Advances in Antibiotic-Loaded Nanofibers for the Treatment of Bone Infections: A Review
DOI:
https://doi.org/10.23917/pharmacon.v21i2.6986Keywords:
Antibiotic, Bone infections, Nanofibers, PolymersAbstract
Antibiotic-loaded nanofiber-based drug delivery systems represent a novel approach to treating complex bone infections, particularly osteomyelitis caused by antibiotic-resistant bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA). These systems offer localized, sustained drug release, significantly reducing systemic side effects and mitigating the development of antibiotic resistance. This review evaluates advancements in electrospun nanofibers with biodegradable polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), which ensure controlled drug release while supporting bone regeneration. A systematic search using PRISMA guidelines across ScienceDirect and ACS Publication databases (2020-2024) identified 42 relevant studies. The inclusion of bioactive agents such as hydroxyapatite in nanofibers was found to enhance antibacterial properties and accelerate tissue regeneration. The review demonstrates that antibiotic-loaded nanofibers offer a promising, targeted therapeutic alternative to conventional treatments, particularly for osteomyelitis and similar challenging bone infections. Future research directions will focus on optimizing nanofiber compositions and functionalities to better meet clinical needs, ensuring more efficient and personalized management of severe bone infections.
Downloads
References
Abdel-Rahman, L. M., Eltaher, H. M., Abdelraouf, K., Bahey-El-Din, M., Ismail, C., Kenawy, E.-R. S. R. S., & El-Khordagui, L. K. (2020). Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. Journal of Drug Delivery Science and Technology, 58(March), 101812. https://doi.org/10.1016/j.jddst.2020.101812 DOI: https://doi.org/10.1016/j.jddst.2020.101812
Abdulhussain, R., Adebisi, A., Conway, B. R., & Asare-Addo, K. (2023). Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. Journal of Drug Delivery Science and Technology, 90(November), 105156. https://doi.org/10.1016/j.jddst.2023.105156 DOI: https://doi.org/10.1016/j.jddst.2023.105156
Afshar, A., Majd, H., Harker, A., & Edirisinghe, M. (2024). Tailored binary polymer system PCL-PEO for advanced biomedical applications: Optimization, characterization and in vitro analysis. Journal of Drug Delivery Science and Technology, 95(November 2023), 105582. https://doi.org/10.1016/j.jddst.2024.105582 DOI: https://doi.org/10.1016/j.jddst.2024.105582
Ajalloueian, F., Tavanai, H., Hilborn, J., Donzel-Gargand, O., Leifer, K., Wickham, A., & Arpanaei, A. (2014). Emulsion electrospinning as an approach to Fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Research International, 2014. https://doi.org/10.1155/2014/475280 DOI: https://doi.org/10.1155/2014/475280
Akturk, A. (2023). Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications. ACS Omega, 8(6), 5553–5560. https://doi.org/10.1021/acsomega.2c06881 DOI: https://doi.org/10.1021/acsomega.2c06881
Al-Wafi, R., Mansour, S. F., AlHammad, M. S., & Ahmed, M. K. (2021). Biological response, antibacterial properties of ZrO2/hydroxyapatite/graphene oxide encapsulated into nanofibrous scaffolds of polylactic acid for wound healing applications. International Journal of Pharmaceutics, 601, 120517. https://doi.org/10.1016/j.ijpharm.2021.120517 DOI: https://doi.org/10.1016/j.ijpharm.2021.120517
Alimohammadi, M., Fakhraei, O., Moradi, A., Kabiri, M., Moradi, A., Passandideh-Fard, M., Tamayol, A., Ebrahimzadeh, M. H., & Mousavi Shaegh, S. A. (2022). Controlled release of azithromycin from polycaprolactone/chitosan nanofibrous membranes. Journal of Drug Delivery Science and Technology, 71(April), 103246. https://doi.org/10.1016/j.jddst.2022.103246 DOI: https://doi.org/10.1016/j.jddst.2022.103246
Alsulami, K. A., Bakr, A. A., Alshehri, A. A., Aodah, A. H., Almughem, F. A., Alamer, A. A., Alharbi, L. A., Alsuwayeh, D. S., Halwani, A. A., Alamoudi, A. A., Alfassam, H. A., & Tawfik, E. A. (2024). Fabrication and evaluation of ribavirin-loaded electrospun nanofibers as an antimicrobial wound dressing. Saudi Pharmaceutical Journal, 32(5), 102058. https://doi.org/10.1016/j.jsps.2024.102058 DOI: https://doi.org/10.1016/j.jsps.2024.102058
Aslam, S., Asrat, H., Liang, R., Qiu, W., Sunny, S., Maro, A., Abdallah, M., Fornek, M., Episcopia, B., & Quale, J. (2023). Methicillin-resistant Staphylococcus aureus bacteremia during the coronavirus disease 2019 (COVID-19) pandemic: Trends and distinguishing characteristics among patients in a healthcare system in New York City. Infection Control and Hospital Epidemiology, 44(7), 1177–1179. https://doi.org/10.1017/ice.2022.238 DOI: https://doi.org/10.1017/ice.2022.238
Badaraev, A. D., Tran, T. H., Drozd, A. G., Plotnikov, E. V., Dubinenko, G. E., Kozelskaya, A. I., Rutkowski, S., & Tverdokhlebov, S. I. (2023). Effect of PLGA Concentration in Electrospinning Solution on Biocompatibility, Morphology and Mechanical Properties of Nonwoven Scaffolds. Technologies, 11(5). https://doi.org/10.3390/technologies11050137 DOI: https://doi.org/10.3390/technologies11050137
Bishnoi, A., Tiwari, R. K., Chanda, S., Ajmal, G., & Bonde, G. V. (2023). Elecrospun nanofibers: The versatile platform as a drug delivery system in healthcare. Journal of Drug Delivery Science and Technology, 90(October), 105127. https://doi.org/10.1016/j.jddst.2023.105127 DOI: https://doi.org/10.1016/j.jddst.2023.105127
Boncu, T. E., Uskudar Guclu, A., Catma, M. F., Savaser, A., Gokce, A., & Ozdemir, N. (2020). In vitro and in vivo evaluation of linezolid loaded electrospun PLGA and PLGA/PCL fiber mats for prophylaxis and treatment of MRSA induced prosthetic infections. International Journal of Pharmaceutics, 573(May 2019), 118758. https://doi.org/10.1016/j.ijpharm.2019.118758 DOI: https://doi.org/10.1016/j.ijpharm.2019.118758
Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627–635. https://doi.org/10.1021/acsabm.8b00112 DOI: https://doi.org/10.1021/acsabm.8b00112
Chandika, P., Oh, G. W., Heo, S. Y., Kim, S. C., Kim, T. H., Kim, M. S., & Jung, W. K. (2021). Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Materials Science and Engineering C, 121(December 2020), 111871. https://doi.org/10.1016/j.msec.2021.111871 DOI: https://doi.org/10.1016/j.msec.2021.111871
Chou, P.-Y. Y., Lee, D., Chen, S.-H. H., Liao, C.-T. T., Lo, L.-J. J., & Liu, S.-J. J. (2022). 3D-printed/electrospun bioresorbable nanofibrous drug-eluting cuboid frames for repair of alveolar bone defects. International Journal of Pharmaceutics, 615(December 2021), 121497. https://doi.org/10.1016/j.ijpharm.2022.121497 DOI: https://doi.org/10.1016/j.ijpharm.2022.121497
Dehkordi, A. N., Shafiei, S. S., Chehelgerdi, M., Sabouni, F., Sharifi, E., Makvandi, P., & Nasrollahi, N. (2022). Highly effective electrospun polycaprolactone/ layered double hydroxide nanofibrous scaffold for bone tissue engineering. Journal of Drug Delivery Science and Technology, 76(September 2021), 103827. https://doi.org/10.1016/j.jddst.2022.103827 DOI: https://doi.org/10.1016/j.jddst.2022.103827
Gao, J., Huang, G., Liu, G., Liu, Y., Chen, Q., Ren, L., Chen, C., & Ding, Z. (2016). A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. Journal of Biomaterials Applications, 31(2), 241–249. https://doi.org/10.1177/0885328216654424 DOI: https://doi.org/10.1177/0885328216654424
Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An Overview of Poly ( lactic- co -glycolic ) Acid ( PLGA ) -Based Biomaterials for Bone Tissue Engineering. 3640–3659. https://doi.org/10.3390/ijms15033640 DOI: https://doi.org/10.3390/ijms15033640
Gill, A. S., Sood, M., Deol, P. K., & Kaur, I. P. (2023). Synthetic polymer based electrospun scaffolds for wound healing applications. Journal of Drug Delivery Science and Technology, 89(October), 105054. https://doi.org/10.1016/j.jddst.2023.105054 DOI: https://doi.org/10.1016/j.jddst.2023.105054
Hartatiek, Yudyanto, Wuriantika, M. I., Utomo, J., Nurhuda, M., Masruroh, & Santjojo, D. J. D. H. (2020). Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering. Materials Today: Proceedings, 44, 3203–3206. https://doi.org/10.1016/j.matpr.2020.11.438 DOI: https://doi.org/10.1016/j.matpr.2020.11.438
Hsiung, E., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2023). Fast-Disintegrating Nanofibrous Web of Pullulan/Griseofulvin-Cyclodextrin Inclusion Complexes. Molecular Pharmaceutics, 20(5), 2624–2633. https://doi.org/10.1021/acs.molpharmaceut.3c00074 DOI: https://doi.org/10.1021/acs.molpharmaceut.3c00074
Kamal, R., Razzaq, A., Ali shah, K., Khan, Z. U., Khan, N. U., Menaa, F., Iqbal, H., & Cui, J. (2022). Evaluation of cephalexin-loaded PHBV nanofibers for MRSA-infected diabetic foot ulcers treatment. Journal of Drug Delivery Science and Technology, 71(April), 103349. https://doi.org/10.1016/j.jddst.2022.103349 DOI: https://doi.org/10.1016/j.jddst.2022.103349
Ke re mu, A. li mu, Liang, Z. lin, Chen, L., Tu xun, A. ke bai er, A bu li ke mu, M. mai ti ai li, & Wu, Y. quan. (2024). 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects. Biomedicine and Pharmacotherapy, 172(February). https://doi.org/10.1016/j.biopha.2024.116228 DOI: https://doi.org/10.1016/j.biopha.2024.116228
Khan, R. S., Qureashi, A., Rafiq, M., Rather, A. H., Reshi, M. M., Qurashi, A., Tripathi, R. M., & Sheikh, F. A. (2024). Silk fibroin-copper nanoparticles conglomerated polyurethane fibers incorporating calcium carbonate for enhanced fluid retention, antibacterial efficacy and promotion of cell growth. Journal of Drug Delivery Science and Technology, 94(February), 105464. https://doi.org/10.1016/j.jddst.2024.105464 DOI: https://doi.org/10.1016/j.jddst.2024.105464
Kumar, V., Sharma, N., Janghu, P., Pasrija, R., Umesh, M., Chakraborty, P., Sarojini, S., & Thomas, J. (2023). Synthesis and characterization of chitosan nanofibers for wound healing and drug delivery application. Journal of Drug Delivery Science and Technology, 87(August), 104858. https://doi.org/10.1016/j.jddst.2023.104858 DOI: https://doi.org/10.1016/j.jddst.2023.104858
Lin, P., Zhang, W., Chen, D., Yang, Y., Sun, T., Chen, H., & Zhang, J. (2022). Electrospun nanofibers containing chitosan-stabilized bovine serum albumin nanoparticles for bone regeneration. Colloids and Surfaces B: Biointerfaces, 217, 112680. https://doi.org/10.1016/j.colsurfb.2022.112680 DOI: https://doi.org/10.1016/j.colsurfb.2022.112680
Lopes Gama e Silva, G., Sato de Souza de Bustamante Monteiro, M., Lopes Dias, M., Machado Costa, A., Malta Rossi, A., Paula dos Santos Matos, A., Santos-Oliveira, R., & Ricci-Junior, E. (2023). Antibiotics-loaded nanofibers fabricated by electrospinning for the treatment of bone infections. Arabian Journal of Chemistry, 16(1), 104392. https://doi.org/10.1016/j.arabjc.2022.104392 DOI: https://doi.org/10.1016/j.arabjc.2022.104392
Martin, A., Cai, J., Schaedel, A. L., van der Plas, M., Malmsten, M., Rades, T., & Heinz, A. (2022). Zein-polycaprolactone core–shell nanofibers for wound healing. International Journal of Pharmaceutics, 621(March), 121809. https://doi.org/10.1016/j.ijpharm.2022.121809 DOI: https://doi.org/10.1016/j.ijpharm.2022.121809
Megha, M., Mohan, C. C., Joy, A., Unnikrishnan, G., Thomas, J., Haris, M., Bhatt, S. G., Kolanthai, E., & Senthilkumar, M. (2024). Vanadium and strontium co-doped hydroxyapatite enriched polycaprolactone matrices for effective bone tissue engineering: A synergistic approach. International Journal of Pharmaceutics, 659(March), 124266. https://doi.org/10.1016/j.ijpharm.2024.124266 DOI: https://doi.org/10.1016/j.ijpharm.2024.124266
Menazea, A. A., Abdelbadie, S. A., & Ahmed, M. K. (2020). Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Applied Surface Science, 508, 145299. https://doi.org/10.1016/j.apsusc.2020.145299 DOI: https://doi.org/10.1016/j.apsusc.2020.145299
Mohammadalipour, M., Asadolahi, M., Mohammadalipour, Z., Behzad, T., Karbasi, S., Behzad, T., Mohammadalipour, Z., & Zamani, M. (2022). Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering. International Journal of Biological Macromolecules, 230(August), 1402–1414. https://doi.org/10.1016/j.ijbiomac.2023.123167
Mohammadalipour, M., Karbasi, S., Behzad, T., Mohammadalipour, Z., & Zamani, M. (2022). Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. International Journal of Biological Macromolecules, 220(August), 1402–1414. https://doi.org/10.1016/j.ijbiomac.2022.09.118 DOI: https://doi.org/10.1016/j.ijbiomac.2022.09.118
Niveditha, S., Veetil, V. T., Rajeeve, A. D., Cheriyan, S., Yamuna, R., & Karthega, M. (2024). Wound healing applications of β-cyclodextrin capped zinc sulphide nanoparticles impregnated electrospun polymeric nanofibrous scaffold. Journal of Drug Delivery Science and Technology, 95(March), 105597. https://doi.org/10.1016/j.jddst.2024.105597 DOI: https://doi.org/10.1016/j.jddst.2024.105597
Qian, Y., Zhou, X., Sun, H., Yang, J., Chen, Y., Li, C., Wang, H., Xing, T., Zhang, F., & Gu, N. (2018). Biomimetic Domain-Active Electrospun Sca ff olds Facilitating Bone Regeneration Synergistically with Antibacterial E ffi cacy for Bone Defects. https://doi.org/10.1021/acsami.7b14524 DOI: https://doi.org/10.1021/acsami.7b14524
Qian, Y., Zhou, X., Zhang, F., Diekwisch, T. G. H., Luan, X., & Yang, J. (2019). Triple PLGA / PCL Sca ff old Modi fi cation Including Silver Impregnation , Collagen Coating , and Electrospinning Signi fi cantly Improve Biocompatibility , Antimicrobial , and Osteogenic Properties for Orofacial Tissue Regeneration. https://doi.org/10.1021/acsami.9b07053 DOI: https://doi.org/10.1021/acsami.9b07053
Raghunathan, S., Kandasamy, S., Balakrishna Pillai, A., Senthilathiban, D. P., Thajuddin, N., Rasool Kamli, M., Sabir, J. S. M., Lee, S. Y., Kim, J. W., & Davoodbasha, M. A. (2024). Synthesis of biocomposites from microalgal peptide incorporated polycaprolactone/ κ- carrageenan nanofibers and their antibacterial and wound healing property. International Journal of Pharmaceutics, 655(March), 124052. https://doi.org/10.1016/j.ijpharm.2024.124052 DOI: https://doi.org/10.1016/j.ijpharm.2024.124052
Raizaday, A., & Chakma, M. (2024). Recent advancement in fabrication of electrospun nanofiber and its biomedical and drug delivery application – an paradigm shift. Journal of Drug Delivery Science and Technology, 94(July 2023), 105482. https://doi.org/10.1016/j.jddst.2024.105482 DOI: https://doi.org/10.1016/j.jddst.2024.105482
Rezk, A. I., Mousa, H. M., Lee, J., Park, C. H., & Kim, C. S. (2019). Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application. Journal of Coatings Technology and Research, 16(2), 477–489. https://doi.org/10.1007/s11998-018-0126-8 DOI: https://doi.org/10.1007/s11998-018-0126-8
Sam, S., Joseph, B., & Thomas, S. (2023). Exploring the antimicrobial features of biomaterials for biomedical applications. Results in Engineering, 17(March), 100979. https://doi.org/10.1016/j.rineng.2023.100979 DOI: https://doi.org/10.1016/j.rineng.2023.100979
Sen, R. K., Prabhakar, P., Verma, P., Vikram, A., Mishra, A., Dwivedi, A., Gowri, V. S., Chaurasia, J. P., Mondal, D. P., Srivastava, A. K., Dwivedi, N., & Dhand, C. (2023). Smart Nanofibrous Hydrogel Wound Dressings for Dynamic Infection Diagnosis and Control : Soft but Functionally Rigid. https://doi.org/10.1021/acsabm.3c01000 DOI: https://doi.org/10.1021/acsabm.3c01000
Serpelloni, S., Williams, M. E., Caserta, S., Sharma, S., Rahimi, M., & Taraballi, F. (2024). Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin. ACS Omega, 9(10), 11701–11717. https://doi.org/10.1021/acsomega.3c08113 DOI: https://doi.org/10.1021/acsomega.3c08113
Silva, G. L. G. e, Monteiro, M. S. de S. de B., Garófalo, D. de A., Dias, M. L., Rossi, A. M., Tude, E. M. O., Cardoso, V. da S., Vermelho, A. B., Matos, A. P. dos S., Santos-Oliveira, R., & Ricci-Júnior, E. (2023). Nanofibers containing vancomycin for the treatment of bone infections: Development, characterization, efficacy and safety tests in cell cultures. Journal of Drug Delivery Science and Technology, 87(July), 104780. https://doi.org/10.1016/j.jddst.2023.104780 DOI: https://doi.org/10.1016/j.jddst.2023.104780
Silva, G. L. G. e, Sato de Souza Bustamante Monteiro, M., dos Santos Matos, A. P., Santos-Oliveira, R., Kenechukwu, F. C., & Ricci-Júnior, E. (2022). Nanofibers in the treatment of osteomyelitis and bone regeneration. Journal of Drug Delivery Science and Technology, 67(December 2021). https://doi.org/10.1016/j.jddst.2021.102999 DOI: https://doi.org/10.1016/j.jddst.2021.102999
Sofi, H. S., Akram, T., Shabir, N., Vasita, R., Jadhav, A. H., & Sheikh, F. A. (2021). Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Materials Science and Engineering: C, 118, 111547. https://doi.org/10.1016/j.msec.2020.111547 DOI: https://doi.org/10.1016/j.msec.2020.111547
Srithep, Y., Akkaprasa, T., Pholharn, D., Morris, J., Liu, S.-J. J., Patrojanasophon, P., & Ngawhirunpat, T. (2021). Metronidazole-loaded polylactide stereocomplex electrospun nanofiber mats for treatment of periodontal disease. Journal of Drug Delivery Science and Technology, 64(August 2020), 102582. https://doi.org/10.1016/j.jddst.2021.102582 DOI: https://doi.org/10.1016/j.jddst.2021.102582
Sun, Y., Heacock, J., Chen, C., Qiu, K., Zou, L., Liu, J., & Li, Y. V. (2023). Incorporation of Gentamicin-Encapsulated Poly(lactic-co-glycolic acid) Nanoparticles into Polyurethane/Poly(ethylene oxide) Nanofiber Scaffolds for Biomedical Applications. ACS Applied Nano Materials, 6(17), 16096–16105. https://doi.org/10.1021/acsanm.3c03549 DOI: https://doi.org/10.1021/acsanm.3c03549
Taghe, S., Mirzaeei, S., Pakdaman, N., Kazemi, A., & Nokhodchi, A. (2024). Macrolide-loaded nanofibrous inserts with polycaprolactone and cellulose acetate base for sustained ocular delivery: Pharmacokinetic study in Rabbit’s eye. International Journal of Pharmaceutics, 665(August), 124699. https://doi.org/10.1016/j.ijpharm.2024.124699 DOI: https://doi.org/10.1016/j.ijpharm.2024.124699
Téllez Corral, M. A., Villamil Poveda, J. C., Roa Molina, N. S., Otero, L., Rivera Monroy, Z. J., García Castañeda, J., Parra Giraldo, C. M., & Cortés, M. E. (2024). In-vitro antibiofilm activity of polycaprolactone- poly (lactic-co-glycolic acid) nanofibers loaded amphotericin B, antimicrobial peptide LfcinB (21–25)Pal and zinc oxide for local treatment of periodontitis associated with obstructive sleep apnea. Journal of Drug Delivery Science and Technology, 94(August 2023). https://doi.org/10.1016/j.jddst.2024.105522 DOI: https://doi.org/10.1016/j.jddst.2024.105522
Udomluck, N., Lee, H., Hong, S., Lee, S.-H., & Park, H. (2020). Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Applied Surface Science, 520, 146311. https://doi.org/10.1016/j.apsusc.2020.146311 DOI: https://doi.org/10.1016/j.apsusc.2020.146311
Xiang, J., Li, Y., Ren, M., He, P., Liu, F., Jing, Z., Li, Y., Zhang, H., Ji, P., & Yang, S. (2022). Sandwich-like nanocomposite electrospun silk fibroin membrane to promote osteogenesis and antibacterial activities. Applied Materials Today, 26, 101273. https://doi.org/10.1016/j.apmt.2021.101273 DOI: https://doi.org/10.1016/j.apmt.2021.101273
Yekani, M., Maleki Dizaj, S., Sedaghat, H., Sadri Nahand, J., Saffari, M., & Memar, M. Y. (2023). Preparation, biocompatibility, and antimicrobial effects of gelatin nanofibers scaffolds containing vancomycin and curcumin. Journal of Drug Delivery Science and Technology, 90(October), 105029. https://doi.org/10.1016/j.jddst.2023.105029 DOI: https://doi.org/10.1016/j.jddst.2023.105029
Zafari, M., Aghajani, S., Mansouri Boroujeni, M., & Nosrati, H. (2020). Vancomycin-loaded electrospun polycaprolactone/nano-hydroxyapatite membrane for the treatment of blood infections. Medical Hypotheses, 144, 109992. https://doi.org/10.1016/j.mehy.2020.109992 DOI: https://doi.org/10.1016/j.mehy.2020.109992
Zhang, S., Zhao, G., Mahotra, M., Ma, S., Li, W., Lee, H. W., Yu, H., Sampathkumar, K., Xie, D., Guo, J., & Loo, S. C. J. (2024). Chitosan nanofibrous scaffold with graded and controlled release of ciprofloxacin and BMP-2 nanoparticles for the conception of bone regeneration. International Journal of Biological Macromolecules, 254, 127912. https://doi.org/10.1016/j.ijbiomac.2023.127912 DOI: https://doi.org/10.1016/j.ijbiomac.2023.127912
Zhang, X., Li, Q., Li, L., Ouyang, J., Wang, T., Chen, J., Hu, X., Ao, Y., Qin, D., Zhang, L., Xue, J., Cheng, J., & Tao, W. (2023). Bioinspired Mild Photothermal Effect-Reinforced Multifunctional Fiber Scaffolds Promote Bone Regeneration. ACS Nano, 17(7), 6466–6479. https://doi.org/10.1021/acsnano.2c11486 DOI: https://doi.org/10.1021/acsnano.2c11486
Zhao, Y., Liu, Y., Tian, C., Liu, Z., Wu, K., Zhang, C., & Han, X. (2023). Construction of antibacterial photothermal PCL/AgNPs/BP nanofibers for infected wound healing. Materials and Design, 226, 111670. https://doi.org/10.1016/j.matdes.2023.111670 DOI: https://doi.org/10.1016/j.matdes.2023.111670
Zhao, Y., Yu, S., Wu, X., Dai, H., Liu, W., Tu, R., & Goto, T. (2021). Construction of macroporous magnesium phosphate-based bone cement with sustained drug release. Materials & Design, 200, 109466. https://doi.org/10.1016/j.matdes.2021.109466 DOI: https://doi.org/10.1016/j.matdes.2021.109466







