Vertical and Horizontal Distribution of Aquatic Nutrient Concentrations and Sedimentary Organic Carbon in Rawa Pening Lake, Indonesia

Authors

  • Ilyas Ayub Ariseno Laboratorium Lingkungan, Fakultas Geografi, Universitas Muhammadiyah Surakarta
    Indonesia
    https://orcid.org/0009-0009-7653-9815
  • Fuja Arsita Siregar Pengelolaan Sumber Daya Perairan, Fakultas Perikanan dan Ilmu Kelautan, IPB University
    Indonesia

Keywords:

Rawa Pening, Nutrients, Sediment, Carbon

Abstract

Current information and interactions between water and sediment have not been reported, so it is necessary to describe the interaction in the C and N/P ratio of Rawa Pening lake. This research found that P is a limiting factor which indicates the need for P control. It can also be seen that DOC has a fairly strong relationship and contribution to the increase in N and P concentration. NO3 is a compound of the N group that plays the most important role in aquatic fertility. The highest sedimentary organic C was found at a depth of 10 cm with a concentration of 401 gC/kg. The lower zone of water also experiences excess nutrients, potentially leading to reduction conditions. Nutrient control is necessary to prevent microalgae growth and improve the water's oxidation state. Furthermore, the overall C/N/P interaction in water and sediment is necessary to detail the health status of the Rawa Pening waters.

Downloads

Download data is not yet available.

References

[FAO]. (2019). Standard operating procedure for soil organic carbon Walkley-Black method Titration and colorimetric method (Version 1). Food and Agriculture Organization of the United Nations.

[PP] Peraturan Pemerintah Republik Indonesia No.22, Tentang Penyelenggaran Perlindungan dan Pengelolaan Lingkungan Hidup. (2021)

Ariseno, I. A. (2025). Investigasi keberadaan mud volcano pengaruhnya terhadap komunitas bentos di waduk cengklik kabupaten boyolali [Master Thesis, IPB University]. http://repository.ipb.ac.id/handle/123456789/160435

Astuti, Y., Rahman, A., Jati, O. E., & Prakoso, K. (2024). Profil lingkungan dan kesuburan perai-ran di danau rawa pening, kabupaten semarang, jawa tengah. Jurnal Akuatiklestari, 8(1), 85–90. https://doi.org/10.31629/akuatiklestari.v8i1.7210

Bashit, N., Sasmito, B., Ani, F. Q., & Sukmono, A. (2023). Analysis of rawa pening lake mor-phometric changes for identification of land arises. Jambura Geoscience Review, 5(1), 1–11. https://doi.org/10.34312/jgeosrev.v5i1.14288

Bernhard, A. (2010). The nitrogen cycle: Processes, players, and human impact | learn science at scitable. https://www.nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/

Bhardwaj, R., & Thukral, A. K. (2005). Lake Characterisation and Classification. Dalam Statis-tical Accounting of Water Resources (S.K. Nath, hlm. 233–243). Ministry of Statistics and Programme Implementation.

Handoko, M., & Sutrisno, A. J. (2021). Spatial and temporal analysis of dissolved oxygen (Do) and biological oxygen demand (Bod) concentrations in rawa pening lake, semarang re-gency. Jurnal Geografi Gea, 21(1), 58–71. https://doi.org/10.17509/gea.v21i1.32330

Kintani, I. M., Khikmah, N., & Kamal, U. (2024). Analisis rusaknya ekologis danau rawa pening terhadap ekosistem disekitarnya berdasarkan peraturan presiden no 60 tahun 2021. Jurnal Ilmiah Wahana Pendidikan, 10(24.2), 557–567. https://jurnal.peneliti.net/index.php/JIWP/article/view/9248

Kusumastuti, L. W., Widyorini, N., & Jati, O. E. (2021). Perbedaan kelimpahan total bakteri aeromonas sp. Pada sedimen dan kerang anodonta sp. Di danau rawa pening, kabupat-en semarang. Jurnal Pasir Laut, 5(1), 26–31. https://doi.org/10.14710/jpl.2021.32220

Lakewatch, F. (1969). A beginner’s guide to water management—Lake morphometry. EDIS, 2003(6). https://doi.org/10.32473/edis-fa081-2001

Mardiatno, D., Faridah, F., Listyaningrum, N., Hastari, N. R. F., Rhosadi, I., Da Costa, A. D. S., Rahmadana, A. D. W., Lisan, A. R. K., Sunarno, S., & Setiawan, M. A. (2022). A holistic review of lake rawapening management practices, indonesia: Pillar-based and object-based management. Water, 15(1), 39. https://doi.org/10.3390/w15010039

Mbonda, A. P., Nsa Assoumou, V. P., Makaya M’voubou, M., Bogning, S., Pambou, Y.-B., Ndongo Din, Etame, J., Onguene, R., Pokrovsky, O. S., & Braun, J.-J. (2025). Distribution and fluxes of organic carbon, major, and trace elements along the hydrological continu-um in the humid tropics: Insights from the Ogooué River Basin, Gabon. Chemical Geol-ogy, 696, 123061. https://doi.org/10.1016/j.chemgeo.2025.123061

Morillo, S., Imberger, J., & Antenucci, J. (2006). Modifying the residence time and dilution ca-pacity of a reservoir by altering internal flow‐paths. International Journal of River Basin Management, 4(4), 255–271. https://doi.org/10.1080/15715124.2006.9635295

Mujiburohman, D. A., & Andari, D. W. T. (2023). Revitalization of rawa pening lake, indonesia. Environment Conservation Journal, 24(2), 83–90. https://doi.org/10.36953/ECJ.14112421

Muna, A. M., Rahman, A., Jundullah, N. I., Hayati, M. N., Aulia, N. M., & Senno, S. B. (2025). Distribusi spasial dan temporal eceng gondok di danau rawa pening. Jurnal Akuatikles-tari, 8(2), 169–175. https://doi.org/10.31629/akuatiklestari.v8i2.7120

Nada, F. M. H., Nugroho, N. P., & Sofwa, N. B. M. (2023). Lake and stream buffer zone widths’ effects on nutrient export to lake rawapening, central java, indonesia: A simple simula-tion study. Forum Geografi, 37(1). https://doi.org/10.23917/forgeo.v37i1.21537

Osgood, R. A. (1988). Lake mixis and internal phosphorus dynamics. Archiv Für Hydrobiolo-gie, 113(4), 629–638. https://doi.org/10.1127/archiv-hydrobiol/113/1988/629

Pi, X., Luo, Q., Feng, L., Xu, Y., Tang, J., Liang, X., Ma, E., Cheng, R., Fensholt, R., Brandt, M., Cai, X., Gibson, L., Liu, J., Zheng, C., Li, W., & Bryan, B. A. (2022). Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications, 13(1), 5777. https://doi.org/10.1038/s41467-022-33239-3.

Prabandini, F. A., Rudiyanti, S., & Taufani, W. T. (2021). Analisis kelimpahan dan keane-karagaman gastropoda sebagai indikator kualitas perairan di rawa pening. Pena Aku-atika : Jurnal Ilmiah Perikanan Dan Kelautan, 20(1). https://doi.org/10.31941/penaakuatika.v20i1.1267

Prasetyo, S., Anggoro, S., & Soeprobowati, T. R. (2021). The growth rate of water hyacinth (eichhornia crassipes (mart. ) Solms) in rawapening lake, central java. Journal of Eco-logical Engineering, 22(6), 222–231. https://doi.org/10.12911/22998993/137678

Prasetyo, S., Subehi, L., Anggoro, S., & Soeprobowati, T. R. (2024). Vertical distribution of dia-toms analysis to determine the condition of rawapening lake in the past through cluster analysis with the bray-curtis model. Polish Journal of Environmental Studies, 33(1), 803–813. https://doi.org/10.15244/pjoes/171643

Pratiwi, N., Imran, Z., Ayu, I. P., Iswantari, A., & Wulandari, D. Y. (2020). The phosphorus load and the variation of the trophic states of Cirata Reservoir (West java, indonesia) from 1988 to 2017. Biodiversitas Journal of Biological Diversity, 21(9). https://doi.org/10.13057/biodiv/d210931

Putra, F. A., Ekowati, T., & Arianti, F. D. (2025). Stakeholders involvement in sediment man-agement in rawa pening lake, central java, indonesia. Jurnal Penelitian Pendidikan IPA, 11(2), 1006–1016. https://doi.org/10.29303/jppipa.v11i2.10387

Quanliang, J., Xiaohua, M., Zhichun, L., Shuaidong, L., Changchun, H., Tao, H., Bin, X., & Hao, Y. (2024). New perspectives on organic carbon storage in lake sediments based on classified mineralization. CATENA, 237, 107811. https://doi.org/10.1016/j.catena.2024.107811

Rantala, M., Israde-Alcántara, I., Safaierad, R., Tylmann, W., Lepoint, G., Francus, P., Smol, J. P., Meyer-Jacob, C., Grooms, C., Mattielli, N., Metcalfe, S., Etmański, P., & Fagel, N. (2025). Anthropogenic increase in organic carbon production and burial in two tropical Mexican crater lakes. Science of The Total Environment, 971, 179041. https://doi.org/10.1016/j.scitotenv.2025.179041

Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, 176–192.

Sasmito, B., Bashit, N., & Rachmadiana, E. (2022). Analisis perubahan konsentrasi total sus-pended solid secara multitemporal menggunakan citra sentinel 2a(Studi kasus: Danau rawa pening, jawa tengah). TEKNIK, 43(2), 178–189. https://doi.org/10.14710/teknik.v43i2.46469

Soeprobowati, T. R. (2025). Sediments of time: Reading indonesia’s lakes to forecast the fu-ture. BIO Web of Conferences, 196, 02004. https://doi.org/10.1051/bioconf/202519602004

Stefan, H. (1989). Lake mixing dynamics and water quality models. Journal of the Minnesota Academy of Science, 55(1), 86–94. https://digitalcommons.morris.umn.edu/jmas/vol55/iss1/15

Tan, K.H., 2005. Soil Sampling, Preparation, and Analysis, 0 ed. CRC Press. https://doi.org/10.1201/9781482274769

Wang, J., Wei, Z.-P., Chu, Y.-X., Tian, G., & He, R. (2022). Eutrophic levels and algae growth in-crease emissions of methane and volatile sulfur compounds from lakes. Environmental Pollution, 306, 119435. https://doi.org/10.1016/j.envpol.2022.119435

Wang, S., Nie, X., Ran, F., Liao, W., Yang, C., Xiao, T., Liu, Y., Liu, Y., & Li, Z. (2025). Human activities control the source of eroded organic carbon in lake sediments over the last 100 years: Evidence from stable isotope fingerprinting. Fundamental Research, 5(3), 1097–1106. https://doi.org/10.1016/j.fmre.2023.04.015

Wulandari, S. S. (2022). Revitalization as a regulatory strategy in rawa pening lake manage-ment(Case study in dusun sido makmur, sumber rejo, semarang regency). Endogami: Jurnal Ilmiah Kajian Antropologi, 6(1), 16–31. https://doi.org/10.14710/endogami.6.1.%25p

Yu, K., Zhang, Y., He, X., Zhao, Z., Zhang, M., Chen, Y., Lang, X., & Wang, Y. (2022). Charac-teristics and environmental significance of organic carbon in sediments from Taihu Lake, China. Ecological Indicators, 138, 108796. https://doi.org/10.1016/j.ecolind.2022.108796

Zhou, C., Peng, Y., Deng, Y., Yu, M., Chen, L., Zhang, L., Xu, X., Zhao, F., Yan, Y., & Wang, G. (2022). Increasing sulfate concentration and sedimentary decaying cyanobacteria co-affect organic carbon mineralization in eutrophic lake sediments. Science of The Total Environment, 806, 151260. https://doi.org/10.1016/j.scitotenv.2021.151260

Submitted

2026-01-07

Published

2026-01-30

How to Cite

Ariseno, I. A., & Siregar, F. A. (2026). Vertical and Horizontal Distribution of Aquatic Nutrient Concentrations and Sedimentary Organic Carbon in Rawa Pening Lake, Indonesia. Tropical Climate Change, 1(2), 34–46. Retrieved from https://journals2.ums.ac.id/climate/article/view/15428