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 ABSTRACT 
Despite substantial pharmaceutical investments of approximately $50 

billion annually, modern drug discovery yields only 20-25 new approvals, 
with traditional development requiring 12-15 years and success rates 
below 10%. Contemporary challenges, including high clinical failure rates, 
prolonged timelines, and limited preclinical predictive capacity, represent 
the current therapeutic debacle of de novo drug development. To address 
this critical scenario, drug repurposing is an appealing strategy for 
identifying novel therapeutic applications from existing approved drugs. 
However, traditional repurposing relies on serendipitous observations or 
resource-intensive screenings. In contrast, in silico drug repurposing is an 
emerging, hypothesis-driven approach leveraging big data, artificial 
intelligence, machine learning, multi-omics analysis, and network 
pharmacology to predict drug-target interactions and therapeutic efficacy 
cost-effectively. Additionally, repurposing approaches, including in silico 
techniques, reduce development timelines to 3-12 years with enhanced 
success rates of approximately 25%, with 30% of FDA-approved drugs 
originating from repurposing initiatives. Therefore, computational drug 
repurposing substantially improves therapeutic development efficiency 
while requiring rigorous experimental validation for clinical translation. 
Here, we will review in silico methodologies exploited for drug repurposing 
across oncology, infectious diseases, neurodegenerative disorders, 
metabolic disorders, and pandemic threats, alongside computational 
pharmacology assessment tools to address how the implementation of 
current in silico options can accelerate the robust drug repurposing 
opportunities. 

DRUG REPURPOSING AND ITS STRATEGIC 

IMPORTANCE IN MODERN DRUG 

DISCOVERY 

Drug repurposing, also defined as drug 
repositioning or reprofiling, represents an 
innovative pharmaceutical strategy that 
identifies novel therapeutic applications for 
existing approved or investigational drugs 
(Jarada et al., 2020). This approach has emerged 
as a transformative methodology in modern 
drug discovery, fundamentally altering 
traditional development paradigms. The 
strategy operates through four essential 
components: comprehensive pharmacological 
understanding, innovative formulation 
development, systematic biological evaluation, 

and robust clinical validation (Mittal & Mittal, 
2021). In the context of in silico studies, this 
approach has gained particular significance in 
modern drug discovery through its integration 
with computational methods and molecular data 
analysis (Cha et al., 2018). 

Comparative Advantages of Drug 
Repurposing in Modern Drug 
Development 

The strategic value of drug repurposing 
becomes evident when compared to de novo 
drug discovery approaches. Contemporary data 
indicate that while traditional drug development 
requires investments of approximately $50 
billion annually, 12-15 years with success rates 
below 10% and costs exceeding $1.2 billion, 
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repurposing pathways can achieve results 
within 3-12 years, boasting approximately 25% 
success rates (Gil & Martinez, 2021; Tafesse et 
al., 2020). This efficiency stems from the 
utilization of established safety profiles and 
pharmacokinetic data, streamlined regulatory 
pathways, reduced development costs and 
timelines, and enhanced success probabilities in 
clinical phases (Gil & Martinez, 2021). 

Success and Challenges in Modern 
Therapeutics 

The significance of drug repurposing is 
reflected in current therapeutic landscapes, with 
approximately 30% of FDA-approved drugs 
originating from repurposing initiatives (Pola et 
al., 2023). Successful approval requires 
demonstration of therapeutic efficacy and safety 
in new indications, building upon existing safety 
data to accelerate development timelines (R. 
Kumar et al., 2019). 

However, modern drug repurposing faces 
significant challenges despite technological 
advances. Annual R&D (Research and 
Development) investments of approximately 
$50 billion yield only 20-25 new drug approvals 
(Vukicevic, 2016). Moreover, key challenges 
include high failure rates in clinical trials, 
increasing development costs, limited predictive 
capacity of preclinical models, extended 
development timelines, and complex regulatory 
requirements (Honkala et al., 2021; Sun et al., 
2022). 

 The Role of In Silico Approaches 

In silico drug repurposing has emerged as a 
transformative, cost‑effective complement to 
experimental workflows, enabling rapid 
identification of new therapeutic uses for 
existing drugs across diverse disease areas 
(Cousins et al., 2024).  The integration of 
computational methodologies has become 
crucial in modern drug repurposing. Advanced in 
silico techniques, including artificial intelligence 
and machine learning algorithms (Pan et al., 
2023; Patel et al., 2023; Rajput et al., 2021), 
multi-omics data analysis (D. Y. Liu et al., 2025; 
F. Wang & Barrero, 2024), network-based 
targeting (Islam & Shibly, 2025; P. P. Liu et al., 
2025; Mahmud et al., 2025), enable rapid 
screening of compound libraries, prediction of 
drug-target interactions, assessment of safety 
profiles, and ultimately guide decision-making 

for further downstream development. This 
computational approach significantly enhances 
the efficiency and success rate of further drug 
repurposing initiatives (Tiwari et al., 2023). 

IN SILICO METHODOLOGIES AND 

COMPUTATIONAL FRAMEWORKS 

Computational drug repurposing integrates 
structure and ligand‑based virtual screening, 
multi‑omics data integration, network analysis, 
and machine learning to prioritize existing 
compounds for new indications. These in silico 
approaches use molecular docking/dynamics, 
pharmacophore/QSAR modeling, expression 
analysis, network pharmacology, and 
target/bioactivity prediction to generate 
candidates that undergo ADME/toxicity 
assessment and subsequent in vitro, in vivo, and 
clinical validation (Figure 1). 

Figure 1. Flow diagram of drug screening 
approaches from in silico screening to 

subsequent downstream in vitro, in vivo, and 
clinical trials steps. Green boxes indicate in silico 
approaches, blue box indicates pre-clinical steps, 

and red box indicates clinical steps.  

Virtual Screening: Structure‑Based and 
Ligand‑Based Strategies 

Virtual screening (VS) encompasses both 
structure‑based virtual screening (SBVS) and 
ligand‑based virtual screening (LBVS). SBVS 
leverages three‑dimensional target structures to 
evaluate candidate binding, while LBVS exploits 
chemical similarity, pharmacophore models, and 
quantitative structure–activity relationship 
(QSAR) models when structural information is 
absent or incomplete (Ananna et al., 2024; 
Muratov et al., 2020). LBVS is particularly useful 
for rapidly sifting among approved‑drug 
libraries using fingerprint similarity, scaffold 
hopping, or ML‑derived feature embeddings 
(Ripphausen et al., 2011). In repurposing, VS 

https://journals2.ums.ac.id/index.php/pharmacon/


 

 Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187 171 

 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 
 

pipelines often combine SBVS and LBVS outputs, 
applying consensus ranking, ensemble docking, 
or ML‑based filtering to increase hit rates and 
reduce false positives before experimental 
testing (Ahmed et al., 2023). 

Molecular Docking, Molecular Dynamics 
Simulation, and Structure‑Based 
Screening 

Structure‑based methods anchored by 
molecular docking and binding‑affinity 
prediction remain central to many repurposing 
workflows because they provide explicit, 
interpretable models of drug–target interactions 
(Cavalcante et al., 2024; Fan et al., 2019). 
Docking algorithms predict ligand poses within 
protein binding sites and estimate relative 
affinities; when combined with rescoring, 
free‑energy methods, and molecular dynamics 
(MD) simulations, these approaches can 
prioritize compounds with plausible 
mechanistic effects (Vanhaelen et al., 2017). 
Strengths of structure‑based screening include 
the ability to exploit high‑resolution target 
structures, rationalize polypharmacologic 
interactions, and propose testable binding 
hypotheses. Limitations include sensitivity to 
protein conformational heterogeneity, 
inaccuracies in scoring functions, and 
dependency on available structural data; hybrid 
strategies that fuse docking with ML‑based 
rescoring or MD‑derived ensembles are 
increasingly used to mitigate these issues 
(Cavalcante et al., 2024). 

Machine Learning and Artificial 
Intelligence Applications 

Machine learning (ML) and artificial 
intelligence (AI) have become integral to modern 
repurposing, providing powerful tools for 
pattern recognition, feature extraction, and 
prediction across heterogeneous data types 
(Jordan & Mitchell, 2015; Tanoli et al., 2021). 
Applications include: supervised models for 
target prediction (Y. Zheng & Wu, 2021), ADMET 
profiling (Swanson et al., 2024) and biological 
activity prediction (Islam & Mahmud, 2025); 
deep learning for ligand and protein 
representation learning; graph neural networks 
for modeling molecular graphs and interaction 
networks; and generative models for proposing 
novel analogues or repositioning hypotheses 

(Ferreira & Andricopulo, 2019). AI augments 
traditional physics‑based methods by improving 
scoring, imputing missing data, and enabling 
integrative analyses of omics and clinical records 
(Yetgin, 2025). However, key challenges are 
model interpretability, dataset bias, 
generalizability to unseen chemotypes, and the 
need for transparent validation against 
experimental benchmarks. 

Network Pharmacology and Systems 
Biology Frameworks 

Network pharmacology and systems biology 
offer complementary, systems‑level 
perspectives that are essential for repurposing 
in complex diseases (Hopkins, 2008). By 
mapping drug–target–pathway–disease 
relationships within biological networks, these 
approaches identify indirect mechanisms, 
polypharmacologic opportunities, and 
context‑dependent effects that single‑target 
screens can miss (Lavecchia & Cerchia, 2016). 
Network‑based methodologies include diffusion 
and proximity measures on protein–protein 
interaction (PPI) networks, community 
detection for module‑driven repurposing, and 
central hubs identification (Islam & Mahmud, 
2025). However, integration of network analysis 
with pathway enrichment, causal inference, and 
multi‑omics promotes mechanistic 
interpretability and prioritization of candidate 
indications (Ahamed & Al Ashik, 2025; Islam & 
Shibly, 2025; P. P. Liu et al., 2025). Challenges 
include the limitations of network data to certain 
species types and contradictory target 
information from individual studies.  

Integration of Clinical, Real‑World, and 
Genomic Signature Data 

Repurposing pipelines increasingly exploit 
clinical trial results, electronic health records 
(EHRs), adverse‑event reporting, and population 
scale genomic/transcriptomic signatures to 
validate computational hypotheses and detect 
real‑world drug–disease associations (Cousins 
et al., 2024). Signature‑based repurposing 
matches disease‑associated expression profiles 
with drug‑induced transcriptional responses 
(Connectivity Map approaches), enabling 
identification of drugs that reverse disease 
signatures. Complementary analyses of EHRs 
and pharmacoepidemiologic data can reveal 
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off‑label benefits or safety signals, and GWAS 
(Genome Wide Association Studies) data provide 
genetic evidence for target‑disease causality, 
strengthening the translational rationale for 
repurposing (Khosravi et al., 2019). Challenges 
include confounding in observational data, 
heterogeneous data formats, and the need for 
robust causal inference frameworks (Mottini et 
al., 2019). 

Databases, Cheminformatics Tools, and 
Computational Platforms 

A rich ecosystem of public and proprietary 
resources underpins in silico repurposing: 

structural repositories (PDB), ligand and 
bioactivity databases (ChEMBL, DrugBank), 
transcriptomic atlases (LINCS/CMap), PPI and 
pathway databases (STRING, Reactome), and 
EHR/claims repositories for real‑world evidence 
(Burley et al., 2023; Szklarczyk et al., 2023; 
Zdrazil et al., 2024). Cheminformatics toolkits 
(RDKit), docking suites (AutoDock, Glide), ML 
frameworks (TensorFlow, PyTorch), and 
integrated web platforms facilitate end‑to‑end 
repurposing workflows. Table 1 represents the 
role of in-silico methods.

Table 1. Role of in silico methods in drug repurposing studies. 

In silico Methods Platforms/Databases Role in Drug Repurposing References 

Ligand-based 
Virtual Screening 

LigandScout, Pharmit 
Compares structural similarities 
between known drugs and ligands 

(Al-Sanea et al., 2022) 

Structure-based 
Virtual Screening 

PyRx, SwissDock 
Screens large drug libraries against 
target protein structures 

(Bugnon et al., 2024; Xu 
et al., 2022) 

Molecular Docking 
AutoDock, AutoDock Vina, 
Schrödinger Glide, GOLD 

Predicts binding pose, binding 
affinity, and interaction of approved 
drugs with new target proteins 

(Eberhardt et al., 2021) 

Molecular Dyamics 
(MD) Simulation 

GROMACS, AMBER, 
DESMOND, NAMD 

Simulates and validates the stability 
and behavior of drug-target 
complexes over time 

(Yekeen et al., 2023) 

Bioinformatics & 
Omics Integration 

GEO, TCGA 

Connects disease-associated genes, 
pathways, and drug targets using 
transcriptomics, proteomics, and 
interactome data. 

(Clough & Barrett, 2016; 
Otasek et al., 2019; 
Szklarczyk et al., 2023) 

Machine Learning 
/ AI Models 

DeepPurpose, ChemProp, 
TensorFlow, DeepChem 

Predicts new drug–disease 
associations using large biological 
and chemical datasets using model 
development 

(Abadi et al., 2016; Heid 
et al., 2023; Huang et al., 
2021; Ramsundar, 
2018) 

Network-based 
Drug Repurposing 

NetworkAnalyst, DrugBank, 
STITCH, STRING, Cytoscape 

Analyzes drug-target-disease 
networks to uncover new 
mechanisms 

(Knox et al., 2024; Kuhn 
et al., 2014; G. Zhou et 
al., 2019) 

Drug Screening 
Databases 

ZINC, ChEMBL, BindingDB 
Provides ready-to-screen collections 
of approved or investigational drugs 

(Gaulton et al., 2017) 

PHARMACOLOGICAL AND 

TOXICOLOGICAL ASSESSMENT THROUGH 

IN SILICO TOOLS 

The integration of computational approaches 
in drug repurposing has revolutionized the 
assessment of pharmacological and toxicological 
properties, enabling more efficient and cost-
effective drug development processes. 
Approximately 90% of drugs fail to make it 
through the process due to improper AMDET 
profiling (Amorim et al., 2024).  

ADMET (Absorption, Distribution, 
Metabolism, Excretion, Toxicity) 
Prediction 

Recent advances in machine learning 
platforms have significantly enhanced ADMET 
prediction capabilities. Modern platforms like 
ADMET-AI have achieved unprecedented 
accuracy in molecular predictions, processing up 
to one million molecules in just 3.1 hours 
(Swanson et al., 2024). The interpretable-
ADMET platform represents another significant 
advancement, offering predictions for 59 
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ADMET-associated properties through 90 
classification and 28 regression models (Wei et 
al., 2022). ADMETboost has demonstrated 
superior performance by ranking first in 18 out 
of 22 predictions (Tian et al., 2022). However, 

common tools, including pkCSM, SwissADME, 
and ADMETlab, also help evaluate the safety and 
pharmacokinetics of existing drugs before wet-
lab testing (Table 2).

Table 2. Modern in silico tools for ADMET properties prediction. 

In silico ADMET Prediction Platforms Prediction Method References 

ADMET-AI 

(https://admet.ai.greenstonebio.com)   

GNN (Graph neural network) model (Swanson et al., 
2024) 

ADMETlab 3.0 

(https://admetlab3.scbdd.com)  

DMPNN (Directed Message Passing Neural Network) 
architecture coupled with molecular descriptors 

(Fu et al., 2024) 

DeepPK  

(https://biosig.lab.uq.edu.au/deeppk/)  

GNN (Graph Neural Networks) and graph-based 
signatures 

(Myung et al., 
2024) 

ADMETboost  

(https://ai-druglab.smu.edu/admet)  

Fingerprints and features-driven Tree-based extreme 
gradient boosting machine learning model 

(Tian et al., 
2022) 

ADMETsar 2.0 

(https://lmmd.ecust.edu.cn/admetsar2)  

Molecular fingerprints-driven classical machine 
learning algorithms 

(Yang et al., 
2019) 

SwissADME  

(https://www.swissadme.ch/)  

Rule-based and descriptor-based classical machine-
learning models 

(Daina et al., 
2017) 

ProTox 3.0 

(https://tox.charite.de/protox3/)  

Molecular similarity and machine-learning algorithms (Banerjee et al., 
2024) 

Pharmacokinetic and Pharmacodynamic 
Modelling 

PK/PD modeling has emerged as a crucial 
bridge between preclinical and clinical research 
in drug repurposing. The PK/PD methodology 
encompasses the integration of existing drug 
data and in vitro pathogen information, dosage 
optimization through clinical PK considerations, 
correlation of drug pharmacokinetics with viral 
life cycle events, establishment of PK-clinical 
outcome relationships, and treatment effect 
assessment (Begley et al., 2021). 

Mechanism-based PK-PD models have 
proven particularly valuable by distinguishing 
between drug-specific and biological system-
specific parameters (Danhof et al., 2008). 
Additionally, these computational approaches 
facilitate the integration of diverse data types 
and enable more accurate inter-species scaling 
(Kang et al., 2024). 

Drug-Drug Interaction Predictions 

Machine learning approaches have achieved 
remarkable accuracy in predicting drug-drug 

interactions (DDIs). Notable achievements 
include the development of deep neural 
networks predicting 80 DDI types with 93.2% 
accuracy (Hou et al., 2019), drug interaction 
similarity clustering for 589 drugs (B. Zhou et al., 
2015), and graph embedding approaches 
integrating drug-drug and protein-protein 
networks (Amiri Souri et al., 2023). This 
approach may prevent harmful and life-
threatening adverse reactions by proactively 
identifying potential drug–drug interactions that 
are impractical to uncover through clinical 
testing alone. 

Off-Target Effects and Polypharmacology 
Analysis 

Strategies are needed to predict off-target 
protein interactions, which can help avoid 
adverse effects while identifying drug 
repurposing opportunities.  Computational 
analysis of polypharmacology has revealed 
valuable insights into drug repurposing 
opportunities. The CANDO platform exemplifies 
systematic compound-proteome interaction 
screening capabilities (Sethi et al., 2015). Large-
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scale studies have identified 2,923 potential 
cross-reactivity cases involving 140 unique 
drugs and 1,216 protein targets (Chartier et al., 
2017). Therefore, systematic proteome-scale 
screening is essential to identify cross-reactivity 
risks and repurposing opportunities across 
drugs and protein targets. 

Safety Profiling and Adverse Event 
Prediction 

The identification, prediction, and mitigation 
of drug-related safety is necessary by detecting 
adverse events, assessing causality, and guiding 
safer use across diverse populations and real-
world settings. Multiple computational 
strategies have emerged for safety profiling, 
including FAERS (FDA Adverse Event Reporting 
System) data mining (Morris et al., 2024), 
Mendelian randomization approaches (Walker 
et al., 2017), machine learning classifiers 
utilizing gene expression data (Z. Wang et al., 
2016), and post-market safety analysis using AI-
driven statistical approaches (Daluwatte et al., 
2020). These complementary computational 
safety-profiling strategies can detect real-world 
adverse events, infer causality, predict 
mechanistic toxicity, and monitor long-term 
population-level risks that preclinical tests and 
clinical trials may miss. 

Bioavailability and Formulation 
Optimization Studies 

Recent studies have demonstrated 
significant advances in formulation 
optimization. Notable achievements include the 
development of solid self-nanoemulsifying drug 
delivery systems, increasing oral bioavailability, 
and the identification of formulation categories 
addressing poor solubility (Baek et al., 2024; Jug 
et al., 2024). These advances align with the four 
pillars of successful drug repurposing, outlined 
by pharmacological understanding, formulation 
optimization, biological assay evaluation, and 
clinical trial robustness (Mittal & Mittal, 2021). 
Modern data analysis tools such as Google Cloud 
Vertex AI (Sina et al., 2025) and Microsoft Azure 
AI (Vuppalapati et al., 2020) can be a rapid 
solution for automated bioavailability and 
formulation optimization using machine 
learning-driven approaches. 

DISEASE-SPECIFIC APPLICATIONS AND 

THERAPEUTIC AREAS 

The strategic deployment of in silico 
methodologies across diverse therapeutic 
domains has demonstrated the versatility and 
translational potential of computational drug 
repurposing. Computational approaches are 
being applied to address unmet medical needs 
across major disease categories, from complex 
malignancies to emerging infectious threats. 
Figure 2 represents the drug repurposing 
opportunities in different disease types. 

 

Figure 2. Drug repurposing opportunities in 
different disease types. Repurposable drugs can 
be applied to multiple clinical indications, such 

as hepatic, metabolic, infectious, cardiovascular, 
oncologic, neurodegenerative, genetic, and 

obesity-related disorders. 

 

Cancer drug repurposing and precision 
oncology 

Computational drug repurposing has 
emerged as a transformative strategy in 
oncology, leveraging molecular modeling, 
machine learning, and network-based 
approaches to identify novel therapeutic 
interventions for cancer treatment. A 
comprehensive analysis identified 238 studies 
employing in silico methods for cancer drug 
repurposing, with molecular modeling 
representing the most frequently utilized 
technique (Cavalcante et al., 2024). The 
computational toolkit encompasses virtual 
screening, molecular docking, molecular 
dynamics, network pharmacology, and artificial 
intelligence-driven prediction models that can 
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systematically evaluate drug-target interactions 
across the cancer proteome (Mottini et al., 2019). 

These computational strategies have proven 
particularly valuable in precision oncology, 
where individual tumor molecular profiles can 
be matched against repurposed drug candidates 
to identify patient-specific therapeutic options. 
Moreover, computational approaches 
substantially expand the repertoire of actionable 
molecular targets, enabling personalized 
treatment strategies tailored to individual tumor 
characteristics (K.W. To & Cho, 2022). 
Furthermore, the integration of multi-omics 
data, including genomics, transcriptomics, and 
proteomics, with computational drug-target 
prediction platforms allows for the identification 
of vulnerabilities in specific cancer subtypes and 
the rational selection of repurposed agents that 
exploit these molecular dependencies 
(Mukherjee et al., 2024). 

Infectious diseases: antibacterial, 
antiviral, and antiparasitic repurposing 

The application of in silico drug repurposing 
to infectious diseases has accelerated 
dramatically, driven by the urgent need to 
combat emerging pathogens, drug-resistant 
organisms, and neglected tropical diseases 
(Hamid et al., 2024). Computational platforms 
have successfully identified repurposing 
candidates across diverse infectious disease 
contexts, including bacterial infections, viral 
diseases such as COVID-19 and dengue, and 
parasitic conditions, including malaria and 
tuberculosis (Hamid et al., 2024; Winkler, 2024; 
Zhang et al., 2025). These approaches could 
rapidly screen existing drug libraries against 
pathogen-specific targets, substantially reducing 
the time and cost associated with traditional 
antimicrobial development (W. Zheng et al., 
2018). 

Sophisticated computational workflows 
could integrate structural biology, 
cheminformatics, and systems pharmacology to 
predict drug-pathogen interactions and identify 
compounds with favorable therapeutic indices 
(N. Kumar et al., 2022). For antiviral applications 
specifically, researchers have employed 
computational methods to predict biological 
activities against viral proteins, analyze protein-
drug interaction networks, and prioritize 

candidates based on predicted pharmacokinetic 
and safety profiles (Abdulaziz et al., 2022). These 
methodologies have proven particularly 
valuable in addressing the global challenge of 
antimicrobial resistance, where computational 
strategies can rapidly identify agents that 
circumvent established resistance mechanisms 
or that synergize with existing therapies 
(Upadhayay et al., 2023). This paradigm also 
offers a critical advantage in pandemic 
preparedness and response, enabling rapid 
computational screening against novel pathogen 
targets as genomic sequence data become 
available  (Low et al., 2020; Vashisht et al., 2023; 
Zhang et al., 2025).  

Neurodegenerative disorders: 
Alzheimer's, Parkinson's, and rare 
neurological diseases 

In silico approaches have become 
indispensable tools for advancing therapeutic 
discovery in neurodegenerative diseases, where 
complex, multifactorial pathophysiology and the 
scarcity of disease-modifying treatments create 
substantial unmet medical needs. Computational 
methods enable researchers to systematically 
explore chemical space and identify compounds 
that interact with therapeutically relevant 
macromolecular targets implicated in 
neurodegeneration (Banjare et al., 2023; Haider 
et al., 2021). 

The application of in silico techniques in 
Alzheimer's disease research encompasses 
computational screening against targets such as 
acetylcholinesterase, beta-secretase, and 
aggregation-prone proteins, including amyloid-
beta and tau (Grcic et al., 2024; Vahid et al., 
2024). Similarly, Parkinson's disease research 
has benefited from computational approaches 
targeting alpha-synuclein aggregation, 
monoamine oxidase enzymes, and 
neuroprotective pathways (Peña-Díaz et al., 
2023; Siddiqui et al., 2023). Computational 
methods substantially reduce the experimental 
burden and cost of screening large compound 
libraries, while simultaneously enabling the 
prediction of ADMET properties that are critical 
for central nervous system penetration 
(Makhouri & Ghasemi, 2017). Recent advances 
in computational evaluation of drug candidates' 
affinity for macromolecular targets relevant to 
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neurodegeneration, demonstrating improved 
predictive accuracy and translational success 
(Cruz-Vicente et al., 2021).  

Metabolic, genetic, hepatic, and 
cardiovascular diseases 

In silico methodologies enable the systematic 
exploration of drug-disease interaction 
networks, pathway-level effects, and multi-
target pharmacology that characterize many 
metabolic, genetic, hepatic, and cardiovascular 
conditions, along with hypertension and obesity 
(Hodos et al., 2016; Mullins et al., 2022; Sood et 
al., 2023; Wu et al., 2022). 

Computational workflows applied to 
specifically metabolic and cardiovascular 
diseases integrate diverse data modalities, 
including disease-associated genetic variants, 
transcriptomic signatures, protein-protein 
interaction networks, and pharmacological 
databases. These integrated platforms can 
predict novel drug-target associations, identify 
mechanism-based repurposing candidates, and 
prioritize agents with favorable efficacy and 
safety profiles for specific patient 
subpopulations (El-Nikhely & El-Yazbi, 2024). 
For instance, Schubert et al. demonstrated 
computational screening approaches that 
identified existing drugs with previously 
unrecognized cardiovascular benefits, 
illustrating the potential to expand therapeutic 
options for conditions such as heart failure, 
atherosclerosis, and metabolic syndrome 
(Schubert et al., 2020). 

Rare and orphan diseases: addressing 
unmet medical needs 

In silico drug repurposing represents a 
critical strategy for addressing medical needs in 
rare and orphan diseases, where traditional 
pharmaceutical development models are often 
economically unfeasible due to limited patient 
populations. Computational approaches offer a 
pathway to accelerate therapeutic discovery by 
systematically exploring existing pharmacopeia 
for drugs that may be repurposed for rare 
disease indications, thereby leveraging 
established safety profiles and reducing 
development timelines (Roessler et al., 2021). 

Structure-based computational methods, 
including drug-binding pocket matching and 
computational pharmacology, have been 

employed to systematically map potential drug-
target interactions relevant to orphan diseases 
(Govindaraj et al., 2018). Additionally, 
Govindaraj et al. generated an extensive 
computational resource comprising 31,142 
putative drug-target complexes linked to 980 
orphan diseases, demonstrating the scalability of 
computational repurposing strategies 
(Govindaraj et al., 2018). These approaches 
integrate genomic and proteomic data from rare 
disease patients with computational target 
prediction platforms, enabling hypothesis-
driven identification of repurposing candidates 
that address specific molecular pathophysiology. 

Given that approximately 94% of rare 
diseases currently lack approved therapies, 
computational drug repurposing offers a 
pragmatic and scientifically rigorous approach 
to expanding therapeutic options for 
underserved patient populations (Roessler et al., 
2021). However, successful translation will 
require collaborative frameworks that integrate 
computational discovery with patient advocacy, 
regulatory flexibility, and innovative clinical trial 
designs appropriate for small patient cohorts. 

COVID-19 and pandemic response case 
studies 

The COVID-19 pandemic catalyzed an 
unprecedented application of in silico drug 
repurposing methodologies, demonstrating the 
capacity of computational platforms to rapidly 
respond to emerging infectious disease threats. 
Within months of SARS-CoV-2 genome and 
structural protein data becoming available, 
researchers deployed comprehensive 
computational screening campaigns targeting 
viral proteins, including the spike glycoprotein, 
main protease (Mpro), RNA-dependent RNA 
polymerase, and other essential viral factors 
(Cavasotto & Di Filippo, 2021; Mushebenge et al., 
2023). 

These efforts identified multiple repurposing 
candidates, including remdesivir, favipiravir, 
ribavirin, lopinavir, ritonavir, darunavir, arbidol, 
chloroquine, hydroxychloroquine, tocilizumab, 
and interferons, which were subsequently 
evaluated in preclinical models and clinical trials 
(Singh et al., 2020). Galindez et al. emphasized 
that in silico methods provided critical 
advantages during the pandemic response, 
including the ability to screen vast chemical 
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libraries in silico within weeks, predict drug-
target interactions with mechanistic granularity, 
and prioritize candidates for resource-intensive 
experimental validation (Galindez et al., 2021). 
Therefore, these computational approaches 
enabled rapid prioritization of candidates based 
on predicted binding affinity, mechanism of 
action, and favorable ADMET properties, 
substantially accelerating the timeline from 
target identification to clinical evaluation in 
response to pandemic urgency.   

INTEGRATION OF IN SILICO DRUG 

REPURPOSING WITH EXPERIMENTAL 

VALIDATION AND CLINICAL 

TRANSLATION 

Computational predictions can be effectively 
bridged with in vitro, in vivo, and clinical 
evaluation through an integrative drug 
repurposing methodology that combines 
computational hypothesis generation with 
targeted experimental validation. 

Wilkinson et al. elucidated that in vitro 
screening methodologies provide substantial 
advantages for validating computational 
predictions (Wilkinson & Pritchard, 2015), while 
Issa et al. delineated how high-performance 
computing infrastructures facilitate the 
generation of robust drug-target interaction 
hypotheses (Issa et al., 2013).  

Guerra et al. and Barnwal et al. provide 
preclinical proof-of-concept for repurposing 
spironolactone and ponatinib, respectively. 
Guerra et al. showed spironolactone kills 
Schistosoma mansoni in vitro and, at clinically 
achievable oral doses, reduces worm burden and 
egg-related pathology in infected mice without 
overt toxicity (Guerra et al., 2019). Barnwal et al. 
identified ponatinib as a PD-L1 suppressor in 
cell-based assays and demonstrated that it 
lowers intratumoral PD-L1, increases CD8+ T-
cell infiltration, and inhibits tumor growth in 
syngeneic mouse models at pharmacologically 
relevant exposures, supporting further clinical 
evaluation (Barnwal et al., 2023). 

Additionally, the rapid global spread of SARS-
CoV-2 prompted extensive drug-repurposing 
initiatives assessed across large platform trials 
and numerous smaller studies, identifying 
therapeutic benefit for agents including 

remdesivir, dexamethasone, tocilizumab, and 
baricitinib while refuting efficacy for others 
(hydroxychloroquine, lopinavir/ritonavir); by 
March 2021, 4,952 COVID-19 clinical trials had 
been registered across more than 100 countries 
(Chakraborty et al., 2021). 

While virtual screening and molecular 
docking are valuable drug discovery tools, their 
limitations must be acknowledged. 
Computational methods frequently generate 
false positives where high docking scores fail to 
correlate with biological activity, exemplified by 
"activity cliffs", structurally similar compounds 
exhibiting dramatically different potencies 
(Shukla et al., 2025; Van Tilborg et al., 2022). 
These discrepancies arise from factors difficult 
to model computationally, including protein 
flexibility, solvent effects, entropic 
contributions, and limitations in scoring function 
accuracy. Consequently, experimental validation 
through biochemical and cellular assays is not a 
subsequent step but an indispensable step for 
eliminating false positives and confirming true 
hits. This integrated computational-
experimental approach ensures that only 
compounds with genuine therapeutic potential 
advance through the drug development pipeline. 

Therefore, despite the substantial utility of in 
silico approaches, these computational 
approaches necessitate rigorous validation 
through subsequent experimental and clinical 
evaluation protocols (Andrade, 2016). While 
demonstrating considerable promise, they 
currently function as complementary rather 
than replacement methodologies within 
established drug development paradigms. 

CONCLUSIONS AND FUTURE 

PERSPECTIVES  

In silico drug repurposing has emerged as a 
transformative paradigm in modern 
pharmaceutical development, offering 
substantial advantages over traditional de novo 
discovery approaches through reduced 
timelines, enhanced success rates, and cost-
effective therapeutic identification. The 
integration of diverse computational 
methodologies, including structure-based and 
ligand-based virtual screening, molecular 
docking and dynamics simulations, machine 
learning and artificial intelligence algorithms, 
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network pharmacology, and multi-omics data 
integration, has demonstrated remarkable 
capability in predicting drug-target interactions 
and accelerating candidate prioritization across 
multiple therapeutic areas. These computational 
platforms have successfully addressed critical 
unmet medical needs in oncology, infectious 
diseases, neurodegenerative disorders, 
metabolic conditions, and pandemic response, 
with approximately 30% of FDA-approved drugs 
now originating from repurposing initiatives. As 
computational power increases and data 
availability expands, in silico drug repurposing 
will continue evolving from a complementary 
tool to an indispensable, hypothesis-driven 
engine driving pharmaceutical innovation in the 
era of precision medicine. Therefore, the future 
of in silico drug repurposing should lie in the 
synergistic integration of these complementary 
approaches into unified computational 
frameworks. Hybrid strategies that combine 
structure-based screening with machine 
learning-driven rescoring, deep learning-
enhanced ligand representation with network-
based polypharmacology analysis, and multi-
omics signatures with systems biology modeling 
promise to overcome current limitations, 
including scoring function inaccuracies, dataset 

bias, and model interpretability challenges. 
Moreover, the incorporation of real-world 
clinical data, electronic health records, and 
population-scale genomic information with 
machine learning-based modeling will further 
strengthen translational predictions and enable 
personalized repurposing strategies tailored to 
individual patient molecular profiles.  

ACKNOWLEDGMENT 

None 

AUTHORS’ CONTRIBUTIONS 

K.M. Tanjida Islam: Conceptualization, 
Methodology, Data curation, Formal analysis, 
Validation, Writing- original draft, Review and 
editing. 

CONFLICT OF INTERESTS 

The author declared no conflicts of interest. 

COPYRIGHT AND ETHICAL 

CONSIDERATION 

Not applicable.

BIBLIOGRAPHY 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., 
Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, 
V., Warden, P., … Zheng, X. (2016). {TensorFlow}: A System for {Large-Scale} Machine Learning. 
In Business Opp (Vol. 10, Issue July). 
https://www.usenix.org/system/files/conference/osdi16/osdi16-
liu.pdf%5Cnhttps://www.usenix.org/conference/osdi16/technical-
sessions/presentation/abadi 

Abdulaziz, L., Elhadi, E., Abdallah, E. A., Alnoor, F. A., & Yousef, B. A. (2022). Antiviral Activity of 
Approved Antibacterial, Antifungal, Antiprotozoal and Anthelmintic Drugs: Chances for Drug 
Repurposing for Antiviral Drug Discovery. Journal of Experimental Pharmacology, 14, 97–115. 
https://doi.org/10.2147/JEP.S346006;ISSUE:ISSUE:DOI 

Ahamed, M. S., & Al Ashik, S. A. (2025). Computer-aided unveiling molecular mechanisms of 
Xylocarpus granatum against colorectal cancer: therapeutic intervention targeting P13K-AKT 
signaling pathway. Computers in Biology and Medicine, 193, 110441. 
https://doi.org/10.1016/J.COMPBIOMED.2025.110441 

Ahmed, F., Kang, I. S., Kim, K. H., Asif, A., Rahim, C. S. A., Samantasinghar, A., Memon, F. H., & Choi, K. 
H. (2023). Drug repurposing for viral cancers: A paradigm of machine learning, deep learning, 
and virtual screening-based approaches. Journal of Medical Virology, 95(4), e28693. 
https://doi.org/10.1002/JMV.28693 

Al-Sanea, M. M., Chilingaryan, G., Abelyan, N., Mamikonyan, M., Gasparyan, H., Hovhannisyan, S., 
Hamdi, A., Ali, A. R., Selim, S., & Mohamed, A. A. B. (2022). Combination of ligand and structure 

https://journals2.ums.ac.id/index.php/pharmacon/


 

 Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187 179 

 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 
 

based virtual screening approaches for the discovery of potential PARP1 inhibitors. PLOS ONE, 
17(9), e0272065. https://doi.org/10.1371/JOURNAL.PONE.0272065 

Amiri Souri, E., Chenoweth, A., Karagiannis, S. N., & Tsoka, S. (2023). Drug repurposing and prediction 
of multiple interaction types via graph embedding. BMC Bioinformatics 2023 24:1, 24(1), 1–17. 
https://doi.org/10.1186/S12859-023-05317-W 

Amorim, A. M. B., Piochi, L. F., Gaspar, A. T., Preto, A. J., Rosário-Ferreira, N., & Moreira, I. S. (2024). 
Advancing Drug Safety in Drug Development: Bridging Computational Predictions for 
Enhanced Toxicity Prediction. Chemical Research in Toxicology, 37(6), 827–849. 
https://doi.org/10.1021/ACS.CHEMRESTOX.3C00352 

Ananna, N. F., Akter, A., Amin, Md. Al, Islam, K. M. T., & Mahmud, S. (2024). Ligand-based 
pharmacophore modeling targeting the fluoroquinolone antibiotics to identify potential 
antimicrobial compounds. Computational and Structural Biotechnology Reports, 1, 100021. 
https://doi.org/10.1016/J.CSBR.2024.100021 

Andrade, C. (2016). Antipsychotic drugs in schizophrenia: Relative effects in patients with and 
without treatment resistance. Journal of Clinical Psychiatry, 77(12), e1656–e1660. 
https://doi.org/10.4088/JCP.16F11328 

Baek, K., Woo, M. R., Din, F. U., Choi, Y. S., Kang, M. J., Kim, J. O., Choi, H. G., & Jin, S. G. (2024). 
Comparison of Solid Self-Nanoemulsifying Systems and Surface-Coated Microspheres: 
Improving Oral Bioavailability of Niclosamide. International Journal of Nanomedicine, 19, 
13857–13874. https://doi.org/10.2147/IJN.S494083;WGROUP:STRING:PUBLICATION 

Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: a webserver for the 
prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513–W520. 
https://doi.org/10.1093/NAR/GKAE303 

Banjare, P., Wamanrao Matore, B., Murmu, A., Kumar, V., Singh, J., & Roy, P. P. (2023). In silico 
Strategy: A Promising Implement in the Development of Multitarget Drugs against 
Neurodegenerative Diseases. Current Topics in Medicinal Chemistry, 23(29), 2765–2791. 
https://doi.org/10.2174/1568026623666230811113231/CITE/REFWORKS 

Barnwal, A., Das, S., & Bhattacharyya, J. (2023). Repurposing Ponatinib as a PD-L1 Inhibitor Revealed 
by Drug Repurposing Screening and Validation by In Vitro and In Vivo Experiments. ACS 
Pharmacology & Translational Science, 6(2), 281–289. 
https://doi.org/10.1021/ACSPTSCI.2C00214 

Begley, C. G., Ashton, M., Baell, J., Bettess, M., Brown, M. P., Carter, B., Charman, W. N., Davis, C., Fisher, 
S., Frazer, I., Gautam, A., Jennings, M. P., Kearney, P., Keeffe, E., Kelly, D., Lopez, A. F., McGuckin, 
M., Parker, M. W., Rayner, C., … Sullivan, M. (2021). Drug repurposing: Misconceptions, 
challenges, and opportunities for academic researchers. Science Translational Medicine, 
13(612). 
https://doi.org/10.1126/SCITRANSLMED.ABD5524;JOURNAL:JOURNAL:STM;ISSUE:ISSUE:D
OI 

Bugnon, M., Röhrig, U. F., Goullieux, M., Perez, M. A. S., Daina, A., Michielin, O., & Zoete, V. (2024). 
SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and 
AutoDock Vina. Nucleic Acids Research, 52(W1), W324–W332. 
https://doi.org/10.1093/NAR/GKAE300 

Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chao, H., Chen, L., Craig, P. A., Crichlow, G. V., Dalenberg, 
K., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S., Ghosh, S., Goodsell, D. S., 
Green, R. K., Guranovic, V., … Zardecki, C. (2023). RCSB Protein Data Bank (RCSB.org): delivery 
of experimentally-determined PDB structures alongside one million computed structure 

https://journals2.ums.ac.id/index.php/pharmacon/


 
                              Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187  180 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 

models of proteins from artificial intelligence/machine learning. Nucleic Acids Research, 
51(D1), D488–D508. https://doi.org/10.1093/NAR/GKAC1077 

Cavalcante, B. R. R., Freitas, R. D., Siquara da Rocha, L. de O., Santos, R. de S. B. D., Souza, B. S. de F., 
Ramos, P. I. P., Rocha, G. V., & Gurgel Rocha, C. A. (2024). In silico approaches for drug 
repurposing in oncology: a scoping review. Frontiers in Pharmacology, 15, 1400029. 
https://doi.org/10.3389/FPHAR.2024.1400029/FULL 

Cavasotto, C. N., & Di Filippo, J. I. (2021). In silico Drug Repurposing for COVID-19: Targeting SARS-
CoV-2 Proteins through Docking and Consensus Ranking. Molecular Informatics, 40(1), 
2000115. https://doi.org/10.1002/MINF.202000115;PAGE:STRING:ARTICLE/CHAPTER 

Cha, Y., Erez, T., Reynolds, I. J., Kumar, D., Ross, J., Koytiger, G., Kusko, R., Zeskind, B., Risso, S., Kagan, 
E., Papapetropoulos, S., Grossman, I., & Laifenfeld, D. (2018). Drug repurposing from the 
perspective of pharmaceutical companies. British Journal of Pharmacology, 175(2), 168–180. 
https://doi.org/10.1111/BPH.13798 

Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G., & Lee, S. S. (2021). The Drug 
Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: 
Lessons Learned From Major Clinical Studies. Frontiers in Pharmacology, 12, 704205. 
https://doi.org/10.3389/FPHAR.2021.704205/FULL 

Chartier, M., Morency, L. P., Zylber, M. I., & Najmanovich, R. J. (2017). Large-scale detection of drug 
off-targets: hypotheses for drug repurposing and understanding side-effects. BMC 
Pharmacology and Toxicology 2017 18:1, 18(1), 1–16. https://doi.org/10.1186/S40360-017-
0128-7 

Clough, E., & Barrett, T. (2016). The Gene Expression Omnibus Database. Methods in Molecular 
Biology, 1418, 93–110. https://doi.org/10.1007/978-1-4939-3578-9_5 

Cousins, H. C., Nayar, G., & Altman, R. B. (2024). Computational Approaches to Drug Repurposing: 
Methods, Challenges, and Opportunities. Annual Review of Biomedical Data Science, 7(1), 15–
29. https://doi.org/10.1146/ANNUREV-BIODATASCI-110123-025333/CITE/REFWORKS 

Cruz-Vicente, P., Passarinha, L. A., Silvestre, S., Gallardo, E., Muñoz-Torrero, D., Rapposelli, S., 
Gütschow, M., Matos, M. J., Emília De Sousa, M., & Saso, L. (2021). Recent Developments in New 
Therapeutic Agents against Alzheimer and Parkinson Diseases: In-Silico Approaches. Molecules 
2021, Vol. 26, Page 2193, 26(8), 2193. https://doi.org/10.3390/MOLECULES26082193 

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, 
drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017 
7:1, 7(1), 1–13. https://doi.org/10.1038/srep42717 

Daluwatte, C., Schotland, P., Strauss, D. G., Burkhart, K. K., & Racz, R. (2020). Predicting potential 
adverse events using safety data from marketed drugs. BMC Bioinformatics 2020 21:1, 21(1), 
1–21. https://doi.org/10.1186/S12859-020-3509-7 

Danhof, M., de Lange, E. C. M., Della Pasqua, O. E., Ploeger, B. A., & Voskuyl, R. A. (2008). Mechanism-
based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. 
Trends in Pharmacological Sciences, 29(4), 186–191. 
https://doi.org/10.1016/j.tips.2008.01.007 

Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking 
Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and 
Modeling, 61(8), 3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203 

El-Nikhely, N., & El-Yazbi, A. F. (2024). A proposed computational workflow for bioinformatics-based 
drug repurposing: A case study of Canagliflozin. 2024 International Conference on Machine 
Intelligence and Smart Innovation, ICMISI 2024 - Proceedings, 224–227. 
https://doi.org/10.1109/ICMISI61517.2024.10580158 

https://journals2.ums.ac.id/index.php/pharmacon/


 

 Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187 181 

 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 
 

Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7(2), 83–89. 
https://doi.org/10.1007/S40484-019-0172-Y/METRICS 

Ferreira, L. L. G., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug 
Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/J.DRUDIS.2019.03.015 

Fu, L., Shi, S., Yi, J., Wang, N., He, Y., Wu, Z., Peng, J., Deng, Y., Wang, W., Wu, C., Lyu, A., Zeng, X., Zhao, 
W., Hou, T., & Cao, D. (2024). ADMETlab 3.0: an updated comprehensive online ADMET 
prediction platform enhanced with broader coverage, improved performance, API 
functionality and decision support. Nucleic Acids Research, 52(W1), W422–W431. 
https://doi.org/10.1093/NAR/GKAE236 

Galindez, G., Matschinske, J., Rose, T. D., Sadegh, S., Salgado-Albarrán, M., Späth, J., Baumbach, J., & 
Pauling, J. K. (2021). Lessons from the COVID-19 pandemic for advancing computational drug 
repurposing strategies. Nature Computational Science 2021 1:1, 1(1), 33–41. 
https://doi.org/10.1038/s43588-020-00007-6 

Gaulton, A., Hersey, A., Nowotka, M. L., Patricia Bento, A., Chambers, J., Mendez, D., Mutowo, P., 
Atkinson, F., Bellis, L. J., Cibrian-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magarinos, M. 
P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. 
Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/NAR/GKW1074 

Gil, C., & Martinez, A. (2021). Is drug repurposing really the future of drug discovery or is new 
innovation truly the way forward? Expert Opinion on Drug Discovery, 16(8), 829–831. 
https://doi.org/10.1080/17460441.2021.1912733 

Govindaraj, R. G., Naderi, M., Singha, M., Lemoine, J., & Brylinski, M. (2018). Large-scale computational 
drug repositioning to find treatments for rare diseases. Npj Systems Biology and Applications 
2018 4:1, 4(1), 1–10. https://doi.org/10.1038/s41540-018-0050-7 

Grcic, L., Leech, G., Kwan, K., & Storr, T. (2024). Targeting misfolding and aggregation of the amyloid-
β peptide and mutant p53 protein using multifunctional molecules. Chemical Communications, 
60(11), 1372–1388. https://doi.org/10.1039/D3CC05834D 

Guerra, R. A., Silva, M. P., Silva, T. C., Salvadori, M. C., Teixeira, F. S., De Oliveira, R. N., Rocha, J. A., Pinto, 
P. L. S., & De Moraes, J. (2019). In vitro and in vivo studies of spironolactone as an 
antischistosomal drug capable of clinical repurposing. Antimicrobial Agents and Chemotherapy, 
63(3). https://doi.org/10.1128/AAC.01722-18;CTYPE:STRING:JOURNAL 

Haider, M., Chauhan, A., Tariq, S., Pathak, D. P., Siddiqui, N., Ali, S., Pottoo, F. H., & Ali, R. (2021). 
Application of In silico Methods in the Design of Drugs for Neurodegenerative Diseases. Current 
Topics in Medicinal Chemistry, 21(11), 995–1011. 
https://doi.org/10.2174/1568026621666210521164545/CITE/REFWORKS 

Hamid, A., Mäser, P., & Mahmoud, A. B. (2024). Drug Repurposing in the Chemotherapy of Infectious 
Diseases. Molecules 2024, Vol. 29, Page 635, 29(3), 635. 
https://doi.org/10.3390/MOLECULES29030635 

Heid, E., Greenman, K. P., Chung, Y., Li, S. C., Graff, D. E., Vermeire, F. H., Wu, H., Green, W. H., & McGill, 
C. J. (2023). Chemprop: A Machine Learning Package for Chemical Property Prediction. Journal 
of Chemical Information and Modeling, 64(1), 9–17. 
https://doi.org/10.1021/ACS.JCIM.3C01250 

Hodos, R. A., Kidd, B. A., Shameer, K., Readhead, B. P., & Dudley, J. T. (2016). In silico methods for drug 
repurposing and pharmacology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 
8(3), 186–210. 
https://doi.org/10.1002/WSBM.1337;WEBSITE:WEBSITE:WIRES;ISSUE:ISSUE:DOI 

https://journals2.ums.ac.id/index.php/pharmacon/


 
                              Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187  182 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 

Honkala, A., Malhotra, S. V., Kummar, S., & Junttila, M. R. (2021). Harnessing the predictive power of 
preclinical models for oncology drug development. Nature Reviews Drug Discovery 2021 21:2, 
21(2), 99–114. https://doi.org/10.1038/s41573-021-00301-6 

Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical 
Biology, 4(11), 682–690. https://doi.org/10.1038/NCHEMBIO.118;KWRD 

Hou, X., You, J., & Hu, P. (2019). Predicting drug-drug interactions using deep neural network. ACM 
International Conference Proceeding Series, Part F148150, 168–172. 
https://doi.org/10.1145/3318299.3318323;TOPIC:TOPIC:CONFERENCE-COLLECTIONS 

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2021). DeepPurpose: a deep learning library 
for drug–target interaction prediction. Bioinformatics, 36(22–23), 5545–5547. 
https://doi.org/10.1093/BIOINFORMATICS/BTAA1005 

Islam, K. M. T., & Mahmud, S. (2025). In-silico exploring pathway and mechanism-based therapeutics 
for allergic rhinitis: Network pharmacology, molecular docking, ADMET, quantum chemistry 
and machine learning based QSAR approaches. Computers in Biology and Medicine, 187, 
109754. https://doi.org/10.1016/J.COMPBIOMED.2025.109754 

Islam, K. M. T., & Shibly, A. Z. (2025). Network and pharmacophore guided and BCL2 and HSP90AA1 
targeted drug repurposable approaches against rheumatoid arthritis mediated diffuse large B-
cell lymphoma. International Journal of Biological Macromolecules, 325, 146985. 
https://doi.org/10.1016/J.IJBIOMAC.2025.146985 

Issa, N. T., Kruger, J., Byers, S. W., & Dakshanamurthy, S. (2013). Drug repurposing a reality: from 
computers to the clinic. Expert Review of Clinical Pharmacology, 6(2), 95–97. 
https://doi.org/10.1586/ECP.12.79;WGROUP:STRING:PUBLICATION 

Jarada, T. N., Rokne, J. G., & Alhajj, R. (2020). A review of computational drug repositioning: Strategies, 
approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 12(1), 1–23. 
https://doi.org/10.1186/S13321-020-00450-7/TABLES/3 

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 
349(6245), 255–260. https://doi.org/10.1126/SCIENCE.AAA8415 

Jug, M., Laffleur, F., & Millotti, G. (2024). Revisiting Niclosamide Formulation Approaches – a Pathway 
Toward Drug Repositioning. Drug Design, Development and Therapy, 18, 4153–4182. 
https://doi.org/10.2147/DDDT.S473178;REQUESTEDJOURNAL:JOURNAL:DDDT20;WGROUP
:STRING:PUBLICATION 

Kang, D. W., Kim, J. H., Kim, K. M., Cho, S. J., Choi, G. W., & Cho, H. Y. (2024). Inter-Species 
Pharmacokinetic Modeling and Scaling for Drug Repurposing of Pyronaridine and Artesunate. 
International Journal of Molecular Sciences, 25(13), 6998. 
https://doi.org/10.3390/IJMS25136998/S1 

Khosravi, A., Jayaram, B., Goliaei, B., & Masoudi-Nejad, A. (2019). Active repurposing of drug 
candidates for melanoma based on GWAS, PheWAS and a wide range of omics data. Molecular 
Medicine, 25(1), 1–11. https://doi.org/10.1186/S10020-019-0098-X/TABLES/1 

Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., Pon, A., Cox, J., Chin, N. E. L., 
Strawbridge, S. A., Garcia-Patino, M., Kruger, R., Sivakumaran, A., Sanford, S., Doshi, R., 
Khetarpal, N., Fatokun, O., Doucet, D., Zubkowski, A., … Wishart, D. S. (2024). DrugBank 6.0: the 
DrugBank Knowledgebase for 2024. Nucleic Acids Research, 52(D1), D1265–D1275. 
https://doi.org/10.1093/NAR/GKAD976 

Kuhn, M., Szklarczyk, D., Pletscher-Frankild, S., Blicher, T. H., Von Mering, C., Jensen, L. J., & Bork, P. 
(2014). STITCH 4: integration of protein–chemical interactions with user data. Nucleic Acids 
Research, 42(D1), D401–D407. https://doi.org/10.1093/NAR/GKT1207 

https://journals2.ums.ac.id/index.php/pharmacon/


 

 Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187 183 

 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 
 

Kumar, N., Sarma, H., & Sastry, G. N. (2022). Repurposing of approved drug molecules for viral 
infectious diseases: a molecular modelling approach. Journal of Biomolecular Structure and 
Dynamics, 40(17), 8056–8072. 
https://doi.org/10.1080/07391102.2021.1905558;REQUESTEDJOURNAL:JOURNAL:TBSD20
;WGROUP:STRING:PUBLICATION 

Kumar, R., Harilal, S., Gupta, S. V., Jose, J., Thomas, D. G., Uddin, M. S., Shah, M. A., & Mathew, B. (2019). 
Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart 
work. European Journal of Medicinal Chemistry, 182, 111602. 
https://doi.org/10.1016/J.EJMECH.2019.111602 

K.W. To, K., & Cho, W. C. S. (2022). Drug Repurposing for Cancer Therapy in the Era of Precision 
Medicine. Current Molecular Pharmacology, 15(7), 895–903. 
https://doi.org/10.2174/1874467215666220214104530/CITE/REFWORKS 

Lavecchia, A., & Cerchia, C. (2016). In silico methods to address polypharmacology: current status, 
applications and future perspectives. Drug Discovery Today, 21(2), 288–298. 
https://doi.org/10.1016/J.DRUDIS.2015.12.007 

Liu, D. Y., Shen, H., Greenbaum, J., Yi, Q. R., Liang, S., Zhang, Y., Liu, J. C., Qiu, C., Zhao, L. J., Tian, Q., Su, 
K. J., Luo, Z., Wu, L., Meng, X. H., Xiao, H. M., Deng, Y., Li, Y., Lovre, D., Fonseca, V., … Deng, H. W. 
(2025). Repurposing Acebutolol for Osteoporosis Treatment: Insights From Multi-Omics and 
Multi-Modal Data Analysis. Clinical Pharmacology and Therapeutics. 
https://doi.org/10.1002/CPT.3738;JOURNAL:JOURNAL:15326535;WGROUP:STRING:PUBLIC
ATION 

Liu, P. P., Yu, X. Y., Pan, Q. Q., Ren, J. J., Han, Y. X., Zhang, K., Wang, Y., Huang, Y., & Ban, T. (2025). Multi-
Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy. Pharmaceuticals, 
18(1), 43. https://doi.org/10.3390/PH18010043/S1 

Low, Z. Y., Farouk, I. A., & Lal, S. K. (2020). Drug Repositioning: New Approaches and Future Prospects 
for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020, Vol. 12, Page 
1058, 12(9), 1058. https://doi.org/10.3390/V12091058 

Mahmud, M. S., Paul, B. K., Hasan, M. R., Islam, K. M. T., Mahmud, I., & Mahmud, S. (2025). 
Computational network analysis of two popular skin cancers provides insights into the 
molecular mechanisms and reveals common therapeutic targets. Heliyon, 11(1). 
https://doi.org/10.1016/j.heliyon.2025.e41688 

Makhouri, F. R., & Ghasemi, J. B. (2017). In Silico Studies in Drug Research Against Neurodegenerative 
Diseases. Current Neuropharmacology, 16(6), 664–725. 
https://doi.org/10.2174/1570159X15666170823095628/CITE/REFWORKS 

Mittal, N., & Mittal, R. (2021). Repurposing old molecules for new indications: Defining pillars of 
success from lessons in the past. European Journal of Pharmacology, 912, 174569. 
https://doi.org/10.1016/J.EJPHAR.2021.174569 

Morris, R., Ali, R., & Cheng, F. (2024). Drug Repurposing Using FDA Adverse Event Reporting System 
(FAERS) Database. Current Drug Targets, 25(7), 454–464. 
https://doi.org/10.2174/0113894501290296240327081624/CITE/REFWORKS 

Mottini, C., Tomihara, H., Carrella, D., Lamolinara, A., Iezzi, M., Huang, J. K., Amoreo, C. A., Buglioni, S., 
Manni, I., Robinson, F. S., Minelli, R., Kang, Y., Fleming, J. B., Kim, M. P., Bristow, C. A., Trisciuoglio, 
D., Iuliano, A., Bufalo, D. Del, Bernardo, D. Di, … Cardone, L. (2019). Predictive signatures inform 
the effective repurposing of decitabine to treat KRAS-dependent pancreatic ductal 
adenocarcinoma. Cancer Research, 79(21), 5612–5625. https://doi.org/10.1158/0008-
5472.CAN-19-0187/653920/AM/PREDICTIVE-SIGNATURES-INFORM-THE-EFFECTIVE 

https://journals2.ums.ac.id/index.php/pharmacon/


 
                              Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187  184 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 

Mukherjee, A., Abraham, S., Singh, A., Balaji, S., & Mukunthan, K. S. (2024). From Data to Cure: A 
Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies. Molecular 
Biotechnology 2024 67:4, 67(4), 1269–1289. https://doi.org/10.1007/S12033-024-01133-6 

Mullins, R. J., Meeker, T. J., Vinch, P. M., Tulloch, I. K., Saffer, M. I., Chien, J. H., Bienvenu, O. J., & Lenz, F. 
A. (2022). A Cross-Sectional Time Course of COVID-19 Related Worry, Perceived Stress, and 
General Anxiety in the Context of Post-Traumatic Stress Disorder-like Symptomatology. 
International Journal of Environmental Research and Public Health, 19(12), 7178. 
https://doi.org/10.3390/IJERPH19127178/S1 

Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V., Filimonov, D., Poroikov, V., Oprea, T. I., Baskin, 
I. I., Varnek, A., Roitberg, A., Isayev, O., Curtalolo, S., Fourches, D., Cohen, Y., Aspuru-Guzik, A., 
Winkler, D. A., Agrafiotis, D., Cherkasov, A., & Tropsha, A. (2020). QSAR without borders. 
Chemical Society Reviews, 49(11), 3525–3564. https://doi.org/10.1039/D0CS00098A 

Mushebenge, A. G., Ugbaja, S. C., Mtambo, S. E., Ntombela, T., Metu, J. I., Babayemi, O., Chima, J. I., 
Appiah-Kubi, P., Odugbemi, A. I., Ntuli, M. L., Khan, R., & Kumalo, H. M. (2023). Unveiling the 
Inhibitory Potentials of Peptidomimetic Azanitriles and Pyridyl Esters towards SARS-CoV-2 
Main Protease: A Molecular Modelling Investigation. Molecules 2023, Vol. 28, Page 2641, 28(6), 
2641. https://doi.org/10.3390/MOLECULES28062641 

Myung, Y., De Sá, A. G. C., & Ascher, D. B. (2024). Deep-PK: deep learning for small molecule 
pharmacokinetic and toxicity prediction. Nucleic Acids Research, 52(W1), W469–W475. 
https://doi.org/10.1093/NAR/GKAE254 

Otasek, D., Morris, J. H., Bouças, J., Pico, A. R., & Demchak, B. (2019). Cytoscape Automation: 
empowering workflow-based network analysis. Genome Biology 2019 20:1, 20(1), 1–15. 
https://doi.org/10.1186/S13059-019-1758-4 

Pan, X., Yun, J., Coban Akdemir, Z. H., Jiang, X., Wu, E., Huang, J. H., Sahni, N., & Yi, S. S. (2023). AI-
DrugNet: A network-based deep learning model for drug repurposing and combination 
therapy in neurological disorders. Computational and Structural Biotechnology Journal, 21, 
1533–1542. https://doi.org/10.1016/J.CSBJ.2023.02.004 

Patel, C. N., Mall, R., & Bensmail, H. (2023). AI-driven drug repurposing and binding pose meta 
dynamics identifies novel targets for monkeypox virus. Journal of Infection and Public Health, 
16(5), 799–807. https://doi.org/10.1016/J.JIPH.2023.03.007 

Peña-Díaz, S., García-Pardo, J., & Ventura, S. (2023). Development of Small Molecules Targeting α-
Synuclein Aggregation: A Promising Strategy to Treat Parkinson’s Disease. Pharmaceutics 
2023, Vol. 15, Page 839, 15(3), 839. https://doi.org/10.3390/PHARMACEUTICS15030839 

Pola, M., Tiwari, A., & Chandrasai, P. (2023). A Comprehensive Review on Technological Advances in 
Alternate Drug Discovery Process:Drug Repurposing. Current Trends in Biotechnology and 
Pharmacy, 17(2), 907–916. https://doi.org/10.5530/CTBP.2023.2.28 

Rajput, A., Thakur, A., Mukhopadhyay, A., Kamboj, S., Rastogi, A., Gautam, S., Jassal, H., & Kumar, M. 
(2021). Prediction of repurposed drugs for Coronaviruses using artificial intelligence and 
machine learning. Computational and Structural Biotechnology Journal, 19, 3133–3148. 
https://doi.org/10.1016/J.CSBJ.2021.05.037 

Ramsundar, B. (2018). MOLECULAR MACHINE LEARNING WITH DEEPCHEM. 
http://purl.stanford.edu/js264hd4826 

Ripphausen, P., Nisius, B., & Bajorath, J. (2011). State-of-the-art in ligand-based virtual screening. 
Drug Discovery Today, 16(9–10), 372–376. https://doi.org/10.1016/J.DRUDIS.2011.02.011 

Roessler, H. I., Knoers, N. V. A. M., van Haelst, M. M., & van Haaften, G. (2021). Drug Repurposing for 
Rare Diseases. Trends in Pharmacological Sciences, 42(4), 255–267. 
https://doi.org/10.1016/j.tips.2021.01.003 

https://journals2.ums.ac.id/index.php/pharmacon/


 

 Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187 185 

 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 
 

Schubert, M., Hansen, S., Leefmann, J., & Guan, K. (2020). Repurposing Antidiabetic Drugs for 
Cardiovascular Disease. Frontiers in Physiology, 11, 568632. 
https://doi.org/10.3389/FPHYS.2020.568632/FULL 

Sethi, G., Chopra, G., & Samudrala, R. (2015). Multiscale Modelling of Relationships between Protein 
Classes and Drug Behavior Across all Diseases Using the CANDO Platform. Mini-Reviews in 
Medicinal Chemistry, 15(8), 705–717. 
https://doi.org/10.2174/1389557515666150219145148 

Shukla, A. K., Pradhan, J., Kumar, M., Panchawat, S., & Jain, C. P. (2025). Computational Techniques for 
Drug Discovery from Medicinal Plants. Plant Biotechnology: The Medicinal and 
Phytopharmaceutical Aspects, 223–244. https://doi.org/10.1201/9781003326939-
19/COMPUTATIONAL-TECHNIQUES-DRUG-DISCOVERY-MEDICINAL-PLANTS-AJAY-KUMAR-
SHUKLA-JOOHEE-PRADHAN-MANISH-KUMAR-SUNITA-PANCHAWAT-JAIN 

Siddiqui, A. J., Jahan, S., Siddiqui, M. A., Khan, A., Alshahrani, M. M., Badraoui, R., & Adnan, M. (2023). 
Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases 
Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and 
Computer-Aided Drug Design. Mathematics, 11(6), 1464. 
https://doi.org/10.3390/MATH11061464/S1 

Sina, E. M., Pena, J., Zafar, S., Bommakanti, N. K., Kuriyan, A. E., & Yonekawa, Y. (2025). Automated 
Machine Learning Classification of Optical Coherence Tomography Images of Retinal 
Conditions Using Google Cloud Vertex AI. Retina. 
https://doi.org/10.1097/IAE.0000000000004555 

Singh, T. U., Parida, S., Lingaraju, M. C., Kesavan, M., Kumar, D., & Singh, R. K. (2020). Drug repurposing 
approach to fight COVID-19. Pharmacological Reports 2020 72:6, 72(6), 1479–1508. 
https://doi.org/10.1007/S43440-020-00155-6 

Sood, A., Qualls, C., Murata, A., Kroth, P. J., Mao, J., Schade, D. S., & Murata, G. (2023). Potential for 
repurposing oral hypertension/diabetes drugs to decrease asthma risk in obesity. Journal of 
Asthma, 60(4), 802–810. 
https://doi.org/10.1080/02770903.2022.2097919;WEBSITE:WEBSITE:TFOPB;PAGEGROUP:
STRING:PUBLICATION 

Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to 
improve it? Acta Pharmaceutica Sinica B, 12(7), 3049–3062. 
https://doi.org/10.1016/J.APSB.2022.02.002 

Swanson, K., Walther, P., Leitz, J., Mukherjee, S., Wu, J. C., Shivnaraine, R. V., & Zou, J. (2024). ADMET-
AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries. 
Bioinformatics, 40(7). https://doi.org/10.1093/BIOINFORMATICS/BTAE416 

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., 
Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & Von Mering, C. (2023). The STRING database 
in 2023: protein–protein association networks and functional enrichment analyses for any 
sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. 
https://doi.org/10.1093/NAR/GKAC1000 

Tafesse, T. B., Bule, M. H., Khan, F., Abdollahi, M., & Amini, M. (2020). Developing Novel Anticancer 
Drugs for Targeted Populations: An Update. Current Pharmaceutical Design, 27(2), 250–262. 
https://doi.org/10.2174/1381612826666201124111748 

Tanoli, Z., Vähä-Koskela, M., & Aittokallio, T. (2021). Artificial intelligence, machine learning, and drug 
repurposing in cancer. Expert Opinion on Drug Discovery, 16(9), 977–989. 
https://doi.org/10.1080/17460441.2021.1883585 

https://journals2.ums.ac.id/index.php/pharmacon/


 
                              Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187  186 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 

Tian, H., Ketkar, R., & Tao, P. (2022). ADMETboost: a web server for accurate ADMET prediction. 
Journal of Molecular Modeling 2022 28:12, 28(12), 1–6. https://doi.org/10.1007/S00894-022-
05373-8 

Tiwari, P. C., Pal, R., Chaudhary, M. J., & Nath, R. (2023). Artificial intelligence revolutionizing drug 
development: Exploring opportunities and challenges. Drug Development Research, 84(8), 
1652–1663. https://doi.org/10.1002/DDR.22115 

Upadhayay, A., Ling, J., Pal, D., Xie, Y., Ping, F. F., & Kumar, A. (2023). Resistance-proof antimicrobial 
drug discovery to combat global antimicrobial resistance threat. Drug Resistance Updates, 66, 
100890. https://doi.org/10.1016/J.DRUP.2022.100890 

Vahid, Z. F., Eskandani, M., Dadashi, H., Vandghanooni, S., & Rashidi, M. R. (2024). Recent advances in 
potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer’s disease. 
Heliyon, 10(23), e40756. https://doi.org/10.1016/J.HELIYON.2024.E40756 

Van Tilborg, D., Alenicheva, A., & Grisoni, F. (2022). Exposing the Limitations of Molecular Machine 
Learning with Activity Cliffs. Journal of Chemical Information and Modeling, 62(23), 5938–5951. 
https://doi.org/10.1021/ACS.JCIM.2C01073 

Vanhaelen, Q., Mamoshina, P., Aliper, A. M., Artemov, A., Lezhnina, K., Ozerov, I., Labat, I., & 
Zhavoronkov, A. (2017). Design of efficient computational workflows for in silico drug 
repurposing. Drug Discovery Today, 22(2), 210–222. 
https://doi.org/10.1016/J.DRUDIS.2016.09.019 

Vashisht, V., Vashisht, A., Mondal, A. K., Farmaha, J., Alptekin, A., Singh, H., Ahluwalia, P., Srinivas, A., 
& Kolhe, R. (2023). Genomics for Emerging Pathogen Identification and Monitoring: Prospects 
and Obstacles. BioMedInformatics, 3(4), 1145–1177. 
https://doi.org/10.3390/BIOMEDINFORMATICS3040069/S1 

Vukicevic, S. (2016). Current Challenges and Hurdles in New Drug Development. Clinical 
Therapeutics, 38(10), e3. https://doi.org/10.1016/j.clinthera.2016.07.019 

Vuppalapati, C., Ilapakurti, A., Chillara, K., Kedari, S., & Mamidi, V. (2020). Automating Tiny ML 
Intelligent Sensors DevOPS Using Microsoft Azure. Proceedings - 2020 IEEE International 
Conference on Big Data, Big Data 2020, 2375–2384. 
https://doi.org/10.1109/BIGDATA50022.2020.9377755 

Walker, V. M., Smith, G. D., Davies, N. M., & Martin, R. M. (2017). Mendelian randomization: a novel 
approach for the prediction of adverse drug events and drug repurposing opportunities. 
International Journal of Epidemiology, 46(6), 2078–2089. 
https://doi.org/10.1093/IJE/DYX207 

Wang, F., & Barrero, C. A. (2024). Multi-Omics Analysis Identified Drug Repurposing Targets for 
Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 25(20), 
11106. https://doi.org/10.3390/IJMS252011106/S1 

Wang, Z., Clark, N. R., & Ma’ayan, A. (2016). Drug-induced adverse events prediction with the LINCS 
L1000 data. Bioinformatics, 32(15), 2338–2345. 
https://doi.org/10.1093/BIOINFORMATICS/BTW168 

Wei, Y., Li, S., Li, Z., Wan, Z., & Lin, J. (2022). Interpretable-ADMET: a web service for ADMET 
prediction and optimization based on deep neural representation. Bioinformatics, 38(10), 
2863–2871. https://doi.org/10.1093/BIOINFORMATICS/BTAC192 

Wilkinson, G. F., & Pritchard, K. (2015). In vitro screening for drug repositioning. Journal of 
Biomolecular Screening, 20(2), 167–179. https://doi.org/10.1177/1087057114563024 

Winkler, D. A. (2024). Computational repurposing of drugs for viral diseases and current and future 
pandemics. Journal of Mathematical Chemistry 2024 62:10, 62(10), 2844–2879. 
https://doi.org/10.1007/S10910-023-01568-3 

https://journals2.ums.ac.id/index.php/pharmacon/


 

 Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187 187 

 

 

https://journals2.ums.ac.id/index.php/pharmacon/ 
 

Wu, P., Feng, Q. P., Kerchberger, V. E., Nelson, S. D., Chen, Q., Li, B., Edwards, T. L., Cox, N. J., Phillips, E. 
J., Stein, C. M., Roden, D. M., Denny, J. C., & Wei, W. Q. (2022). Integrating gene expression and 
clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension. 
Nature Communications 2022 13:1, 13(1), 1–12. https://doi.org/10.1038/s41467-021-27751-
1 

Xu, M., Shen, C., Yang, J., Wang, Q., & Huang, N. (2022). Systematic Investigation of Docking Failures 
in Large-Scale Structure-Based Virtual Screening. ACS Omega, 7(43), 39417–39428. 
https://doi.org/10.1021/ACSOMEGA.2C05826 

Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: web-
service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 
1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY707 

Yekeen, A. A., Durojaye, O. A., Idris, M. O., Muritala, H. F., & Arise, R. O. (2023). CHAPERONg: A tool for 
automated GROMACS-based molecular dynamics simulations and trajectory analyses. 
Computational and Structural Biotechnology Journal, 21, 4849–4858. 
https://doi.org/10.1016/J.CSBJ.2023.09.024 

Yetgin, A. (2025). Revolutionizing multi-omics analysis with artificial intelligence and data 
processing. Quantitative Biology, 13(3), e70002. 
https://doi.org/10.1002/QUB2.70002;JOURNAL:JOURNAL:20954697;ISSUE:ISSUE:DOI 

Zdrazil, B., Felix, E., Hunter, F., Manners, E. J., Blackshaw, J., Corbett, S., de Veij, M., Ioannidis, H., Lopez, 
D. M., Mosquera, J. F., Magarinos, M. P., Bosc, N., Arcila, R., Kizilören, T., Gaulton, A., Bento, A. P., 
Adasme, M. F., Monecke, P., Landrum, G. A., & Leach, A. R. (2024). The ChEMBL Database in 
2023: a drug discovery platform spanning multiple bioactivity data types and time periods. 
Nucleic Acids Research, 52(D1), D1180–D1192. https://doi.org/10.1093/NAR/GKAD1004 

Zhang, S., Zhang, R., Zheng, L., Liu, Y., Fan, Q., Liu, Y., Ning, X., Zhang, Y., Chen, Y., & Liu, H. (2025). Drug 
repurposing: a promising drug discovery strategy for the treatment of emerging epidemic 
infectious disease. Molecular Diversity 2025, 1–31. https://doi.org/10.1007/S11030-025-
11247-X 

Zheng, W., Sun, W., & Simeonov, A. (2018). Drug repurposing screens and synergistic drug-
combinations for infectious diseases. British Journal of Pharmacology, 175(2), 181–191. 
https://doi.org/10.1111/BPH.13895;JOURNAL:JOURNAL:14765381A;CSUBTYPE:STRING:SP
ECIAL;PAGE:STRING:ARTICLE/CHAPTER 

Zheng, Y., & Wu, Z. (2021). A Machine Learning-Based Biological Drug–Target Interaction Prediction 
Method for a Tripartite Heterogeneous Network. ACS Omega, 6(4), 3037–3045. 
https://doi.org/10.1021/ACSOMEGA.0C05377 

Zhou, B., Wang, R., Wu, P., & Kong, D. X. (2015). Drug repurposing based on drug-drug interaction. 
Chemical Biology and Drug Design, 85(2), 137–144. 
https://doi.org/10.1111/CBDD.12378;ISSUE:ISSUE:DOI 

Zhou, G., Soufan, O., Ewald, J., Hancock, R. E. W., Basu, N., & Xia, J. (2019). NetworkAnalyst 3.0: a visual 
analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic 
Acids Research, 47(W1), W234–W241. https://doi.org/10.1093/NAR/GKZ240 

  

https://journals2.ums.ac.id/index.php/pharmacon/

