Keshet, A., Reicher, L., Bar, N., & Segal, E. (2023). Wearable and digital devices to monitor and treat metabolic diseases. Nature Metabolism, 5, 563–571. https://doi.org/10.1038/s42255-023-00778-y

Kurniawan, E., Nofriadi, N., & Nata, A. (2022). Penerapan System Usability Scale (Sus) Dalam Pengukuran Kebergunaan Website Program Studi Di Stmik Royal. Journal of Science and Social Research, 5(1), 43. https://doi.org/10.54314/jssr.v5i1.817

Kurniawan, F. (2024). Evaluasi Usability pada Aplikasi Glasgow Coma Scale (GCS) berbasis Android menggunakan Metode System Usability Scale (SUS). Jurnal Sains Dan Ilmu Terapan. https://doi.org/https://doi.org/10.59061/jsit.v7i2.820

Liew, M., Zhang, J., See, J., & Ong, Y. L. (2019). Usability Challenges for Health and Wellness Mobile Apps: Mixed-Methods Study Among mHealth Experts and Consumers. JMIR MHealth and UHealth, 7. https://doi.org/10.2196/12160

Liu, J., Liu, Z., Liu, C., Sun, H., Li, X., & Yang, Y. (2025). Integrating Artificial Intelligence in the Diagnosis and Management of Metabolic Syndrome: A Comprehensive Review. Diabetes/Metabolism Research and Reviews, 41. https://doi.org/10.1002/dmrr.70039

Maharani, A. P., & Purwanti, O. S. (2025). Perilaku Merokok Dengan Aktivitas Fisik Pada Pasien Diabetes Melitus Tipe 2 Di Rumah Sakit Dr. Moewardi Surakarta. Jik Jurnal Ilmu Kesehatan, 9(1), 111. https://doi.org/10.33757/jik.v9i1.1271

Maramba, I., Chatterjee, A., & Newman, C. (2019). Methods of usability testing in the development of eHealth applications: A scoping review. International Journal of Medical Informatics, 126, 95–104. https://doi.org/10.1016/J.IJMEDINF.2019.03.018

4i-Takalloo, S., Mozaffari‐khosravi, H., Mohseni, H., Mirzaei, M., & Hosseinzadeh, M. (2023). Metabolic syndrome prediction using non-invasive and dietary parameters based on a support vector machine. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD. https://doi.org/10.1016/j.numecd.2023.08.018

Mosquera-Lopez, C., & Jacobs, P. (2024). Digital twins and artificial intelligence in metabolic disease research. Trends in Endocrinology & Metabolism, 35, 549–557. https://doi.org/10.1016/j.tem.2024.04.019

Nazhiifah, R. N., & Purwanti, O. S. (2024). The impact of education on the prevention of diabetes mellitus on the level of knowledge of families with diabetes mellitus. Malahayati Nursing Journal, 07(9), 1130–1136.

Park, Y., Kang, S. H., Jang, S., & Park, E. (2022). Association between lifestyle factors and the risk of metabolic syndrome in the South Korea. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-17361-2

Periáñez, Á., Del Río, A. F., Nazarov, I., Jan’e, E., Hassan, M., Rastogi, A., & Tang, D. (2024). The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems. Health Systems & Reform, 10. https://doi.org/10.1080/23288604.2024.2387138

Putri, M. S., & Supratman, S. (2021). Gambaran Kualitas Hidup Pada Lansia Pada Aspek Hubungan Sosial Penderita Hipertensi di Wilayah Puskesmas Pajang Surakarta. Berita Ilmu Keperawatan, Vol. 14 (2, 65–72.

Quaye, L., Owiredu, W., Amidu, N., Dapare, P., & Adams, Y. (2019). Comparative Abilities of Body Mass Index, Waist Circumference, Abdominal Volume Index, Body Adiposity Index, and Conicity Index as Predictive Screening Tools for Metabolic Syndrome among Apparently Healthy Ghanaian Adults. Journal of Obesity, 2019. https://doi.org/10.1155/2019/8143179

Ramírez-Manent, J., Jover, A., Martinez, C., Tomás-Gil, P., Martí-Lliteras, P., & López-González, Á. (2023). Waist Circumference Is an Essential Factor in Predicting Insulin Resistance and Early Detection of Metabolic Syndrome in Adults. Nutrients, 15. https://doi.org/10.3390/nu15020257

Rhee, S., Kim, C., Shin, D., & Steinhubl, S. (2020). Present and Future of Digital Health in Diabetes and Metabolic Disease. Diabetes & Metabolism Journal, 44, 819–827. https://doi.org/10.4093/dmj.2020.0088

Weichbroth, P. (2020). Usability of Mobile Applications: A Systematic Literature Study. IEEE Access, 8, 55563–55577. https://doi.org/10.1109/ACCESS.2020.2981892

Yusoff, M. S. B. (2019). ABC of Content Validation and Content Validity Index Calculation. Education in Medicine Journal, 11(2), 49–54. https://doi.org/10.21315/eimj2019.11.2.6

Zheng, J., Zhang, Z., Wang, J., Zhao, R., Liu, S., Yang, G., Liu, Z., & Deng, Z. (2023). Metabolic syndrome prediction model using Bayesian optimization and XGBoost based on traditional Chinese medicine features. Heliyon, 9. https://doi.org/10.1016/j.heliyon.2023.e22727

Submitted

2025-09-27

Accepted

2025-12-29

Published

2026-02-03

How to Cite

Purwanti, O. S., Diaz Aziz Pramudita, Agus Sudaryanto, Tanjung Anita Sari Indah Kusmaningrum, Syarif Fathurozaq Wibowo, Ulfa Munawaroh Diniyah, Muhammad Hananfajri Rasyid, Danar Wasis Pambudi, Annisa Niken Larasati, & Nimas Zuhrufana. (2026). Evaluation of the Validity and Usability of the Mobile Application for Early Detection of Metabolic Syndrome: A Cross-Sectional Study. Jurnal Berita Ilmu Keperawatan, 19(1). https://doi.org/10.23917/bik.v19i1.13103

Issue

Section

Articles