Advances in Antibiotic-Loaded Nanofibers for the Treatment of Bone Infections: A Review

Authors

DOI:

https://doi.org/10.23917/pharmacon.v21i2.6986

Keywords:

Antibiotic, Bone infections, Nanofibers, Polymers

Abstract

Antibiotic-loaded nanofiber-based drug delivery systems represent a novel approach to treating complex bone infections, particularly osteomyelitis caused by antibiotic-resistant bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA). These systems offer localized, sustained drug release, significantly reducing systemic side effects and mitigating the development of antibiotic resistance. This review evaluates advancements in electrospun nanofibers with biodegradable polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), which ensure controlled drug release while supporting bone regeneration. A systematic search using PRISMA guidelines across ScienceDirect and ACS Publication databases (2020-2024) identified 42 relevant studies. The inclusion of bioactive agents such as hydroxyapatite in nanofibers was found to enhance antibacterial properties and accelerate tissue regeneration. The review demonstrates that antibiotic-loaded nanofibers offer a promising, targeted therapeutic alternative to conventional treatments, particularly for osteomyelitis and similar challenging bone infections. Future research directions will focus on optimizing nanofiber compositions and functionalities to better meet clinical needs, ensuring more efficient and personalized management of severe bone infections.

Downloads

Download data is not yet available.

Author Biographies

Nonni Soraya Sambudi, Universitas Pertamina

Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta 12220, Indonesia

Khadijah Zai, Gadjah Mada University

Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Indonesia

Teuku Nanda Saifullah Sulaiman, Gadjah Mada University

Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Indonesia

References

Abdel-Rahman, L. M., Eltaher, H. M., Abdelraouf, K., Bahey-El-Din, M., Ismail, C., Kenawy, E.-R. S. R. S., & El-Khordagui, L. K. (2020). Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. Journal of Drug Delivery Science and Technology, 58(March), 101812. https://doi.org/10.1016/j.jddst.2020.101812 DOI: https://doi.org/10.1016/j.jddst.2020.101812

Abdulhussain, R., Adebisi, A., Conway, B. R., & Asare-Addo, K. (2023). Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. Journal of Drug Delivery Science and Technology, 90(November), 105156. https://doi.org/10.1016/j.jddst.2023.105156 DOI: https://doi.org/10.1016/j.jddst.2023.105156

Afshar, A., Majd, H., Harker, A., & Edirisinghe, M. (2024). Tailored binary polymer system PCL-PEO for advanced biomedical applications: Optimization, characterization and in vitro analysis. Journal of Drug Delivery Science and Technology, 95(November 2023), 105582. https://doi.org/10.1016/j.jddst.2024.105582 DOI: https://doi.org/10.1016/j.jddst.2024.105582

Ajalloueian, F., Tavanai, H., Hilborn, J., Donzel-Gargand, O., Leifer, K., Wickham, A., & Arpanaei, A. (2014). Emulsion electrospinning as an approach to Fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Research International, 2014. https://doi.org/10.1155/2014/475280 DOI: https://doi.org/10.1155/2014/475280

Akturk, A. (2023). Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications. ACS Omega, 8(6), 5553–5560. https://doi.org/10.1021/acsomega.2c06881 DOI: https://doi.org/10.1021/acsomega.2c06881

Al-Wafi, R., Mansour, S. F., AlHammad, M. S., & Ahmed, M. K. (2021). Biological response, antibacterial properties of ZrO2/hydroxyapatite/graphene oxide encapsulated into nanofibrous scaffolds of polylactic acid for wound healing applications. International Journal of Pharmaceutics, 601, 120517. https://doi.org/10.1016/j.ijpharm.2021.120517 DOI: https://doi.org/10.1016/j.ijpharm.2021.120517

Alimohammadi, M., Fakhraei, O., Moradi, A., Kabiri, M., Moradi, A., Passandideh-Fard, M., Tamayol, A., Ebrahimzadeh, M. H., & Mousavi Shaegh, S. A. (2022). Controlled release of azithromycin from polycaprolactone/chitosan nanofibrous membranes. Journal of Drug Delivery Science and Technology, 71(April), 103246. https://doi.org/10.1016/j.jddst.2022.103246 DOI: https://doi.org/10.1016/j.jddst.2022.103246

Alsulami, K. A., Bakr, A. A., Alshehri, A. A., Aodah, A. H., Almughem, F. A., Alamer, A. A., Alharbi, L. A., Alsuwayeh, D. S., Halwani, A. A., Alamoudi, A. A., Alfassam, H. A., & Tawfik, E. A. (2024). Fabrication and evaluation of ribavirin-loaded electrospun nanofibers as an antimicrobial wound dressing. Saudi Pharmaceutical Journal, 32(5), 102058. https://doi.org/10.1016/j.jsps.2024.102058 DOI: https://doi.org/10.1016/j.jsps.2024.102058

Aslam, S., Asrat, H., Liang, R., Qiu, W., Sunny, S., Maro, A., Abdallah, M., Fornek, M., Episcopia, B., & Quale, J. (2023). Methicillin-resistant Staphylococcus aureus bacteremia during the coronavirus disease 2019 (COVID-19) pandemic: Trends and distinguishing characteristics among patients in a healthcare system in New York City. Infection Control and Hospital Epidemiology, 44(7), 1177–1179. https://doi.org/10.1017/ice.2022.238 DOI: https://doi.org/10.1017/ice.2022.238

Badaraev, A. D., Tran, T. H., Drozd, A. G., Plotnikov, E. V., Dubinenko, G. E., Kozelskaya, A. I., Rutkowski, S., & Tverdokhlebov, S. I. (2023). Effect of PLGA Concentration in Electrospinning Solution on Biocompatibility, Morphology and Mechanical Properties of Nonwoven Scaffolds. Technologies, 11(5). https://doi.org/10.3390/technologies11050137 DOI: https://doi.org/10.3390/technologies11050137

Bishnoi, A., Tiwari, R. K., Chanda, S., Ajmal, G., & Bonde, G. V. (2023). Elecrospun nanofibers: The versatile platform as a drug delivery system in healthcare. Journal of Drug Delivery Science and Technology, 90(October), 105127. https://doi.org/10.1016/j.jddst.2023.105127 DOI: https://doi.org/10.1016/j.jddst.2023.105127

Boncu, T. E., Uskudar Guclu, A., Catma, M. F., Savaser, A., Gokce, A., & Ozdemir, N. (2020). In vitro and in vivo evaluation of linezolid loaded electrospun PLGA and PLGA/PCL fiber mats for prophylaxis and treatment of MRSA induced prosthetic infections. International Journal of Pharmaceutics, 573(May 2019), 118758. https://doi.org/10.1016/j.ijpharm.2019.118758 DOI: https://doi.org/10.1016/j.ijpharm.2019.118758

Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627–635. https://doi.org/10.1021/acsabm.8b00112 DOI: https://doi.org/10.1021/acsabm.8b00112

Chandika, P., Oh, G. W., Heo, S. Y., Kim, S. C., Kim, T. H., Kim, M. S., & Jung, W. K. (2021). Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Materials Science and Engineering C, 121(December 2020), 111871. https://doi.org/10.1016/j.msec.2021.111871 DOI: https://doi.org/10.1016/j.msec.2021.111871

Chou, P.-Y. Y., Lee, D., Chen, S.-H. H., Liao, C.-T. T., Lo, L.-J. J., & Liu, S.-J. J. (2022). 3D-printed/electrospun bioresorbable nanofibrous drug-eluting cuboid frames for repair of alveolar bone defects. International Journal of Pharmaceutics, 615(December 2021), 121497. https://doi.org/10.1016/j.ijpharm.2022.121497 DOI: https://doi.org/10.1016/j.ijpharm.2022.121497

Dehkordi, A. N., Shafiei, S. S., Chehelgerdi, M., Sabouni, F., Sharifi, E., Makvandi, P., & Nasrollahi, N. (2022). Highly effective electrospun polycaprolactone/ layered double hydroxide nanofibrous scaffold for bone tissue engineering. Journal of Drug Delivery Science and Technology, 76(September 2021), 103827. https://doi.org/10.1016/j.jddst.2022.103827 DOI: https://doi.org/10.1016/j.jddst.2022.103827

Gao, J., Huang, G., Liu, G., Liu, Y., Chen, Q., Ren, L., Chen, C., & Ding, Z. (2016). A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. Journal of Biomaterials Applications, 31(2), 241–249. https://doi.org/10.1177/0885328216654424 DOI: https://doi.org/10.1177/0885328216654424

Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An Overview of Poly ( lactic- co -glycolic ) Acid ( PLGA ) -Based Biomaterials for Bone Tissue Engineering. 3640–3659. https://doi.org/10.3390/ijms15033640 DOI: https://doi.org/10.3390/ijms15033640

Gill, A. S., Sood, M., Deol, P. K., & Kaur, I. P. (2023). Synthetic polymer based electrospun scaffolds for wound healing applications. Journal of Drug Delivery Science and Technology, 89(October), 105054. https://doi.org/10.1016/j.jddst.2023.105054 DOI: https://doi.org/10.1016/j.jddst.2023.105054

Hartatiek, Yudyanto, Wuriantika, M. I., Utomo, J., Nurhuda, M., Masruroh, & Santjojo, D. J. D. H. (2020). Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering. Materials Today: Proceedings, 44, 3203–3206. https://doi.org/10.1016/j.matpr.2020.11.438 DOI: https://doi.org/10.1016/j.matpr.2020.11.438

Hsiung, E., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2023). Fast-Disintegrating Nanofibrous Web of Pullulan/Griseofulvin-Cyclodextrin Inclusion Complexes. Molecular Pharmaceutics, 20(5), 2624–2633. https://doi.org/10.1021/acs.molpharmaceut.3c00074 DOI: https://doi.org/10.1021/acs.molpharmaceut.3c00074

Kamal, R., Razzaq, A., Ali shah, K., Khan, Z. U., Khan, N. U., Menaa, F., Iqbal, H., & Cui, J. (2022). Evaluation of cephalexin-loaded PHBV nanofibers for MRSA-infected diabetic foot ulcers treatment. Journal of Drug Delivery Science and Technology, 71(April), 103349. https://doi.org/10.1016/j.jddst.2022.103349 DOI: https://doi.org/10.1016/j.jddst.2022.103349

Ke re mu, A. li mu, Liang, Z. lin, Chen, L., Tu xun, A. ke bai er, A bu li ke mu, M. mai ti ai li, & Wu, Y. quan. (2024). 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects. Biomedicine and Pharmacotherapy, 172(February). https://doi.org/10.1016/j.biopha.2024.116228 DOI: https://doi.org/10.1016/j.biopha.2024.116228

Khan, R. S., Qureashi, A., Rafiq, M., Rather, A. H., Reshi, M. M., Qurashi, A., Tripathi, R. M., & Sheikh, F. A. (2024). Silk fibroin-copper nanoparticles conglomerated polyurethane fibers incorporating calcium carbonate for enhanced fluid retention, antibacterial efficacy and promotion of cell growth. Journal of Drug Delivery Science and Technology, 94(February), 105464. https://doi.org/10.1016/j.jddst.2024.105464 DOI: https://doi.org/10.1016/j.jddst.2024.105464

Kumar, V., Sharma, N., Janghu, P., Pasrija, R., Umesh, M., Chakraborty, P., Sarojini, S., & Thomas, J. (2023). Synthesis and characterization of chitosan nanofibers for wound healing and drug delivery application. Journal of Drug Delivery Science and Technology, 87(August), 104858. https://doi.org/10.1016/j.jddst.2023.104858 DOI: https://doi.org/10.1016/j.jddst.2023.104858

Lin, P., Zhang, W., Chen, D., Yang, Y., Sun, T., Chen, H., & Zhang, J. (2022). Electrospun nanofibers containing chitosan-stabilized bovine serum albumin nanoparticles for bone regeneration. Colloids and Surfaces B: Biointerfaces, 217, 112680. https://doi.org/10.1016/j.colsurfb.2022.112680 DOI: https://doi.org/10.1016/j.colsurfb.2022.112680

Lopes Gama e Silva, G., Sato de Souza de Bustamante Monteiro, M., Lopes Dias, M., Machado Costa, A., Malta Rossi, A., Paula dos Santos Matos, A., Santos-Oliveira, R., & Ricci-Junior, E. (2023). Antibiotics-loaded nanofibers fabricated by electrospinning for the treatment of bone infections. Arabian Journal of Chemistry, 16(1), 104392. https://doi.org/10.1016/j.arabjc.2022.104392 DOI: https://doi.org/10.1016/j.arabjc.2022.104392

Martin, A., Cai, J., Schaedel, A. L., van der Plas, M., Malmsten, M., Rades, T., & Heinz, A. (2022). Zein-polycaprolactone core–shell nanofibers for wound healing. International Journal of Pharmaceutics, 621(March), 121809. https://doi.org/10.1016/j.ijpharm.2022.121809 DOI: https://doi.org/10.1016/j.ijpharm.2022.121809

Megha, M., Mohan, C. C., Joy, A., Unnikrishnan, G., Thomas, J., Haris, M., Bhatt, S. G., Kolanthai, E., & Senthilkumar, M. (2024). Vanadium and strontium co-doped hydroxyapatite enriched polycaprolactone matrices for effective bone tissue engineering: A synergistic approach. International Journal of Pharmaceutics, 659(March), 124266. https://doi.org/10.1016/j.ijpharm.2024.124266 DOI: https://doi.org/10.1016/j.ijpharm.2024.124266

Menazea, A. A., Abdelbadie, S. A., & Ahmed, M. K. (2020). Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Applied Surface Science, 508, 145299. https://doi.org/10.1016/j.apsusc.2020.145299 DOI: https://doi.org/10.1016/j.apsusc.2020.145299

Mohammadalipour, M., Asadolahi, M., Mohammadalipour, Z., Behzad, T., Karbasi, S., Behzad, T., Mohammadalipour, Z., & Zamani, M. (2022). Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering. International Journal of Biological Macromolecules, 230(August), 1402–1414. https://doi.org/10.1016/j.ijbiomac.2023.123167

Mohammadalipour, M., Karbasi, S., Behzad, T., Mohammadalipour, Z., & Zamani, M. (2022). Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. International Journal of Biological Macromolecules, 220(August), 1402–1414. https://doi.org/10.1016/j.ijbiomac.2022.09.118 DOI: https://doi.org/10.1016/j.ijbiomac.2022.09.118

Niveditha, S., Veetil, V. T., Rajeeve, A. D., Cheriyan, S., Yamuna, R., & Karthega, M. (2024). Wound healing applications of β-cyclodextrin capped zinc sulphide nanoparticles impregnated electrospun polymeric nanofibrous scaffold. Journal of Drug Delivery Science and Technology, 95(March), 105597. https://doi.org/10.1016/j.jddst.2024.105597 DOI: https://doi.org/10.1016/j.jddst.2024.105597

Qian, Y., Zhou, X., Sun, H., Yang, J., Chen, Y., Li, C., Wang, H., Xing, T., Zhang, F., & Gu, N. (2018). Biomimetic Domain-Active Electrospun Sca ff olds Facilitating Bone Regeneration Synergistically with Antibacterial E ffi cacy for Bone Defects. https://doi.org/10.1021/acsami.7b14524 DOI: https://doi.org/10.1021/acsami.7b14524

Qian, Y., Zhou, X., Zhang, F., Diekwisch, T. G. H., Luan, X., & Yang, J. (2019). Triple PLGA / PCL Sca ff old Modi fi cation Including Silver Impregnation , Collagen Coating , and Electrospinning Signi fi cantly Improve Biocompatibility , Antimicrobial , and Osteogenic Properties for Orofacial Tissue Regeneration. https://doi.org/10.1021/acsami.9b07053 DOI: https://doi.org/10.1021/acsami.9b07053

Raghunathan, S., Kandasamy, S., Balakrishna Pillai, A., Senthilathiban, D. P., Thajuddin, N., Rasool Kamli, M., Sabir, J. S. M., Lee, S. Y., Kim, J. W., & Davoodbasha, M. A. (2024). Synthesis of biocomposites from microalgal peptide incorporated polycaprolactone/ κ- carrageenan nanofibers and their antibacterial and wound healing property. International Journal of Pharmaceutics, 655(March), 124052. https://doi.org/10.1016/j.ijpharm.2024.124052 DOI: https://doi.org/10.1016/j.ijpharm.2024.124052

Raizaday, A., & Chakma, M. (2024). Recent advancement in fabrication of electrospun nanofiber and its biomedical and drug delivery application – an paradigm shift. Journal of Drug Delivery Science and Technology, 94(July 2023), 105482. https://doi.org/10.1016/j.jddst.2024.105482 DOI: https://doi.org/10.1016/j.jddst.2024.105482

Rezk, A. I., Mousa, H. M., Lee, J., Park, C. H., & Kim, C. S. (2019). Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application. Journal of Coatings Technology and Research, 16(2), 477–489. https://doi.org/10.1007/s11998-018-0126-8 DOI: https://doi.org/10.1007/s11998-018-0126-8

Sam, S., Joseph, B., & Thomas, S. (2023). Exploring the antimicrobial features of biomaterials for biomedical applications. Results in Engineering, 17(March), 100979. https://doi.org/10.1016/j.rineng.2023.100979 DOI: https://doi.org/10.1016/j.rineng.2023.100979

Sen, R. K., Prabhakar, P., Verma, P., Vikram, A., Mishra, A., Dwivedi, A., Gowri, V. S., Chaurasia, J. P., Mondal, D. P., Srivastava, A. K., Dwivedi, N., & Dhand, C. (2023). Smart Nanofibrous Hydrogel Wound Dressings for Dynamic Infection Diagnosis and Control : Soft but Functionally Rigid. https://doi.org/10.1021/acsabm.3c01000 DOI: https://doi.org/10.1021/acsabm.3c01000

Serpelloni, S., Williams, M. E., Caserta, S., Sharma, S., Rahimi, M., & Taraballi, F. (2024). Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin. ACS Omega, 9(10), 11701–11717. https://doi.org/10.1021/acsomega.3c08113 DOI: https://doi.org/10.1021/acsomega.3c08113

Silva, G. L. G. e, Monteiro, M. S. de S. de B., Garófalo, D. de A., Dias, M. L., Rossi, A. M., Tude, E. M. O., Cardoso, V. da S., Vermelho, A. B., Matos, A. P. dos S., Santos-Oliveira, R., & Ricci-Júnior, E. (2023). Nanofibers containing vancomycin for the treatment of bone infections: Development, characterization, efficacy and safety tests in cell cultures. Journal of Drug Delivery Science and Technology, 87(July), 104780. https://doi.org/10.1016/j.jddst.2023.104780 DOI: https://doi.org/10.1016/j.jddst.2023.104780

Silva, G. L. G. e, Sato de Souza Bustamante Monteiro, M., dos Santos Matos, A. P., Santos-Oliveira, R., Kenechukwu, F. C., & Ricci-Júnior, E. (2022). Nanofibers in the treatment of osteomyelitis and bone regeneration. Journal of Drug Delivery Science and Technology, 67(December 2021). https://doi.org/10.1016/j.jddst.2021.102999 DOI: https://doi.org/10.1016/j.jddst.2021.102999

Sofi, H. S., Akram, T., Shabir, N., Vasita, R., Jadhav, A. H., & Sheikh, F. A. (2021). Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Materials Science and Engineering: C, 118, 111547. https://doi.org/10.1016/j.msec.2020.111547 DOI: https://doi.org/10.1016/j.msec.2020.111547

Srithep, Y., Akkaprasa, T., Pholharn, D., Morris, J., Liu, S.-J. J., Patrojanasophon, P., & Ngawhirunpat, T. (2021). Metronidazole-loaded polylactide stereocomplex electrospun nanofiber mats for treatment of periodontal disease. Journal of Drug Delivery Science and Technology, 64(August 2020), 102582. https://doi.org/10.1016/j.jddst.2021.102582 DOI: https://doi.org/10.1016/j.jddst.2021.102582

Sun, Y., Heacock, J., Chen, C., Qiu, K., Zou, L., Liu, J., & Li, Y. V. (2023). Incorporation of Gentamicin-Encapsulated Poly(lactic-co-glycolic acid) Nanoparticles into Polyurethane/Poly(ethylene oxide) Nanofiber Scaffolds for Biomedical Applications. ACS Applied Nano Materials, 6(17), 16096–16105. https://doi.org/10.1021/acsanm.3c03549 DOI: https://doi.org/10.1021/acsanm.3c03549

Taghe, S., Mirzaeei, S., Pakdaman, N., Kazemi, A., & Nokhodchi, A. (2024). Macrolide-loaded nanofibrous inserts with polycaprolactone and cellulose acetate base for sustained ocular delivery: Pharmacokinetic study in Rabbit’s eye. International Journal of Pharmaceutics, 665(August), 124699. https://doi.org/10.1016/j.ijpharm.2024.124699 DOI: https://doi.org/10.1016/j.ijpharm.2024.124699

Téllez Corral, M. A., Villamil Poveda, J. C., Roa Molina, N. S., Otero, L., Rivera Monroy, Z. J., García Castañeda, J., Parra Giraldo, C. M., & Cortés, M. E. (2024). In-vitro antibiofilm activity of polycaprolactone- poly (lactic-co-glycolic acid) nanofibers loaded amphotericin B, antimicrobial peptide LfcinB (21–25)Pal and zinc oxide for local treatment of periodontitis associated with obstructive sleep apnea. Journal of Drug Delivery Science and Technology, 94(August 2023). https://doi.org/10.1016/j.jddst.2024.105522 DOI: https://doi.org/10.1016/j.jddst.2024.105522

Udomluck, N., Lee, H., Hong, S., Lee, S.-H., & Park, H. (2020). Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Applied Surface Science, 520, 146311. https://doi.org/10.1016/j.apsusc.2020.146311 DOI: https://doi.org/10.1016/j.apsusc.2020.146311

Xiang, J., Li, Y., Ren, M., He, P., Liu, F., Jing, Z., Li, Y., Zhang, H., Ji, P., & Yang, S. (2022). Sandwich-like nanocomposite electrospun silk fibroin membrane to promote osteogenesis and antibacterial activities. Applied Materials Today, 26, 101273. https://doi.org/10.1016/j.apmt.2021.101273 DOI: https://doi.org/10.1016/j.apmt.2021.101273

Yekani, M., Maleki Dizaj, S., Sedaghat, H., Sadri Nahand, J., Saffari, M., & Memar, M. Y. (2023). Preparation, biocompatibility, and antimicrobial effects of gelatin nanofibers scaffolds containing vancomycin and curcumin. Journal of Drug Delivery Science and Technology, 90(October), 105029. https://doi.org/10.1016/j.jddst.2023.105029 DOI: https://doi.org/10.1016/j.jddst.2023.105029

Zafari, M., Aghajani, S., Mansouri Boroujeni, M., & Nosrati, H. (2020). Vancomycin-loaded electrospun polycaprolactone/nano-hydroxyapatite membrane for the treatment of blood infections. Medical Hypotheses, 144, 109992. https://doi.org/10.1016/j.mehy.2020.109992 DOI: https://doi.org/10.1016/j.mehy.2020.109992

Zhang, S., Zhao, G., Mahotra, M., Ma, S., Li, W., Lee, H. W., Yu, H., Sampathkumar, K., Xie, D., Guo, J., & Loo, S. C. J. (2024). Chitosan nanofibrous scaffold with graded and controlled release of ciprofloxacin and BMP-2 nanoparticles for the conception of bone regeneration. International Journal of Biological Macromolecules, 254, 127912. https://doi.org/10.1016/j.ijbiomac.2023.127912 DOI: https://doi.org/10.1016/j.ijbiomac.2023.127912

Zhang, X., Li, Q., Li, L., Ouyang, J., Wang, T., Chen, J., Hu, X., Ao, Y., Qin, D., Zhang, L., Xue, J., Cheng, J., & Tao, W. (2023). Bioinspired Mild Photothermal Effect-Reinforced Multifunctional Fiber Scaffolds Promote Bone Regeneration. ACS Nano, 17(7), 6466–6479. https://doi.org/10.1021/acsnano.2c11486 DOI: https://doi.org/10.1021/acsnano.2c11486

Zhao, Y., Liu, Y., Tian, C., Liu, Z., Wu, K., Zhang, C., & Han, X. (2023). Construction of antibacterial photothermal PCL/AgNPs/BP nanofibers for infected wound healing. Materials and Design, 226, 111670. https://doi.org/10.1016/j.matdes.2023.111670 DOI: https://doi.org/10.1016/j.matdes.2023.111670

Zhao, Y., Yu, S., Wu, X., Dai, H., Liu, W., Tu, R., & Goto, T. (2021). Construction of macroporous magnesium phosphate-based bone cement with sustained drug release. Materials & Design, 200, 109466. https://doi.org/10.1016/j.matdes.2021.109466 DOI: https://doi.org/10.1016/j.matdes.2021.109466

Downloads

Submitted

2024-10-28

Accepted

2025-01-01

Published

2024-12-31

Issue

Section

Articles