Antidiabetic Activities and Phytochemical Screening of Broccoli Plants (Brassica oleracea L. var. italica)
DOI:
https://doi.org/10.23917/jnhm.v5i1.3705Keywords:
Brassica oleracea L. var. Italica,, Antidiabetic, In VivoAbstract
Diabetes mellitus is a metabolic disease that is characterized by hyperglycemia which is closely related to pancreatic β cell dysfunction and insulin resistance. Brassica oleracea L. var. italica is a member of the Brassicaceae family which has antidiabetic properties. These effects are caused by the presence of various phytochemical compounds in broccoli plants, flavonoids, tannins, saponins, alkaloids, steroids, glucosinolates, isothiocyanates, and phenolics. The aim of this review is to find out the antidiabetic activity of broccoli plants and the mechanism of action of phytochemical compounds in broccoli plants that support these benefits. The preparation of this review was sourced from articles obtained from the PubMed and Google Scholar databases with the interval 2012-2021 publication year. Based on the selected articles, it shows that the content of phytochemical compounds in broccoli plants has an effect on reducing blood sugar levels through various mechanisms. Therefore, the results of this study are expected to be used as support for the use of broccoli plants as antidiabetic agents.
Downloads
References
Alkhalidy, H., Moore, W., Zhang, Y., McMillan, R., Wang, A., Ali, M., … Liu, D. (2015). Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β -Cell Mass in Middle-Aged Obese Diabetic Mice. Journal of Diabetes Research, 2015. https://doi.org/10.1155/2015/532984
Aloo, S. O., Ofosu, F. K., Daliri, E. B. M., & Oh, D. H. (2021). UHPLC-ESI-QTOF-MS/MS metabolite profiling of the antioxidant and antidiabetic activities of red cabbage and broccoli seeds and sprouts. Antioxidants, 10(6). https://doi.org/10.3390/antiox10060852
Badoni, H., Sharma, P., Waheed, S. M., & Singh, S. (2018). Phytochemical Analysis , Antioxidant Activity and Acute Toxicity Study of Cicerarietinum and Brassica oleracea var . italica. 6(1), 20–29.
Baenas, N., Gómez-Jodar, I., Moreno, D. A., García-Viguera, C., & Periago, P. M. (2017). Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology, 127, 60–67. https://doi.org/10.1016/j.postharvbio.2017.01.010
Basha, S. C., Babu, K. R., Madhu, M., & Gopinath, C. (2017). In vitro antidiabetic activity of Sulforaphane. PTB Reports, 3(5), 47–49. https://doi.org/10.5530/PTB.2017
Baumel-Alterzon, S., Katz, L. S., Brill, G., Garcia-Ocaña, A., & Scott, D. K. (2021). Nrf2: The Master and Captain of Beta Cell Fate. Trends in Endocrinology and Metabolism, 32(1), 7–19. https://doi.org/10.1016/j.tem.2020.11.002
Budipitojo, T., Ariana, Pangestiningsih, T. W., Wijayanto, H., Kusindarta, D. L., & Musana, D. K. (2017). Studi Distribusi Glukosa Transporter 4 pada Otot Skelet Ayam Kedu Cemani (pp. 254–259). pp. 254–259.
Faoziyah, A. R., Rahmah, N. N., & Febriani, L. (2019). Pemanfaatan Tanaman Obat Sebagai Obat Tradisional sebagai Alternatif Pengobatan Herbal Pasien Hipertensi dan Diabetes Mellitus. Jurnal Pengabdian Masyarakat Al-Irsyad, I(2), 63–71.
Fitrianingsih, P., Maulana, I. T., Choesrina, R., & Aprilliani, R. (2014). Uji Aktivitas Penghambatan Alfa Amilase Ekstrak Daun. 108–115.
Govers, R. (2014). Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes and Metabolism, 40(6), 400–410. https://doi.org/10.1016/j.diabet.2014.01.005
Haryoto, Nurhardianti, N., Sujono, T. A., Suhendi, A., & Muhtadi. (2016). ANTIDIABETES MELLITUS EKSTRAK ETANOL KULIT BATANG TUMBUHAN SALA (Cynometra ramiflora L.) TERHADAP TIKUS JANTAN GALUR WISTAR YANG DIINDUKSI ALOKSAN. 4(4), 113–122.
Hossain, M. K., Dayem, A. A., Han, J., Yin, Y., Kim, K., Saha, S. K., … Cho, S. G. (2016). Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International Journal of Molecular Sciences, 17(4). https://doi.org/10.3390/ijms17040569
Jhong, C. H., Riyaphan, J., Lin, S. H., Chia, Y. C., & Weng, C. F. (2015). Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. BioFactors, 41(4), 242–251. https://doi.org/10.1002/biof.1219
Jiménez-Osorio, A. S., González-Reyes, S., & Pedraza-Chaverri, J. (2015). Natural Nrf2 activators in diabetes. In Clinica Chimica Acta (Vol. 448). Elsevier B.V. https://doi.org/10.1016/j.cca.2015.07.009
Khalid, S., Hussain, S., Ali, H., Tipu, M. K., Fatima, H., Ahmed, M., & Ur-Rehman, T. (2018). Brassica oleracea L. var. Italica plenck and cassia absus L. extracts reduce oxidative stress, alloxan induced hyperglycemia and indices of diabetic complications. Pakistan Journal of Botany, 50(2), 775–784.
Lee, S. G., Kim, J. H., Son, M. J., Lee, E. J., Park, W. D., Kim, J. B., … Lee, I. S. (2013). Influence of extraction method on quality and functionality of broccoli juice. Preventive Nutrition and Food Science, 18(2), 133–138. https://doi.org/10.3746/pnf.2013.18.2.133
Lutfiyati, H., Yuliastuti, F., Hidayat, I. W., Pribadi, P., & Kamal, S. (2018). ANTIDIABETIC ACTIVITIES OF BROCCOLI EXTRACTS (Brassica oleracea L.var italica) ON MICE INDUCED STREPTOZOTOCIN-NICOTINAMIDE. 4(4), 182–188.
Lutfiyati, H., Yuliastuti, F., Hidayat, I. W., Pribadi, P., & Pradani, M. P. K. (2017). Skrining Fitokimia Ekstrak Etanol Brokoli ( Brassica Oleracea L Var Italica ). Urecol, 6(3), 93–98.
Mahn, A., & Reyes, A. (2012). An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Science and Technology International, 18(6), 503–514. https://doi.org/10.1177/1082013211433073
Muhtadi, Primarianti, A. U., & Sujono, T. A. (2015). Antidiabetic Activity of Durian (Durio Zibethinus Murr.) and Rambutan (Nephelium Lappaceum L.) Fruit Peels in Alloxan Diabetic Rats. Procedia Food Science, 3, 255–261. https://doi.org/10.1016/j.profoo.2015.01.028
Nauck, M. A., & Meier, J. J. (2018). Incretin hormones: Their role in health and disease. Diabetes, Obesity and Metabolism, 20(October 2017), 5–21. https://doi.org/10.1111/dom.13129
Nirmaya Esthi Wulandari, Y. W. (2014). PENGARUH PEMBERIAN BROKOLI KUKUS (BRASSICA OLERACEA) TERHADAP KADAR GLUKOSA DARAH PUASA WANITA PREDIABETES. Journal of Nutrition College, 3, 547–553.
Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338(May 2020), 128119. https://doi.org/10.1016/j.foodchem.2020.128119
PERKENI. (2019). Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia 2019. Perkumpulan Endokrinologi Indonesia, 1–117.
Prawitasari, D. S. (2019). Diabetes Melitus dan Antioksidan. KELUWIH: Jurnal Kesehatan Dan Kedokteran, 1(1), 48–52. https://doi.org/10.24123/kesdok.v1i1.2496
Radünz, M., Mota Camargo, T., dos Santos Hackbart, H. C., Blank, J. P., Hoffmann, J. F., Moro Stefanello, F., & da Rosa Zavareze, E. (2021). Encapsulation of broccoli extract by electrospraying: Influence of in vitro simulated digestion on phenolic and glucosinolate contents, and on antioxidant and antihyperglycemic activities. Food Chemistry, 339(May 2020), 128075. https://doi.org/10.1016/j.foodchem.2020.128075
Riyanti, S., Ratnawati, J., & Aprilianti, S. (2019). Potensi buah okra (Abelmoschus esculentus (L.) Moench) sebagai inhibitor alfa-glukosidase. Kartika : Jurnal Ilmiah Farmasi, 6(1), 6. https://doi.org/10.26874/kjif.v6i1.122
Sahai, V., & Kumar, V. (2020). Anti-diabetic, hepatoprotective and antioxidant potential of Brassica oleracea sprouts. Biocatalysis and Agricultural Biotechnology, 25(January), 101623. https://doi.org/10.1016/j.bcab.2020.101623
Saifudin, A. (2014). Senyawa Alam Metabolit Sekunder. In Journal of Natural Medicines (Vol. 67). Yogyakarta: deepublish.
Sari, D. R., Rimbun, Yuliawati, T. H., Susanto, J., Gunawan, A., & JM, H. (2014). GLUT 4 di Jaringan Adiposa. Indonesian Journal of Clinical Pathology and Medical Laboratory, 21(3), 75–81.
Setiyorini, E., Wulandari, N. A., & Efyuwinta, A. (2018). Hubungan kadar gula darah dengan tekanan darah pada lansia penderita Diabetes Tipe 2. Jurnal Ners Dan Kebidanan (Journal of Ners and Midwifery), 5(2), 163–171. https://doi.org/10.26699/jnk.v5i2.art.p163-171
Shah, M. A., Sarker, M. M. R., & Gousuddin, M. (2016). Toxicity study of Brassica oleracea var. Italica extracts in Sprague Dawley (SD) rats. International Journal of Pharmacognosy and Phytochemical Research, 8(5), 735–741. https://doi.org/10.13140/RG.2.1.4509.3529
Singh, A. K., Jatwa, R., Purohit, A., & Ram, H. (2017). Synthetic and phytocompounds based dipeptidyl peptidase-IV (DPP-IV) inhibitors for therapeutics of diabetes. Journal of Asian Natural Products Research, 19(10), 1036–1045. https://doi.org/10.1080/10286020.2017.1307183
Srivastava, S., Shree, P., & Tripathi, Y. B. (2017). Active phytochemicals of Pueraria tuberosa for DPP-IV inhibition: In silico and experimental approach. Journal of Diabetes and Metabolic Disorders, 16(1), 1–9. https://doi.org/10.1186/s40200-017-0328-0
Vinayagam, R., & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutrition and Metabolism, 12(1), 1–20. https://doi.org/10.1186/s12986-015-0057-7
Wahyuni, A. S., Munawaroh, R., & Da’i, M. (2016). Antidiabetic mechanism of ethanol extract of black rice bran on diabetic rats. National Journal of Physiology, Pharmacy and Pharmacology, 6(2), 106–110. https://doi.org/10.5455/njppp.2015.5.1111201590
Xu, Y., Fu, J. F., Chen, J. H., Zhang, Z. W., Zou, Z. Q., Han, L. Y., … Shan, Y. J. (2018). Sulforaphane ameliorates glucose intolerance in obese mice via the upregulation of the insulin signaling pathway. Food and Function, 9(9), 4695–4701. https://doi.org/10.1039/c8fo00763b
Xu, Z., Wang, S., Ji, H., Zhang, Z., Chen, J., Tan, Y., … Cai, L. (2016). Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Scientific Reports, 6, 1–12. https://doi.org/10.1038/srep30252
Zhou, T., Liu, Z., Pei, J., Pan, D., Gao, X., Dang, Y., & Zhao, Y. (2021). Novel Broccoli-Derived Peptides Hydrolyzed by Trypsin with Dual-Angiotensin I-Converting Enzymes and Dipeptidyl Peptidase-IV-Inhibitory Activities. Journal of Agricultural and Food Chemistry, 69(37), 10885–10892. https://doi.org/10.1021/ACS.JAFC.1C02985/SUPPL_FILE/JF1C02985_SI_001.PDF
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2023 Alya Chairunnisa, Haryoto Haryoto, Ahwan Abdul
This work is licensed under a Creative Commons Attribution 4.0 International License.