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DRUG REPURPOSING AND ITS STRATEGIC
MODERN

IMPORTANCE IN
DISCOVERY

Drug repurposing, also defined as drug
repositioning or reprofiling,

represents an

ABSTRACT

Despite substantial pharmaceutical investments of approximately $50
billion annually, modern drug discovery yields only 20-25 new approvals,
with traditional development requiring 12-15 years and success rates
below 10%. Contemporary challenges, including high clinical failure rates,
prolonged timelines, and limited preclinical predictive capacity, represent
the current therapeutic debacle of de novo drug development. To address
this critical scenario, drug repurposing is an appealing strategy for
identifying novel therapeutic applications from existing approved drugs.
However, traditional repurposing relies on serendipitous observations or
resource-intensive screenings. In contrast, in silico drug repurposing is an
emerging, hypothesis-driven approach leveraging big data, artificial
intelligence, machine learning, multi-omics analysis, and network
pharmacology to predict drug-target interactions and therapeutic efficacy
cost-effectively. Additionally, repurposing approaches, including in silico
techniques, reduce development timelines to 3-12 years with enhanced
success rates of approximately 25%, with 30% of FDA-approved drugs
originating from repurposing initiatives. Therefore, computational drug
repurposing substantially improves therapeutic development efficiency
while requiring rigorous experimental validation for clinical translation.
Here, we will review in silico methodologies exploited for drug repurposing
across oncology, infectious diseases, neurodegenerative disorders,
metabolic disorders, and pandemic threats, alongside computational
pharmacology assessment tools to address how the implementation of
current in silico options can accelerate the robust drug repurposing
opportunities.

and robust clinical validation (Mittal & Mittal,
2021). In the context of in silico studies, this
approach has gained particular significance in
modern drug discovery through its integration
with computational methods and molecular data
analysis (Cha et al,, 2018).

DRUG

innovative  pharmaceutical
identifies novel therapeutic applications for
existing approved or
(Jarada et al,, 2020). This approach has emerged
as a transformative methodology in modern

drug discovery, fundamentally altering
traditional development paradigms. The
strategy operates through four essential

components: comprehensive pharmacological
understanding, innovative formulation
development, systematic biological evaluation,

strategy  that  comparative Advantages of Drug
R rposin in M n Dr
investigational drugs Dzslell(f)porf:e I?t 1 ode ug

The strategic value of drug repurposing
becomes evident when compared to de novo
drug discovery approaches. Contemporary data
indicate that while traditional drug development
requires investments of approximately $50
billion annually, 12-15 years with success rates
below 10% and costs exceeding $1.2 billion,
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repurposing pathways can achieve results
within 3-12 years, boasting approximately 25%
success rates (Gil & Martinez, 2021; Tafesse et
al, 2020). This efficiency stems from the
utilization of established safety profiles and
pharmacokinetic data, streamlined regulatory
pathways, reduced development costs and
timelines, and enhanced success probabilities in
clinical phases (Gil & Martinez, 2021).

Success and Challenges in Modern

Therapeutics

The significance of drug repurposing is
reflected in current therapeutic landscapes, with
approximately 30% of FDA-approved drugs
originating from repurposing initiatives (Pola et
al, 2023). Successful approval requires
demonstration of therapeutic efficacy and safety
in new indications, building upon existing safety
data to accelerate development timelines (R.
Kumar et al,, 2019).

However, modern drug repurposing faces
significant challenges despite technological
advances. Annual R&D (Research and
Development) investments of approximately
$50 billion yield only 20-25 new drug approvals
(Vukicevic, 2016). Moreover, key challenges
include high failure rates in clinical trials,
increasing development costs, limited predictive
capacity of preclinical models, extended
development timelines, and complex regulatory
requirements (Honkala et al.,, 2021; Sun et al,
2022).

The Role of In Silico Approaches

In silico drug repurposing has emerged as a
transformative, cost-effective complement to
experimental workflows, enabling rapid
identification of new therapeutic uses for
existing drugs across diverse disease areas
(Cousins et al, 2024). The integration of
computational methodologies has become
crucial in modern drug repurposing. Advanced in
silico techniques, including artificial intelligence
and machine learning algorithms (Pan et al,
2023; Patel et al, 2023; Rajput et al, 2021),
multi-omics data analysis (D. Y. Liu et al., 2025;
F. Wang & Barrero, 2024), network-based
targeting (Islam & Shibly, 2025; P. P. Liu et al,
2025; Mahmud et al, 2025), enable rapid
screening of compound libraries, prediction of
drug-target interactions, assessment of safety
profiles, and ultimately guide decision-making

for further downstream development. This
computational approach significantly enhances
the efficiency and success rate of further drug
repurposing initiatives (Tiwari et al., 2023).

IN SILICO METHODOLOGIES
COMPUTATIONAL FRAMEWORKS

AND

Computational drug repurposing integrates
structure and ligand-based virtual screening,
multi-omics data integration, network analysis,
and machine learning to prioritize existing
compounds for new indications. These in silico
approaches use molecular docking/dynamics,
pharmacophore/QSAR modeling, expression

analysis, network  pharmacology, and
target/bioactivity = prediction to generate
candidates that undergo ADME/toxicity

assessment and subsequent in vitro, in vivo, and
clinical validation (Figure 1).
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Figure 1. Flow diagram of drug screening
approaches from in silico screening to
subsequent downstream in vitro, in vivo, and
clinical trials steps. Green boxes indicate in silico
approaches, blue box indicates pre-clinical steps,
and red box indicates clinical steps.

Virtual Screening: Structure-Based and
Ligand-Based Strategies

Virtual screening (VS) encompasses both
structure-based virtual screening (SBVS) and
ligand-based virtual screening (LBVS). SBVS
leverages three-dimensional target structures to
evaluate candidate binding, while LBVS exploits
chemical similarity, pharmacophore models, and
quantitative  structure-activity relationship
(QSAR) models when structural information is
absent or incomplete (Ananna et al, 2024;
Muratov et al,, 2020). LBVS is particularly useful
for rapidly sifting among approved-drug
libraries using fingerprint similarity, scaffold
hopping, or ML-derived feature embeddings
(Ripphausen et al, 2011). In repurposing, VS

https://journals2.ums.ac.id/index.php/pharmacon/



https://journals2.ums.ac.id/index.php/pharmacon/

Pharmacon: Jurnal Farmasi Indonesia, Vol. 22 No. 2 (2025), pp. 169-187 171

pipelines often combine SBVS and LBVS outputs,
applying consensus ranking, ensemble docking,
or ML-based filtering to increase hit rates and
reduce false positives before experimental
testing (Ahmed et al., 2023).

Molecular Docking, Molecular Dynamics
Simulation, and Structure-Based
Screening

Structure-based methods anchored by
molecular docking and  binding-affinity
prediction remain central to many repurposing
workflows because they provide explicit,
interpretable models of drug-target interactions
(Cavalcante et al, 2024; Fan et al, 2019).
Docking algorithms predict ligand poses within
protein binding sites and estimate relative
affinities; when combined with rescoring,
free-energy methods, and molecular dynamics
(MD) simulations, these approaches can
prioritize compounds with plausible
mechanistic effects (Vanhaelen et al, 2017).
Strengths of structure-based screening include
the ability to exploit high-resolution target
structures, rationalize  polypharmacologic
interactions, and propose testable binding
hypotheses. Limitations include sensitivity to
protein conformational heterogeneity,
inaccuracies in scoring functions, and
dependency on available structural data; hybrid
strategies that fuse docking with ML-based
rescoring or MD-derived ensembles are
increasingly used to mitigate these issues
(Cavalcante et al., 2024).

Machine Learning and  Artificial
Intelligence Applications
Machine learning (ML) and artificial

intelligence (Al) have become integral to modern
repurposing, providing powerful tools for
pattern recognition, feature extraction, and
prediction across heterogeneous data types
(Jordan & Mitchell, 2015; Tanoli et al,, 2021).
Applications include: supervised models for
target prediction (Y. Zheng & Wu, 2021), ADMET
profiling (Swanson et al., 2024) and biological
activity prediction (Islam & Mahmud, 2025);
deep learning for ligand and protein
representation learning; graph neural networks
for modeling molecular graphs and interaction
networks; and generative models for proposing
novel analogues or repositioning hypotheses

(Ferreira & Andricopulo, 2019). Al augments
traditional physics-based methods by improving
scoring, imputing missing data, and enabling
integrative analyses of omics and clinical records
(Yetgin, 2025). However, key challenges are
model interpretability, dataset bias,
generalizability to unseen chemotypes, and the
need for transparent validation against
experimental benchmarks.

Network Pharmacology and Systems
Biology Frameworks

Network pharmacology and systems biology
offer complementary, systems-level
perspectives that are essential for repurposing
in complex diseases (Hopkins, 2008). By
mapping drug-target-pathway-disease
relationships within biological networks, these
approaches identify indirect mechanisms,
polypharmacologic opportunities, and
context-dependent effects that single-target
screens can miss (Lavecchia & Cerchia, 2016).
Network-based methodologies include diffusion
and proximity measures on protein-protein
interaction  (PPI) networks, community
detection for module-driven repurposing, and
central hubs identification (Islam & Mahmud,
2025). However, integration of network analysis
with pathway enrichment, causal inference, and
multi-omics promotes mechanistic
interpretability and prioritization of candidate
indications (Ahamed & Al Ashik, 2025; Islam &
Shibly, 2025; P. P. Liu et al., 2025). Challenges
include the limitations of network data to certain
species types and contradictory target
information from individual studies.

Integration of Clinical, Real-World, and
Genomic Signature Data

Repurposing pipelines increasingly exploit
clinical trial results, electronic health records
(EHRs), adverse-event reporting, and population
scale genomic/transcriptomic signatures to
validate computational hypotheses and detect
real-world drug-disease associations (Cousins
et al, 2024). Signature-based repurposing
matches disease-associated expression profiles
with drug-induced transcriptional responses
(Connectivity Map approaches), enabling
identification of drugs that reverse disease
signatures. Complementary analyses of EHRs
and pharmacoepidemiologic data can reveal
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off-label benefits or safety signals, and GWAS
(Genome Wide Association Studies) data provide
genetic evidence for target-disease causality,
strengthening the translational rationale for
repurposing (Khosravi et al., 2019). Challenges
include confounding in observational data,
heterogeneous data formats, and the need for
robust causal inference frameworks (Mottini et
al,, 2019).

Databases, Cheminformatics Tools, and
Computational Platforms

A rich ecosystem of public and proprietary

structural repositories (PDB), ligand and
bioactivity databases (ChEMBL, DrugBank),
transcriptomic atlases (LINCS/CMap), PPI and
pathway databases (STRING, Reactome), and
EHR/claims repositories for real-world evidence
(Burley et al, 2023; Szklarczyk et al, 2023;
Zdrazil et al., 2024). Cheminformatics toolkits
(RDKit), docking suites (AutoDock, Glide), ML
frameworks (TensorFlow, PyTorch), and
integrated web platforms facilitate end-to-end
repurposing workflows. Table 1 represents the
role of in-silico methods.

resources underpins

in silico repurposing:

Table 1. Role of in silico methods in drug repurposing studies.

In silico Methods

Platforms/Databases

Role in Drug Repurposing

References

Ligand-based
Virtual Screening

Structure-based
Virtual Screening

Molecular Docking

Molecular Dyamics
(MD) Simulation

Bioinformatics &
Omics Integration

Machine Learning
/ Al Models

LigandScout, Pharmit

PyRx, SwissDock

AutoDock, AutoDock Vina,
Schrodinger Glide, GOLD

GROMACS, AMBER,
DESMOND, NAMD

GEO, TCGA

DeepPurpose, ChemProp,

TensorFlow, DeepChem

Compares structural similarities
between known drugs and ligands

Screens large drug libraries against
target protein structures

Predicts binding pose, binding
affinity, and interaction of approved
drugs with new target proteins

Simulates and validates the stability
and behavior of drug-target
complexes over time

Connects disease-associated genes,
pathways, and drug targets using

transcriptomics, proteomics, and
interactome data.
Predicts new drug-disease

associations using large biological
and chemical datasets using model
development

(Al-Sanea et al,, 2022)

(Bugnon et al,, 2024; Xu
etal, 2022)

(Eberhardt etal., 2021)

(Yekeen etal,, 2023)

(Clough & Barrett, 2016;
Otasek et al, 2019;
Szklarczyk et al., 2023)

(Abadi et al,, 2016; Heid
etal, 2023; Huang et al,,
2021; Ramsundar,
2018)

Network-based NetworkAnalyst, DrugBank, Analyzes drug-target-disease  (Knox et al,, 2024; Kuhn
Drug Repurnosin STITCH. STRING. Cvtosca networks to uncover new et al, 2014; G. Zhou et
§ kepurposing g ) LYROSCAPE hechanisms al, 2019)

Drug Screening ZINC, ChEMBL, BindingDB Provides ready-.to-scr.een.collectlons (Gaulton et al,, 2017)

Databases of approved or investigational drugs
PHARMACOLOGICAL AND ﬁDz’liTl. (Abs"épt“"t‘: D'St;‘b‘ft’.‘t’“'
TOXICOLOGICAL ASSESSMENT THROUGH [ € 3, ‘t’ 1Sm, xcretion, oxicity)

rediction

IN SILICO TOOLS

The integration of computational approaches
in drug repurposing has revolutionized the
assessment of pharmacological and toxicological
properties, enabling more efficient and cost-
effective  drug  development  processes.
Approximately 90% of drugs fail to make it
through the process due to improper AMDET
profiling (Amorim et al., 2024).

Recent advances in machine learning
platforms have significantly enhanced ADMET
prediction capabilities. Modern platforms like
ADMET-AI have achieved unprecedented
accuracy in molecular predictions, processing up
to one million molecules in just 3.1 hours
(Swanson et al, 2024). The interpretable-
ADMET platform represents another significant
advancement, offering predictions for 59
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ADMET-associated properties through 90
classification and 28 regression models (Wei et
al, 2022). ADMETboost has demonstrated
superior performance by ranking first in 18 out
of 22 predictions (Tian et al., 2022). However,

common tools, including pkCSM, SwissADME,
and ADMETlIab, also help evaluate the safety and
pharmacokinetics of existing drugs before wet-
lab testing (Table 2).

Table 2. Modern in silico tools for ADMET properties prediction.

In silico ADMET Prediction Platforms

Prediction Method

References

ADMET-AI
(https:
ADMETlab 3.0

(https://admetlab3.scbdd.com)

admet.ai.greenstonebio.com)

GNN (Graph neural network) model

DMPNN (Directed Message Passing Neural Network)
architecture coupled with molecular descriptors

(Swanson et al,
2024)

(Fuetal, 2024)

DeepPK GNN (Graph Neural Networks) and graph-based (Myung et al,
ignat 2024

(https://biosig.lab.ug.edu.au/deeppk/) signatures )

ADMETboost Fingerprints and features-driven Tree-based extreme (Tian et al,

(https://ai-druglab.smu.edu/admet) gradient boosting machine learning model 2022)

ADMETsar 2.0 Molecular fingerprints-driven classical machine (Yang et al,
learning algorithms 2019)

(https://Immd.ecust.edu.cn/admetsar2)

SwissADME Rule-based and descriptor-based classical machine- (Daina et al,
1 i del 2017
(https://www.swissadme.ch/) earning modess )
ProTox 3.0 Molecular similarity and machine-learning algorithms (Banerjee et al,,
2024
(https://tox.charite.de/protox3/) )
Pharmacokinetic and Pharmacodynamic interactions (DDIs). Notable achievements

Modelling

PK/PD modeling has emerged as a crucial
bridge between preclinical and clinical research
in drug repurposing. The PK/PD methodology
encompasses the integration of existing drug
data and in vitro pathogen information, dosage
optimization through clinical PK considerations,
correlation of drug pharmacokinetics with viral
life cycle events, establishment of PK-clinical
outcome relationships, and treatment effect
assessment (Begley et al,, 2021).

Mechanism-based PK-PD models have
proven particularly valuable by distinguishing
between drug-specific and biological system-
specific parameters (Danhof et al, 2008).
Additionally, these computational approaches
facilitate the integration of diverse data types
and enable more accurate inter-species scaling
(Kang et al., 2024).

Drug-Drug Interaction Predictions

Machine learning approaches have achieved
remarkable accuracy in predicting drug-drug

include the development of deep neural
networks predicting 80 DDI types with 93.2%
accuracy (Hou et al, 2019), drug interaction
similarity clustering for 589 drugs (B. Zhou et al.,
2015), and graph embedding approaches
integrating drug-drug and protein-protein
networks (Amiri Souri et al, 2023). This
approach may prevent harmful and life-
threatening adverse reactions by proactively
identifying potential drug-drug interactions that
are impractical to uncover through clinical
testing alone.

Off-Target Effects and Polypharmacology
Analysis

Strategies are needed to predict off-target
protein interactions, which can help avoid
adverse effects while identifying drug
repurposing opportunities. Computational
analysis of polypharmacology has revealed
valuable insights into drug repurposing
opportunities. The CANDO platform exemplifies
systematic compound-proteome interaction
screening capabilities (Sethi et al,, 2015). Large-

https://journals2.ums.ac.id/index.php/pharmacon/
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scale studies have identified 2,923 potential
cross-reactivity cases involving 140 unique
drugs and 1,216 protein targets (Chartier et al,,
2017). Therefore, systematic proteome-scale
screening is essential to identify cross-reactivity
risks and repurposing opportunities across
drugs and protein targets.

Safety Profiling and Adverse Event
Prediction

The identification, prediction, and mitigation
of drug-related safety is necessary by detecting
adverse events, assessing causality, and guiding
safer use across diverse populations and real-
world  settings.  Multiple = computational
strategies have emerged for safety profiling,
including FAERS (FDA Adverse Event Reporting
System) data mining (Morris et al, 2024),
Mendelian randomization approaches (Walker
et al, 2017), machine learning classifiers
utilizing gene expression data (Z. Wang et al,,
2016), and post-market safety analysis using Al-
driven statistical approaches (Daluwatte et al.,
2020). These complementary computational
safety-profiling strategies can detect real-world
adverse events, infer causality, predict
mechanistic toxicity, and monitor long-term
population-level risks that preclinical tests and
clinical trials may miss.

Bioavailability and Formulation
Optimization Studies

Recent  studies have  demonstrated
significant advances in formulation

optimization. Notable achievements include the
development of solid self-nanoemulsifying drug
delivery systems, increasing oral bioavailability,
and the identification of formulation categories
addressing poor solubility (Baek et al., 2024; Jug
et al,, 2024). These advances align with the four
pillars of successful drug repurposing, outlined
by pharmacological understanding, formulation
optimization, biological assay evaluation, and
clinical trial robustness (Mittal & Mittal, 2021).
Modern data analysis tools such as Google Cloud
Vertex Al (Sina et al., 2025) and Microsoft Azure
Al (Vuppalapati et al., 2020) can be a rapid
solution for automated bioavailability and
formulation optimization using machine
learning-driven approaches.

DISEASE-SPECIFIC APPLICATIONS AND
THERAPEUTIC AREAS

The strategic deployment of in silico
methodologies across diverse therapeutic
domains has demonstrated the versatility and
translational potential of computational drug
repurposing. Computational approaches are
being applied to address unmet medical needs
across major disease categories, from complex
malignancies to emerging infectious threats.
Figure 2 represents the drug repurposing
opportunities in different disease types.

Hepatic
Disorders

Infectious

Cardiovascular 5
Disease

Disease 2
&
& o
Rt
3 ) Pandemic
Obesity 233, Outbreak
S5
Al k4]
& oy
-
. Repurposable
Caiicers - " Drugs Hypertension

AN
v Genetic

Neurodegenerative Disorders

Disorders

Metabolic
Disorders

Figure 2. Drug repurposing opportunities in
different disease types. Repurposable drugs can
be applied to multiple clinical indications, such
as hepatic, metabolic, infectious, cardiovascular,

oncologic, neurodegenerative, genetic, and
obesity-related disorders.

Cancer drug repurposing and precision
oncology

Computational drug repurposing has
emerged as a transformative strategy in
oncology, leveraging molecular modeling,
machine  learning, and  network-based
approaches to identify novel therapeutic
interventions for cancer treatment. A
comprehensive analysis identified 238 studies
employing in silico methods for cancer drug
repurposing, with  molecular = modeling
representing the most frequently utilized

technique (Cavalcante et al, 2024). The
computational toolkit encompasses virtual
screening, molecular docking, molecular

dynamics, network pharmacology, and artificial
intelligence-driven prediction models that can

https://journals2.ums.ac.id/index.php/pharmacon/
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systematically evaluate drug-target interactions
across the cancer proteome (Mottini etal., 2019).

These computational strategies have proven
particularly valuable in precision oncology,
where individual tumor molecular profiles can
be matched against repurposed drug candidates
to identify patient-specific therapeutic options.
Moreover, computational approaches
substantially expand the repertoire of actionable
molecular targets, enabling personalized
treatment strategies tailored to individual tumor
characteristics (KW. To & Cho, 2022).
Furthermore, the integration of multi-omics
data, including genomics, transcriptomics, and
proteomics, with computational drug-target
prediction platforms allows for the identification
of vulnerabilities in specific cancer subtypes and
the rational selection of repurposed agents that

exploit  these molecular dependencies
(Mukherjee et al., 2024).
Infectious diseases: antibacterial,

antiviral, and antiparasitic repurposing

The application of in silico drug repurposing
to infectious diseases has accelerated
dramatically, driven by the urgent need to
combat emerging pathogens, drug-resistant
organisms, and neglected tropical diseases
(Hamid et al., 2024). Computational platforms
have successfully identified repurposing
candidates across diverse infectious disease
contexts, including bacterial infections, viral
diseases such as COVID-19 and dengue, and
parasitic conditions, including malaria and
tuberculosis (Hamid et al., 2024; Winkler, 2024;
Zhang et al, 2025). These approaches could
rapidly screen existing drug libraries against
pathogen-specific targets, substantially reducing
the time and cost associated with traditional
antimicrobial development (W. Zheng et al,
2018).

Sophisticated computational workflows
could integrate structural biology,
cheminformatics, and systems pharmacology to
predict drug-pathogen interactions and identify
compounds with favorable therapeutic indices
(N.Kumar et al., 2022). For antiviral applications
specifically, researchers have employed
computational methods to predict biological
activities against viral proteins, analyze protein-
drug interaction networks, and prioritize

candidates based on predicted pharmacokinetic
and safety profiles (Abdulaziz et al., 2022). These
methodologies have proven particularly
valuable in addressing the global challenge of
antimicrobial resistance, where computational
strategies can rapidly identify agents that
circumvent established resistance mechanisms
or that synergize with existing therapies
(Upadhayay et al., 2023). This paradigm also
offers a critical advantage in pandemic
preparedness and response, enabling rapid
computational screening against novel pathogen
targets as genomic sequence data become
available (Low et al., 2020; Vashisht et al., 2023;
Zhang et al., 2025).

Neurodegenerative disorders:
Alzheimer's, Parkinson's, and rare
neurological diseases

In  silico approaches have become

indispensable tools for advancing therapeutic
discovery in neurodegenerative diseases, where
complex, multifactorial pathophysiology and the
scarcity of disease-modifying treatments create
substantial unmet medical needs. Computational
methods enable researchers to systematically
explore chemical space and identify compounds
that interact with therapeutically relevant
macromolecular  targets  implicated in
neurodegeneration (Banjare et al., 2023; Haider
etal, 2021).

The application of in silico techniques in
Alzheimer's disease research encompasses
computational screening against targets such as
acetylcholinesterase, beta-secretase, and
aggregation-prone proteins, including amyloid-
beta and tau (Grcic et al., 2024; Vahid et al,,
2024). Similarly, Parkinson's disease research
has benefited from computational approaches
targeting alpha-synuclein aggregation,
monoamine oxidase enzymes, and
neuroprotective pathways (Pefia-Diaz et al,
2023; Siddiqui et al, 2023). Computational
methods substantially reduce the experimental
burden and cost of screening large compound
libraries, while simultaneously enabling the
prediction of ADMET properties that are critical
for central nervous system penetration
(Makhouri & Ghasemi, 2017). Recent advances
in computational evaluation of drug candidates’
affinity for macromolecular targets relevant to
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neurodegeneration, demonstrating improved
predictive accuracy and translational success
(Cruz-Vicente et al., 2021).

Metabolic, genetic,
cardiovascular diseases

hepatic, and

In silico methodologies enable the systematic
exploration of drug-disease interaction
networks, pathway-level effects, and multi-
target pharmacology that characterize many
metabolic, genetic, hepatic, and cardiovascular
conditions, along with hypertension and obesity
(Hodos et al., 2016; Mullins et al., 2022; Sood et
al,, 2023; Wu et al,, 2022).

Computational workflows applied to
specifically metabolic and cardiovascular
diseases integrate diverse data modalities,
including disease-associated genetic variants,

transcriptomic  signatures, protein-protein
interaction networks, and pharmacological
databases. These integrated platforms can

predict novel drug-target associations, identify
mechanism-based repurposing candidates, and
prioritize agents with favorable efficacy and
safety profiles for specific patient
subpopulations (El-Nikhely & El-Yazbi, 2024).
For instance, Schubert et al. demonstrated

computational screening approaches that
identified existing drugs with previously
unrecognized cardiovascular benefits,

illustrating the potential to expand therapeutic
options for conditions such as heart failure,
atherosclerosis, and metabolic syndrome
(Schubert et al., 2020).

Rare and orphan diseases: addressing
unmet medical needs

In silico drug repurposing represents a
critical strategy for addressing medical needs in
rare and orphan diseases, where traditional
pharmaceutical development models are often
economically unfeasible due to limited patient
populations. Computational approaches offer a
pathway to accelerate therapeutic discovery by
systematically exploring existing pharmacopeia
for drugs that may be repurposed for rare
disease indications, thereby leveraging
established safety profiles and reducing
development timelines (Roessler et al., 2021).

Structure-based computational methods,
including drug-binding pocket matching and
computational pharmacology, have been

employed to systematically map potential drug-
target interactions relevant to orphan diseases
(Govindaraj et al, 2018). Additionally,
Govindaraj et al. generated an extensive
computational resource comprising 31,142
putative drug-target complexes linked to 980
orphan diseases, demonstrating the scalability of
computational repurposing strategies
(Govindaraj et al, 2018). These approaches
integrate genomic and proteomic data from rare
disease patients with computational target
prediction platforms, enabling hypothesis-
driven identification of repurposing candidates
that address specific molecular pathophysiology.

Given that approximately 94% of rare
diseases currently lack approved therapies,
computational drug repurposing offers a
pragmatic and scientifically rigorous approach
to expanding therapeutic options for
underserved patient populations (Roessler et al.,
2021). However, successful translation will
require collaborative frameworks that integrate
computational discovery with patient advocacy,
regulatory flexibility, and innovative clinical trial
designs appropriate for small patient cohorts.

COVID-19 and pandemic response case
studies

The COVID-19 pandemic catalyzed an
unprecedented application of in silico drug
repurposing methodologies, demonstrating the
capacity of computational platforms to rapidly
respond to emerging infectious disease threats.
Within months of SARS-CoV-2 genome and
structural protein data becoming available,
researchers deployed comprehensive
computational screening campaigns targeting
viral proteins, including the spike glycoprotein,
main protease (Mpro), RNA-dependent RNA
polymerase, and other essential viral factors
(Cavasotto & Di Filippo, 2021; Mushebenge et al,,
2023).

These efforts identified multiple repurposing
candidates, including remdesivir, favipiravir,
ribavirin, lopinavir, ritonavir, darunavir, arbidol,
chloroquine, hydroxychloroquine, tocilizumab,
and interferons, which were subsequently
evaluated in preclinical models and clinical trials
(Singh et al., 2020). Galindez et al. emphasized
that in silico methods provided critical
advantages during the pandemic response,
including the ability to screen vast chemical
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libraries in silico within weeks, predict drug-
target interactions with mechanistic granularity,
and prioritize candidates for resource-intensive
experimental validation (Galindez et al., 2021).
Therefore, these computational approaches
enabled rapid prioritization of candidates based
on predicted binding affinity, mechanism of
action, and favorable ADMET properties,
substantially accelerating the timeline from
target identification to clinical evaluation in
response to pandemic urgency.

INTEGRATION OF IN SILICO DRUG
REPURPOSING WITH EXPERIMENTAL
VALIDATION AND CLINICAL
TRANSLATION

Computational predictions can be effectively
bridged with in vitro, in vivo, and clinical

evaluation through an integrative drug
repurposing methodology that combines
computational hypothesis generation with

targeted experimental validation.

Wilkinson et al. elucidated that in vitro
screening methodologies provide substantial
advantages for validating computational
predictions (Wilkinson & Pritchard, 2015), while
Issa et al. delineated how high-performance
computing infrastructures facilitate the
generation of robust drug-target interaction
hypotheses (Issa et al., 2013).

Guerra et al. and Barnwal et al. provide
preclinical proof-of-concept for repurposing
spironolactone and ponatinib, respectively.
Guerra et al. showed spironolactone Kills
Schistosoma mansoni in vitro and, at clinically
achievable oral doses, reduces worm burden and
egg-related pathology in infected mice without
overt toxicity (Guerra et al,, 2019). Barnwal et al.
identified ponatinib as a PD-L1 suppressor in
cell-based assays and demonstrated that it
lowers intratumoral PD-L1, increases CD8+ T-
cell infiltration, and inhibits tumor growth in
syngeneic mouse models at pharmacologically
relevant exposures, supporting further clinical
evaluation (Barnwal et al., 2023).

Additionally, the rapid global spread of SARS-
CoV-2 prompted extensive drug-repurposing
initiatives assessed across large platform trials
and numerous smaller studies, identifying
therapeutic benefit for agents including

remdesivir, dexamethasone, tocilizumab, and
baricitinib while refuting efficacy for others
(hydroxychloroquine, lopinavir/ritonavir); by
March 2021, 4,952 COVID-19 clinical trials had
been registered across more than 100 countries
(Chakraborty et al., 2021).

While virtual screening and molecular
docking are valuable drug discovery tools, their
limitations must be acknowledged.
Computational methods frequently generate
false positives where high docking scores fail to
correlate with biological activity, exemplified by
"activity cliffs", structurally similar compounds
exhibiting dramatically different potencies
(Shukla et al.,, 2025; Van Tilborg et al,, 2022).
These discrepancies arise from factors difficult
to model computationally, including protein
flexibility, solvent effects, entropic
contributions, and limitations in scoring function
accuracy. Consequently, experimental validation
through biochemical and cellular assays is not a
subsequent step but an indispensable step for
eliminating false positives and confirming true
hits. This integrated computational-
experimental approach ensures that only
compounds with genuine therapeutic potential
advance through the drug development pipeline.

Therefore, despite the substantial utility of in
silico  approaches, these computational
approaches necessitate rigorous validation
through subsequent experimental and clinical
evaluation protocols (Andrade, 2016). While
demonstrating considerable promise, they
currently function as complementary rather
than replacement methodologies within
established drug development paradigms.

CONCLUSIONS
PERSPECTIVES

In silico drug repurposing has emerged as a
transformative paradigm in modern
pharmaceutical development, offering
substantial advantages over traditional de novo
discovery  approaches through reduced
timelines, enhanced success rates, and cost-
effective  therapeutic identification. = The
integration of diverse computational
methodologies, including structure-based and
ligand-based virtual screening, molecular
docking and dynamics simulations, machine
learning and artificial intelligence algorithms,

AND FUTURE
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network pharmacology, and multi-omics data
integration, has demonstrated remarkable
capability in predicting drug-target interactions
and accelerating candidate prioritization across
multiple therapeutic areas. These computational
platforms have successfully addressed critical
unmet medical needs in oncology, infectious
diseases, neurodegenerative disorders,
metabolic conditions, and pandemic response,
with approximately 30% of FDA-approved drugs
now originating from repurposing initiatives. As
computational power increases and data
availability expands, in silico drug repurposing
will continue evolving from a complementary
tool to an indispensable, hypothesis-driven
engine driving pharmaceutical innovation in the
era of precision medicine. Therefore, the future
of in silico drug repurposing should lie in the
synergistic integration of these complementary
approaches into unified computational
frameworks. Hybrid strategies that combine
structure-based screening with machine
learning-driven rescoring, deep learning-
enhanced ligand representation with network-
based polypharmacology analysis, and multi-
omics signatures with systems biology modeling
promise to overcome current limitations,
including scoring function inaccuracies, dataset
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