DREB1 Gene in Regulating Drought Tolerance in Cereal Plants
DOI:
https://doi.org/10.23917/bioeksperimen.v11i1.10172Keywords:
DREB1, cereal plants, drought, transcription factorsAbstract
This study aims to explain the role of the DREB1 gene in increasing drought tolerance in plants with an emphasis on recent advances in genetic engineering. In this research, the method used is a literature review by collecting library data, reading and taking notes, and critically managing research data related to the DREB1 gene. In this research, data analysis starts by examining the results from studies that are most relevant to the research problem. The results of the literature review obtained indicate that the DREB1 gene is a transcription factor that plays a role in regulating a number of other genes related to drought characteristics. The DREB genes participate in hormone signalling pathways and regulate proteins that interact with downstream genes to improve plant stress tolerance. When there is a drought, seedlings that have the DREB gene inserted have a survival rate of 36%, while plants without the DREB gene all die. These results indicate that the DREB1 gene is a positive regulatory gene for heat tolerance in plants. In this case, the transgenic lines keep their stomata partially closed, which helps maintain a minimum transpiration rate to cool the canopy and reduce the temperature of both the canopy and leaves. We achieve this by coordinating the control of stomata, minimising water loss, and preserving cell turgor, all of which prevent the plant from dying.
Downloads
References
Abbas, A., Hameed, R., Shahani, A. A. A., et al. (2024). Analysis of physio-biochemical responses and expressional profiling of DREB transcription factors for drought tolerance in Aegilops tauschii Coss. Genetic Resources and Crop Evolution, 71, 811–822. https://doi.org/10.1007/s10722-023-01661-1
Agarwal, P. K., Agarwal, P., Reddy, M. K., et al. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25(12), 1263–1274.. https://doi.org/10.1007/s00299-006-0204-8
Ahmad, F., Shah, S. H., & Jan, A. (2023). Overexpression of the DREB1A gene under stress-inducible promoter delays leaf senescence and improves drought tolerance in rice. Cereal Research Communications, 51, 851–857. https://doi.org/10.1007/s42976-023-00359-5
Ahmed, R. F., Irfan, M., Shakir, H. A., Khan, M., & Chen, L. (2020). Engineering drought tolerance in plants by modification of transcription and signalling factors. In Biotechnology and Biotechnological Equipment (Vol. 34, Issue 1, pp. 781–789). Taylor and Francis Ltd. https://doi.org/10.1080/13102818.2020.1805359
Bhattacharjee, B., Ali, A., Rangappa, K. et al. A detailed study on genetic diversity, antioxidant machinery, and expression profile of drought-responsive genes in rice genotypes exposed to artificial osmotic stress. Sci Rep 13, 18388 (2023). https://doi.org/10.1038/s41598-023-45661-8
Caccialupi, G., Milc, J., Caradonia, F., Nasar, M. F., & Francia, E. (2023). The Triticeae CBF Gene Cluster—To Frost Resistance and Beyond. Cells, 12(22), 2606. https://doi.org/10.3390/cells12222606
Chakraborty, A., Viswanath, A., Malipatil, R., Semalaiyappan, J., Shah, P., Ronanki, S., Rathore, A., Singh, S. P., Govindaraj, M., Tonapi, V. A., & Thirunavukkarasu, N. (2022). Identification of Candidate Genes Regulating Drought Tolerance in Pearl Millet. International Journal of Molecular Sciences, 23(13), 6907. https://doi.org/10.3390/ijms23136907
Chen, Y., Li, Z., Sun, T., Wang, D., Wang, Z., Zhang, C., Que, Y., Guo, J., Xu, L., & Su, Y. (2022). Sugarcane ScDREB2B-1 Confers Drought Stress Tolerance in Transgenic Nicotiana benthamiana by Regulating the ABA Signal, ROS Level and Stress-Related Gene Expression. International Journal of Molecular Sciences, 23(17), 9557. https://doi.org/10.3390/ijms23179557
Cui, J., Li, Y., Liu, H., et al. (2025). Genome-wide identification and expression analysis of CBF/DREB1 gene family in Medicago sativa L. and functional verification of MsCBF9 affecting flowering time. BMC Plant Biology, 25, 87. https://doi.org/10.1186/s12870-025-06081-0
Dubouzet, J. G., Sakuma, Y. Z. Y., Ito, Y. Y., Kasuga, M., Dubouzet, E. G., Miura, Z. S., Seki, M., Shinozaki, K., & Shinozaki, K. Y. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold responsive gene expression. Plant, 33, 751–763.
Mei, Fangming, Chen, Bin, Du, Linying, Li, Shumin, Zhu, Dehe, Chen, Nan, Zhang, Yifang, Li, Fangfang, Wang, Zhongxue, Cheng, Xinxiu, Ding, Li, Kang, Zhensheng, & Mao, Hude. (2022). A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. The Plant Cell, 34(11), 4472–449. https://doi.org/10.1093/plcell/koac248
Febrianti Salsinha, Y. C., Sebastian, A., Sutiyanti, E., Purwestri, Y. A., Indradewa, D., & Rachmawati, D. (2022). The relationship between morpho‐physiological changes and expression of transcription factors in NTT local rice cultivars as a response to drought stress. Indonesian Journal of Biotechnology, 27(1), 8–18. https://doi.org/10.22146/ijbiotech.65728
Feng, W. Q., Li, J., Long, S. X., and Wei, S. J. (2019). A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition. Plant Sci. 278, 20–31. https://doi:10.1016/j.plantsci.2018.10.009
Filyushin, M. A., Anisimova, O. K., Shchennikova, A. V., & Kochieva, E. Z. (2023). DREB1 and DREB2 Genes in Garlic (Allium sativum L.): Genome-Wide Identification, Characterization, and Stress Response. Plants, 12(13), 2538. https://doi.org/10.3390/plants12132538
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865. https://doi:10.1104/pp.124.4.1854
Hsieh T-H, J-t Lee, Y-y Charng, Chan M-T (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626. https://doi:10.1104/pp.006783
Huang, L., Wang, Y., Wang, W., Zhao, X., Qin, Q., Sun, F., Hu, F., Zhao, Y., Li, Z., Fu, B., & Li, Z. (2018). Characterization of Transcription Factor Gene OsDRAP1 Conferring Drought Tolerance in Rice. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00094
Islam, M.A., Shorna, M.N.A., Islam, S. et al. Hydrogen-rich water: a key player in boosting wheat (Triticum aestivum L.) seedling growth and drought resilience. Sci Rep 13, 22521 (2023). https://doi.org/10.1038/s41598-023-49973-7
Jan, A.U., Hadi, F., Midrarullah, A.A., Rahman, K., 2017. Role of CBF/DREB Gene Expression in Abiotic Stress Tolerance. A Review. Int. J. Hort. Agric. 2, 1-12
Jang, J., Lee, S., Kim, J.-I., Lee, S., & Kim, J. A. (2024). The Roles of Circadian Clock Genes in Plant Temperature Stress Responses. International Journal of Molecular Sciences, 25(2), 918. https://doi.org/10.3390/ijms25020918
Jia, X., Qi, E., Liu, S. et al. Physiological and Transcriptomic Analysis Reveals Drought-Stress Responses of Arabidopsis DREB1A in Transgenic Potato. Potato Res. 66, 1143–1164 (2023). https://doi.org/10.1007/s11540-023-09619-7
Khan, S., Anwar, S., Yu, S., Sun, M., Yang, Z., Gao, Z. Q., 2019. Development of drought-tolerant transgenic wheat: achievements and limitations. Int. J. Mol. Sci. 20, 3350. https://doi.org/10.3390/ijms20133350
Hai, G., Chen, S., Xie, M., Li, C., Wang, Q., Lu, Y., Tang, Y., Zhang, Z., & Yang, G. (2024). Identification of Olea europaea CBF/DREB1 Family Genes in Abnormal Temperature Stress Response. Agronomy, 14(11), 2593. https://doi.org/10.3390/agronomy14112593
Hou, Z., Li, Y., Cheng, Y., Li, W., Li, T., Du, H., Kong, F., Dong, L., Zheng, D., Feng, N., Liu, B., & Cheng, Q. (2022). Genome-Wide Analysis of DREB Genes Identifies a Novel Salt Tolerance Gene in Wild Soybean (Glycine soja). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.821647
Hu, H., Wang, X., Wu, Z., et al. (2022). Overexpression of the Polygonum cuspidatum PcDREB2A gene encoding a DRE-binding transcription factor enhances the drought tolerance of transgenic Arabidopsis thaliana. Journal of Plant Biology, 65, 505–515. https://doi.org/10.1007/s12374-021-09314-5
Gunarsih, C., Sapta Purwoko, B., Saraswati Dewi, I., Muhamad Syukur, dan, Besar Penelitian Tanaman Padi, B., Raya, J., Studi Pemuliaan dan Bioteknologi Tanaman, P., Pascasarjana, S., Pertanian Bogor, I., & Besar Bioteknologi dan Sumberdaya Genetika Pertanian Jl Tentara Pelajar No, B. (2016). Regenerasi dan Aklimatisasi Kultur Antera Enam Persilangan F1 Padi Sawah Plantlet Regeneration and Acclimatization in Rice Anther Culture of 6 F1s. In J. Agron. Indonesia (Vol. 44, Issue 2).
Kang, H. G., Kim, J., Kim, B., Jeong, H., Choi, S. H., Kim, E. K., et al. (2011). Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci. 180, 634–641. https://doi:10.1016/j.plantsci.2011.01.002
Kasuga M, Q Liu, Miura S, K Yamaguchi-Shinozaki and Shinozaki K. 1999. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor. National Biotechnology 17, 287-291.
Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350.
Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., Htwe, N., Fujita, Y., Sekita, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2015). Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.. The Plant journal : for cell and molecular biology, 81 3, 505-18 . https://doi.org/10.1111/tpj.12746
Kiselev, K. V., Ogneva, Z. V., Dubrovina, A. S., Gabdola, A. Z., Khassanova, G. Z., & Jatayev, S. A. (2024). Study of CaDreb2c and CaDreb2h Gene Sequences and Expression in Chickpea (Cicer arietinum L.) Cultivars Growing in Northern Kazakhstan under Drought. Plants, 13(15), 2066. https://doi.org/10.3390/plants13152066
Kohan, Eisa & Bagherieh-Najjar, Mohammad & Abdolzadeh, Ahmad & Geisler-Lee, Jane. (2018). Altered DREB1A Gene Expression in Arabidopsis thaliana Leads to Change in Root Growth, Antioxidant Enzymes Activity, and Response to Salinity but Not to Cold. Journal of Genetic Resources. 4. 90-104. 10.22080/JGR.2019.15528.1117
Leng, P., Zhao, J. Transcription factors as molecular switches to regulate drought adaptation in maize. Theor Appl Genet 133, 1455–1465 (2020). https://doi.org/10.1007/s00122-019-03494-y
Li, T., Huang, Y., Khadr, A., Wang, Y., Xu, Z., & Xiong, A. (2020). DcDREB1A, a DREB-binding transcription factor from Daucus carota, enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes. Environmental and Experimental Botany, 169, 103896. https://doi.org/10.1016/j.envexpbot.2019.103896
Li, W., Chen, Y., Ye, M., Lu, H., Wang, D., & Chen, Q. (2020). Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum. BMC Evolutionary Biology, 20(1). https://doi.org/10.1186/s12862-020-01710-8
Li, Z., Wang, G., Liu, X. et al. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics 22, 456 (2021). https://doi.org/10.1186/s12864-021-07799-5
Lifang Geng, Shuang Yu, Yichang Zhang, Lin Su, Wanpei Lu, Hong Zhu, Xinqiang Jiang, Transcription factor RcNAC091 enhances rose drought tolerance through the abscisic acid–dependent pathway, Plant Physiology, Volume 193, Issue 2, October 2023, Pages 1695–1712, https://doi.org/10.1093/plphys/kiad366
Liu, W., Zhao, BG., Chao, Q. et al. The Maize AP2/EREBP Transcription Factor ZmEREB160 Enhances Drought Tolerance in Arabidopsis. Tropical Plant Biol. 13, 251–261 (2020). https://doi.org/10.1007/s12042-020-09259-y
Lv, M., Luo, W., Ge, M., Guan, Y., Tang, Y., Chen, W., & Lv, J. (2022). A Group I WRKY Gene, TaWRKY133, Negatively Regulates Drought Resistance in Transgenic Plants. International Journal of Molecular Sciences, 23(19), 12026. https://doi.org/10.3390/ijms231912026
Manasa S, L., Panigrahy, M., Panigrahi, K.C.S. et al. Overview of Cold Stress Regulation in Plants. Bot. Rev. 88, 359–387 (2022). https://doi.org/10.1007/s12229-021-09267-x
Meena, R.P., Ghosh, G., Vishwakarma, H. et al. Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Mol Biol Rep 49, 7347–7358 (2022). https://doi.org/10.1007/s11033-022-07527-6
Mei, F., Chen, B., Du, L., Li, S., Zhu, D., Chen, N., Zhang, Y., Li, F., Wang, Z., Cheng, X., Ding, L., Kang, Z., & Mao, H. (2022). A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat.. The Plant cell. https://doi.org/10.1093/plcell/koac248
Muhammad Ahsan Asghar, Bushra Ahmad, Ali Raza, Bilal Adil, Hafiz Hassan Javed, Muhammad Umer Farooq, Abuzar Ghafoor, Muhammad Iftikhar Hussain, Iram Shafiq, Hassan Karim, Xin Sun, Wenyu Yang, Gábor Kocsy, Junbo Du. (2022). Shade and microbes enhance drought stress tolerance in plants by inducing phytohormones at molecular levels: a review, Journal of Plant Ecology, Volume 15, Issue 6, December 2022, Pages 1107–1117, https://doi.org/10.1093/jpe/rtac038
Mushtaq N, Munir F, Gul A, Amir R, Zafar Paracha R. (2021). Genome-wide analysis, identification, evolution and genomic organization of dehydration responsive element-binding (DREB) gene family in Solanum tuberosum. PeerJ 9:e11647 https://doi.org/10.7717/peerj.11647
Muthurajan, R., Ramanathan, V., Bansilal Shillak, A., Madhuri Pralhad, S., Shankarrao, C. N., Rahman, H., Kambale, R., Nallathambi, J., Tamilselvan, S., & Madasamy, P. (2021). Controlled Over-Expression of AtDREB1A Enhances Tolerance against Drought and Salinity in Rice. Agronomy, 11(1), 159. https://doi.org/10.3390/agronomy11010159
Nguyen, N. H., Vu, N. T., & Cheong, J.-J. (2022). Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. International Journal of Molecular Sciences, 23(21), 12918. https://doi.org/10.3390/ijms232112918
Park, S., Shi, A. & Mou, B. Genome-wide identification and expression analysis of the CBF/DREB1 gene family in lettuce. Sci Rep 10, 5733 (2020). https://doi.org/10.1038/s41598-020-62458-1
Paul, G.K., Mahmud, S., Dutta, A.K. et al. Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (Triticum aestivum L.). Sci Rep 12, 19137 (2022). https://doi.org/10.1038/s41598-022-22354-2
Polizel, A. M., Medri, M. E., Nakashima, K., Yamanaka, N., Farias, J. R. B., de Oliveira, M. C. N., Marin, S. R. R., Abdelnoor, R. V., Marcelino-Guimarães, F. C., Fuganti, R., Rodrigues, F. A., Stolf-Moreira, R., Beneventi, M. A., Rolla, A. A. P., Neumaier, N., Yamaguchi-Shinozaki, K., Carvalho, J. F. C., & Nepomuceno, A. L. (20). Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genetics and Molecular Research, 10(4), 3641–3656. https://doi.org/10.4238/2011.october.21.4
Priyono, D. M., Santoso, T. J., & Salamah, A. (2013). Screening and Integration Analysis of OsDREB1A BC4F2 and BC5F1 Generations of Transgenic Ciherang Rice (Oryza sativa L.) for High-Salinity Tolerance. MAKARA of Science Series, 17(2). https://doi.org/10.7454/mss.v17i2.2100
Rego, T.F.C., Santos, M.P., Cabral, G.B. et al. (2021). Expression of a DREB 5-A subgroup transcription factor gene from Ricinus communis (RcDREB1) enhanced growth, drought tolerance and pollen viability in tobacco. Plant Cell Tiss Organ Cult 146, 493–504. https://doi.org/10.1007/s11240-021-02082-7
Rustamova, S., Shrestha, A., Naz, A., & Huseynova, I. (2020). Expression profiling of DREB1 and evaluation of vegetation indices in contrasting wheat genotypes exposed to drought stress. Plant Gene, 100266. https://doi.org/10.1016/j.plgene.2020.100266.
Santoso, T. J., A. Apriana, A. Sisharmini, and K. R. Trijatmiko. 2012. Respon Padi Transgenik Cv. Nipponbare Generasi T1 Yang Mengandung Gen Oryza sativa Dehydration-Response Element Binding 1a (OsDREB1A) Terhadap Cekaman Salinitas. Berita Biologi. 11(2): 241-252
Shinwari, Z.K., Jan, S.A., Nakashima, K. et al. (2020). Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol Rep 14, 151–162. https://doi.org/10.1007/s11816-020-00598-6
Terletskaya, N. V., Shcherban, A. B., Nesterov, M. A., Perfil’ev, R. N., Salina, E. A., Altayeva, N. A., & Blavachinskaya, I. V. (2020). Drought Stress Tolerance and Photosynthetic Activity of Alloplasmic Lines T. dicoccum x T. aestivum. International Journal of Molecular Sciences, 21(9), 3356. https://doi.org/10.3390/ijms21093356
Wang CR, Yang AF, Yue GD, Gao Q, et al. (2008). Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127-1140.
Wang, D., Zeng, Y., Yang, X. et al. (2024). Characterization of DREB family genes in Lotus japonicus and LjDREB2B overexpression increased drought tolerance in transgenic Arabidopsis. BMC Plant Biol 24, 497. https://doi.org/10.1186/s12870-024-05225-y
Wang, H., Lu, S., Guan, X., Jiang, Y., Wang, B., Hua, J., & Zou, B. (2022). Dehydration-Responsive Element Binding Protein 1C, 1E, and 1G Promote Stress Tolerance to Chilling, Heat, Drought, and Salt in Rice. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.851731
Wang, M., Wang, L., Yu, X. et al. Enhancing cold and drought tolerance in cotton: a protective role of SikCOR413PM1. BMC Plant Biol 23, 577 (2023). https://doi.org/10.1186/s12870-023-04572-6
Wani, A.B., Noor, W., Pandit, A. et al. Upregulated expression of MYB4, DREB1 and AP37 transcription factors modulates cold stress response in high-altitude Himalayan rice via time-dependent ROS regulation. Mol Biol Rep 52, 417 (2025). https://doi.org/10.1007/s11033-025-10507-1
Wu, Y., Zhang, L., Nie, L. et al. (2022). Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics 23, 598. https://doi.org/10.1186/s12864-022-08812-1
Xiong YW and SZ Fei. 2006. Functional and phylogenetic analysis of a DREB/CBF-like gene in Perennial ryegrass (Lolium perenne L.). Planta 224, 878-888
Xu, Y., Zhang, Y., Ma, F., Zhao, J., Yang, H., Song, S., & Zhang, S. (2024). Identification of DREB Family Genes in Banana and Their Function under Drought and Cold Stress. Plants, 13(15), 2119. https://doi.org/10.3390/plants13152119
Yang, Y., Li, Y., Guo, Z., Zhao, Y., Zhou, X., Han, Y., & Lin, X. (2025). Identification of DREB gene family in foxtail millet (Setaria italica) and analysis of its expression pattern in response to abiotic stress. Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2025.1552120
Xu, Y., Hu, W., Song, S., Ye, X., Ding, Z., Liu, J., Wang, Z., Li, J., Hou, X., Xu, B., & Jin, Z. (2023). MaDREB1F confers cold and drought stress resistance through common regulation of hormone synthesis and protectant metabolite contents in banana. Horticulture Research, 10(2), uhac275, https://doi.org/10.1093/hr/uhac275
Zhou, Y., Chen, M., Guo, J., Wang, Y., Min, D., Jiang, Q., Ji, H., Huang, C., Wei, W., Xu, H., Chen, X., Li, L., Xu, Z., Cheng, X., Wang, C., Wang, C., & Ma, Y. (2020). Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Journal of Experimental Botany, 71(6), 1842–1857. https://doi.org/10.1093/jxb/erz569
Zeng, R., Zhang, X., Song, G., Lv, Q., Li, M., Fu, D., Zhang, Z., Gao, L., Zhang, S., Yang, X., Tian, F., Yang, S., & Shi, Y. (2024). Genetic variation in the aquaporin TONOPLAST INTRINSIC PROTEIN 4;3 modulates maize cold tolerance. Plant Biotechnology Journal. Advance online publication. https://doi.org/10.1111/pbi.14426
Zhao, P., Xu, Y., Chen, W., et al. (2023). A bZIP transcription factor GhVIP1 increased drought tolerance in upland cotton. Journal of Cotton Research, 6, 11. https://doi.org/10.1186/s42397-023-00148-9
Zhou, Y., Chen, M., Guo, J., Wang, Y., Min, D., Jiang, Q., et al. (2020). Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. J. Exp. Bot. 71, 1842–1857. https://doi:10.1093/jxb/erz569.
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2025 Bioeksperimen: Jurnal Penelitian Biologi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.









