Review Selaginella's Potential for Anticancer
DOI:
https://doi.org/10.23917/pharmacon.v21i2.5686Keywords:
Amentoflavon, Anticancer, Co- chemotherapy, Doxorubicin, SelaginellaAbstract
Selaginella is a popular herbal remedy for its antioxidants, anticancer, anti-inflammatory, and chemopreventive properties. Several studies have reported Selaginella's potential as an anticancer and co- chemotherapy agent. This narrative review aims to investigate Selaginella's potential as an anticancer agent and co-chemotherapy with doxorubicin. Studies were retrieved from PubMed, Science Direct, and Google Scholar databases. In total, 27 articles were selected. The results showed that Selaginella extract had cytotoxic activity against cancer cells T47D, MCF-7, A549, LLC, HeLa, Bel-7402, HT-29, 7721, P-388, and NCI- H460. One of the compounds contained and studied its mechanism is amentoflavone. Amentoflavone induces cell cycle arrest and apoptosis in MCF-7 cells. Amentoflavone also inhibited invasion and migration of A549 and HT29 cancer cells. The combination with doxorubicin indicates that Selaginella and amentoflavone extracts could increase the anticancer effects of doxorubicin in vivo by decreasing the tumor volume in the cancer cell-induced animals. These results demonstrate Selaginella's potential as a chemotherapeutic agent to enhance the anticancer effects of doxorubicin. Nevertheless, further research is necessary to have more insights and evidence regarding its activity.
Downloads
References
Chen, J. J., Duh, C. Y., & Chen, J. F. (2005). New cytotoxic biflavonoids from Selaginella delicatula. Planta Medica, 71(7), 659–665. https://doi.org/10.1055/s-2005-871273 DOI: https://doi.org/10.1055/s-2005-871273
Doll, R. (2018). The Cancer Process. The Prevention of Cancer, 110–117. https://doi.org/10.4324/9781315134178-7 DOI: https://doi.org/10.4324/9781315134178-7
Febriani, A., & Furqon, A. (2018). Metastasis Kanker Paru. Jurnal Respirasi, 4(3), 94–101. DOI: https://doi.org/10.20473/jr.v4-I.3.2018.94-101
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 DOI: https://doi.org/10.1016/j.cell.2011.02.013
Handayani, S., Risdian, C., Meiyanto, E., Udin, Z., Andriyani, R., & Angelina, M. (2012). Selaginella Active Fractions Induce Apoptosis On T47d Breast Cancer Cell. SciFed Dental & Oral Research Journal, 1(4), 48–53. https://doi.org/10.23959/sfdorj-1000023 DOI: https://doi.org/10.23959/sfdorj-1000023
Hartini, S., Winarsih, B. D., Galih, E., Nugroho, Z., Studi, P., & Ners, P. (2020). Peningkatan Pengetahuan Perawat Untuk Perawatan Anak Penderita Kanker. 3(2), 141–149. https://doi.org/10.31596/jpk.v3i2.87 DOI: https://doi.org/10.31596/jpk.v3i2.87
Jung, Y. J., Lee, E. H., Lee, C. G., Rhee, K. J., Jung, W. S., Choi, Y., Pan, C. H., & Kang, K. (2017). AKR1B10-inhibitory Selaginella tamariscina extract and amentoflavone decrease the growth of A549 human lung cancer cells in vitro and in vivo. Journal of Ethnopharmacology, 202, 78–84. https://doi.org/10.1016/j.jep.2017.03.010 DOI: https://doi.org/10.1016/j.jep.2017.03.010
Kim, G. L., Jang, E. H., Lee, D. E., Bang, C., Kang, H., Kim, S. H., Yoon, S. Y., Lee, D. H., Na, J. H., Lee, S., & Kim, J. H. (2020). Amentoflavone, active compound of Selaginella tamariscina, inhibits in vitro and in vivo TGF-β-induced metastasis of human cancer cells. Archives of Biochemistry and Biophysics, 687(January), 108384. https://doi.org/10.1016/j.abb.2020.108384 DOI: https://doi.org/10.1016/j.abb.2020.108384
Lee, C. G., Lee, E. H., Pan, C. H., Kang, K., & Rhee, K. J. (2017). Data on the anti-tumor effects of Selaginella tamariscina extract and amentoflavone combined with doxorubicin in mice. Data in Brief, 13(May), 162–165. https://doi.org/10.1016/j.dib.2017.05.023 DOI: https://doi.org/10.1016/j.dib.2017.05.023
Li, J., Lei, X., & Chen, K. L. (2014). Comparison of cytotoxic activities of extracts from Selaginella species. Pharmacognosy Magazine, 10(40), 529–535. https://doi.org/10.4103/0973-1296.141794 DOI: https://doi.org/10.4103/0973-1296.141794
Li, X., Lu, Y., Liang, K., Liu, B., & Fan, Z. (2005). Differential responses to doxorubicin-induced phosphorylation and activation of Akt in human breast cancer cells. Breast Cancer Research, 7(5). https://doi.org/10.1186/bcr1259 DOI: https://doi.org/10.1186/bcr1259
Ma, J., Luo, D. X., Huang, C., Shen, Y., Bu, Y., Markwell, S., Gao, J., Liu, J., Zu, X., Cao, Z., Gao, Z., Lu, F., Liao, D. F., & Cao, D. (2012). AKR1B10 overexpression in breast cancer: Association with tumor size, lymph node metastasis and patient survival and its potential as a novel serum marker. International Journal of Cancer, 131(6), 1–10. https://doi.org/10.1002/ijc.27618 DOI: https://doi.org/10.1002/ijc.27618
Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56(2), 185–229. https://doi.org/10.1124/pr.56.2.6 DOI: https://doi.org/10.1124/pr.56.2.6
Pei, J. S., Liu, C. C., Hsu, Y. N., Lin, L. L., Wang, S. C., Chung, J. G., Bau, D. T., & Lin, S. S. (2012). Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway. In Vivo, 26(6), 963–970.
Setyawan, A. D. W. I. (2009). Traditionaly utilization of Selaginella; field survey and literature review. Nusantara Bioscience, 1(3), 146–158. https://doi.org/10.13057/nusbiosci/n010307 DOI: https://doi.org/10.13057/nusbiosci/n010307
Setyawan, A. D. W. I. (2011). Natural products from Genus Selaginella (Selaginellaceae). Nusantara Bioscience, 3(1), 44–58. https://doi.org/10.13057/nusbiosci/n030107 DOI: https://doi.org/10.13057/nusbiosci/n030107
Smith, L., Watson, M. B., O’Kane, S. L., Drew, P. J., Lind, M. J., & Cawkwell, L. (2006). The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Molecular Cancer Therapeutics, 5(8), 2115–2120. https://doi.org/10.1158/1535-7163.MCT-06-0190 DOI: https://doi.org/10.1158/1535-7163.MCT-06-0190
Sui, Y., Li, S., Shi, P., Wu, Y., Li, Y., Chen, W., Huang, L., Yao, H., & Lin, X. (2016). Ethyl acetate extract from Selaginella doederleinii Hieron inhibits the growth of human lung cancer cells A549 via caspase-dependent apoptosis pathway. Journal of Ethnopharmacology, 190, 261–271. https://doi.org/10.1016/j.jep.2016.06.029 DOI: https://doi.org/10.1016/j.jep.2016.06.029
Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139(5), 871–890. https://doi.org/10.1016/j.cell.2009.11.007 DOI: https://doi.org/10.1016/j.cell.2009.11.007
Vinod, B. S., Maliekal, T. T., & Anto, R. J. (2013). Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxidants and Redox Signaling, 18(11), 1307–1348. https://doi.org/10.1089/ars.2012.4573 DOI: https://doi.org/10.1089/ars.2012.4573
Wang, G., Yao, S., Cheng, L., Luo, Y., & Song, H. (2015). Antioxidant and anticancer effection of the volatile oil from various habitats of Selaginella doederleinii Hieron. Technology and Health Care, 23(S1), S21–S27. https://doi.org/10.3233/thc-150924 DOI: https://doi.org/10.3233/thc-150924
Wang, J. Z., Li, J., Zhao, P., Ma, W. T., Feng, X. H., & Chen, K. L. (2015). Antitumor activities of ethyl acetate extracts from selaginella doederleinii hieron in vitro and in vivo and its possible mechanism. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/865714 DOI: https://doi.org/10.1155/2015/865714
Yang, S. F., Chu, S. C., Liu, S. J., Chen, Y. C., Chang, Y. Z., & Hsieh, Y. S. (2007). Antimetastatic activities of Selaginella tamariscina (Beauv.) on lung cancer cells in vitro and in vivo. Journal of Ethnopharmacology, 110(3), 483–489. https://doi.org/10.1016/j.jep.2006.10.010 DOI: https://doi.org/10.1016/j.jep.2006.10.010
Yao, H., Chen, B., Zhang, Y., Ou, H., Li, Y., Li, S., Shi, P., & Lin, X. (2017). Analysis of the total biflavonoids extract from Selaginella doederleinii by HPLC-QTOF-MS and its in vitro and in vivo anticancer effects. Molecules, 22(2). https://doi.org/10.3390/molecules22020325 DOI: https://doi.org/10.3390/molecules22020325
Zou, Z. X., Tan, G. S., Zhang, G. G., Yu, X., Xu, P. S., & Xu, K. P. (2017). New cytotoxic apigenin derivatives from Selaginella doederleinii. Chinese Chemical Letters, 28(5), 931–934. https://doi.org/10.1016/j.cclet.2017.01.011 DOI: https://doi.org/10.1016/j.cclet.2017.01.011







