
15

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 10 No. 1 | April 2024

Automated Course Timetabling Optimization
Using Tabu-Simulated Annealing Hyper-Heuristics

Algorithm
Ahmad Muklason1*, Ahsanul Marom1, I Gusti Agung Premananda1

1Department of Information Systems,
Institut Teknologi Sepuluh Nopember (ITS),

Surabaya, East Java, Indonesia
*mukhlason@is.its.ac.id

Abstract-The topic of solving Timetabling Problems is an interesting area of study. These problems are commonly
encountered in many institutions, particularly in the educational sector, including universities. One of the challenges
faced by universities is the Course Timetabling Problem, which needs to be addressed regularly in every semester, taking
into consideration the available resources. Solving this problem requires a significant amount of time and resources to
create the optimal schedule that adheres to the predefined constraints, including both hard and soft constraints. As
a problem of computational complexity, University Course Timetabling is NP-hard, meaning that there are no exact
conventional algorithms that can solve it in polynomial time. Several methods and algorithms have been proposed
to optimize course timetabling in order to achieve the optimal results. In this study, a new hybrid algorithm based
on Hyper-Heuristics is developed to solve the course timetabling problem using the Socha Dataset. This algorithm
combines the strengths of Simulated Annealing and Tabu Search to balance the exploitation and exploration phases
and streamline the search process. The results show that the developed algorithm is competitive, ranking second out
of ten previous algorithms, and finding the best solution in six datasets.

Keywords: Course Timetabling Problem, Tabu Search Algorithm, Simulated Annealing Algorithm, Hyper-
Heuristics

Article info: submitted March 30, 2023, revised September 18, 2023, accepted October 16, 2023

1. Introduction

The Timetabling problem is a problem to efficiently
allocate time and resources towards meetings with the aim
of minimizing constraint violations [1], [2]. This issue
is widespread across multiple fields, however, it receives
particular attention in the area of course timetabling. This
specific challenge involves scheduling academic courses
for lecturers, time slots, and classrooms in a manner
that enhances the quality of education [3]. Despite its
importance, manually resolving the timetabling problem
is time-consuming and often yields suboptimal results.
As a result, current research efforts have shifted towards
automating the solution to this problem, particularly in
the context of large-scale case studies [4].

The Timetabling problem is regarded as NP-
hard, making it difficult for exact algorithms to solve it
in polynomial time [5]. As a result, non-deterministic
algorithms, such as metaheuristic and hyper-heuristic
algorithms, have been developed to generate solutions
that are close to the global optimum in polynomial

time [6]. In response to this problem, the present study
has proposed a new hybrid hyper-heuristic algorithm.
This hybrid approach combines the benefits of two
algorithms, and the use of a hyper-heuristic is motivated
by the generalization advantage it provides, eliminating
the need for parameter tuning for each dataset [7].

The hybridization was developed through the
integration of two algorithms: Simulated Annealing
and Tabu Search. The Simulated Annealing algorithm,
a metaheuristic that simulates the cooling process of
heated steel, has the advantage of escaping local optima
through its diversification process and accepting worst
solutions [8]–[11]. On the other hand, Tabu Search is
a meta-heuristic algorithm that uses memory objects
to achieve both economic exploitation and exploration
in the search space. The tabu list is used to prevent the
search from revisiting previously visited solutions by
adding the recently visited solutions to the list [12].
The main advantage of the Tabu Search algorithm is its
implementation of the tabu list, which helps the search
move away from previously visited areas and perform

http://journals.ums.ac.id/index.php/khif

Automated Course Timetable... 16

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 10 No. 1 | April 2024

more extensive exploration in the search space [13]. By
combining these two hybridized algorithms, it is expected
that an optimal solution for the automated course
timetabling problem can be obtained. The hybridization
was performed due to several previous studies that
showed that hybrid algorithms produce more optimum
solutions.

The Socha dataset was utilized as the test dataset in
this study. It is a popular dataset among researchers and
has become a benchmark for evaluating the performance
of developed algorithms [14]–[16]. This dataset
encompasses a range of course timetabling problems,
from small to large in size.

The structure of this paper is as follows: Section
2 provides an overview of the related literature and
research that supports the study. Section 3 explains the
implementation process of the Tabu-Simulated Annealing
Hyper-Heuristics Algorithm for the Socha dataset. The
results and analysis of the implementation of the Tabu-
Simulated Annealing based Hyper-Heuristics Algorithm
are presented in Section 4. Section 5 compares the results
obtained from the Tabu-Simulated Annealing Hyper-
Heuristics Algorithm with the benchmark solution from
previous studies. In the final section, 6, the conclusion
and future prospects of this research are discussed.

2. Related Works

a. Timetabling
The Timetabling problem is a combinatorial

optimization problem that involves scheduling a set
of events with specific characteristics onto limited
resources while satisfying predefined constraints [17].
This problem is prevalent in various domains, such as
transportation, sports, health and education [3]. Due to
its computational complexity, the Timetabling problem
is considered to be NP-hard, meaning that conventional
algorithms cannot solve the problem in polynomial time
[4], [5], [18].

b. Socha Dataset
Socha dataset is a dataset that introduced by

Kryzysztof Socha and developed by Ben Paechter
[19]. Socha dataset consists of 11 instances, which are
divided into 5 small instances, 5 medium instances,
and 1 large instance. Table 1 show detail socha dataset.
Each instance has various time limits. The time limit
for the small instance is 90 seconds. Meanwhile, for the
medium instance has a time limit of 900 seconds and for
large instance is 9000 seconds. This time limit has been
determined by Socha’s research [20].

The available timeslot for Socha dataset is 45
timeslots with 9 timeslots in 5 days per week. The number
of events is the sum of all available course. The number of
features is a facility used for each scheduled course. The
number of students is the sum of student in a semester.
Meanwhile, the number of rooms is the available rooms
in a semester [20].

Table 1. Statistic of Socha Dataset

Characteristic Small Medium Large

Event 100 400 400

Rooms 5 10 10

Features 5 5 10

Student 80 200 400

Approx. features per rooms 3 3 5

Percent feature use 70 80 90

Max events per student 20 20 20

Max student per event 20 50 100

c. Constraint of Socha Dataset
The hard constraints of Socha dataset are [16]:

1) No Student can be assigned more than one course
at the same time.

2) The rooms must satisfy the features required by
course, including enough for all student taking
course in that room.

2) No more than course is allowed at a timeslot in each
room.

4) Only one course is allowed in each room at a time.

The soft constraints of Socha dataset are [16]:
1) Student should not have a single course on a day.
2) Student should not have more than two courses in

a row on a day.
3) Student should not have a course scheduled in the

last timeslot of a day.

d. Hyper-Heuristics
Hyper-heuristics is an approach to develop more

general non-deterministic algorithms. This approach
has four types: (1) exploration of heuristics combination
for solution perturbation, (2) exploration of heuristics
combination for solution construction, (3) generating
heuristics for solution perturbation, and (4) generating
heuristics for solution construction [21]. Structurally,
hyper-heuristics are divided into three main components:
(1) move acceptance to decide whether the new solution
result is used in the next iteration or not, (2) heuristic
selection to choose some heuristics used to modify the
solution, and (3) a set of heuristics [22].

3. Methods

a. Generate Initial Solution
Initial Solution is a solution that is used as an initial

schedule in optimization. This initial solution contains
the initial timeslot and rooms before the optimization
is run. Greedy Algorithm is used to form the initial
solution, where the first order in a list of subjects is placed
in the first available slot, so that all courses are scheduled.

http://journals.ums.ac.id/index.php/khif

Automated Course Timetable...17

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 10 No. 1 | April 2024

b. Implementation of Tabu-Simulated Annealing
Algorithm
Tabu-Simulated Annealing based Hyper-heuristics

algorithm is implemented after the initial solution is
generated. The first step of implementation is making
low level heuristics. This research uses two types of low-
level heuristics, there are “swap” and “move”. “Swap” is
the low-level heuristic that exchanging timeslot for two
or more selected timeslot. While the “move” is moving
the one or more selected timeslot to the random timeslot.
The implementation of the algorithm starts with the
implementation of the Simulated Annealing algorithm.
Simulated Annealing algorithm will be implemented on
local search by using acceptance criteria, if the iteration
produces a better solution than the previous solution, the
new solution will be accepted as the current solution, so
that the initial solution changes with a better solution. If
the result of the iteration produces worse solution than
the previous solution, the annealing process is calculated.
Annealing process is conducted by Boltzmann equation.
Figure 1 show detail Simulated Annealing algorithm.

Figure 1. Simulated Annealing Algorithm

Tabu Search algorithm is implemented when the
random value does not pass in the Boltzmann equation.
Tabu Search will be implemented to check whether the
solution is in the tabu list or not. If the solution is not
in the tabu list, the new solution will be accepted as a
current solution and entered that solution structure
into tabu list. The solution cannot be accepted in next
iteration until the solution exit from tabu list. Figure 2
show detail Tabu Search algorithm.

In this research, Simulated Annealing and Tabu
Search algorithm are hybridized making the new
approach, Tabu-Simulated Annealing Algorithm. The
hybridization of algorithms is shown in Figure 3.

Figure 2. Tabu Search Algorithm

Figure 3. Tabu - Simulated Annealing Algorithm

c. Developing of Tabu-Simulated Annealing
Algorithm

1) Reheating
 Reheating is the process of increasing the

temperature of each iteration. The increasing
temperature is carried out when the temperature
of iteration reached at the determined temperature.
If the number of iterations has reached a multiple
of reheating iterations, the temperature will be
increased by the temperature of the reheating.

2) Tabu Low-Level Heuristics
 The concept of tabu low level heuristics is like

tabu list of Tabu Search algorithm concept. If low
level heuristics does not give the better result than
current solution, the low-level heuristics that have
been choose will enter the tabu low level heuristics.
Low level heuristics that have entered the tabu
low level heuristics cannot be used until low level
heuristics exit from tabu low level heuristics list.

3) Roulette Wheel
 The roulette wheel is performed on low level

heuristics. If a low-level heuristic produces a better
solution, this low-level heuristic score will be added,
for example +10. Otherwise, if a low-level heuristic
produces a value that is no better, the score of the
low-level heuristics will be reduced, for example -5.
The score of all low-level heuristics will be counted
in probability. So, the probability of selected low-
level heuristics always changes depend on the low-
level heuristics’ performance.

d. Experiment of the Parameters
Tabu-Simulated Annealing algorithm has many

parameters that influence the algorithm performance and
the penalty result. This research use 10 parameters as that
is used to experiment to get the optimum solution. The
list of parameters is explained on Table 2.

http://journals.ums.ac.id/index.php/khif

Automated Course Timetable... 18

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 10 No. 1 | April 2024

Table 2. List of Parameters

Parameters Meaning

LLH The number of low-level heuristics that used

T0 Initial temperature of Simulated Annealing algorithm

T1 Final temperature of Simulated Annealing algorithm

Alpha Decreasing temperature coefficient of Simulated
Annealing

N Alpha The number of iterations for each decreasing
temperature

Beta Increasing temperature coefficient of reheating
process

N Beta The number of iterations for each increasing
temperature

TL The length of tabu list of Tabu Search algorithm

TLLH The length of tabu list of Tabu Search algorithm

RW The method of selecting low level heuristics based on
roulette wheel process

Parameters Meaning

LLH The number of low-level heuristics that used

T0 Initial temperature of Simulated Annealing algorithm

T1 Final temperature of Simulated Annealing algorithm

Alpha Decreasing temperature coefficient of Simulated
Annealing

4. Results

The optimization results are determined through
several experiments by changing the parameter values.
Each experiment is conducted to determine a set of
parameters that produced the smallest penalty score
for optimization, called optimum solution. In this
research, researchers found two sets of parameters that
produced optimum solution. The set of parameters that
produce the optimum solution is explained in Table
3. The comparison of the experiment results is shown
by the boxplot diagram in Figure 4, 5, and 6. Based on
the Boxplot diagram, the best optimum solution is
Experiment-N.

Table 3. List of Parameters

Parameters Experiment-K Experiment-N

LLH 2 2

T0 95 95

T1 0 0

Alpha 0,999 0,999

N Alpha 50 50

Beta 0,5 0,5

N Beta 25000 25000

TL 3 3

Parameters Experiment-K Experiment-N

TLLH 0 0

RW - Random Probability

Parameters Experiment-K Experiment-N

Figure 4. Boxplot Diagram for Small Instance

Figure 5. Boxplot Diagram for Medium Instance

Figure 6. Boxplot Diagram for Large Instance

The automated optimization program using
Experiment-N parameters runs 11 times for each both
experiment and instance. For each run, the experiment
uses the time limit according to the rules of Socha dataset.
The time limit for each small instance is 90 seconds, 900
seconds for each medium instance, and 9000 seconds
for the large instance. shows the penalty score results in
optimum parameter. Table 4 describes the performance of
Tabu-Simulated Annealing Hyper-Heuristics algorithm.

http://journals.ums.ac.id/index.php/khif

Automated Course Timetable...19

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 10 No. 1 | April 2024

Table 4. The Performance of Tabu-Simulated Annealing
Hyper-Heuristics

Instance Average Initial Best Worst

small1 315,3 0 2

small2 327,7 0 3

small3 297,6 0 7

small4 164,5 0 8

small5 454,6 0 1

medium1 1028,6 198 256

medium2 1045,8 195 268

medium3 1071,2 208 299

medium4 1169,6 181 242

medium5 1169,5 116 209

Large 1960 936 1169

5. Discussion

The results of this research were compared with
previous studies, as demonstrated in Table 5.

Table 5. List of Benchmark Solution

Code Algorithm

MBO Migrating Bird Optimization [23]

Code Algorithm

FMH Fuzzy Multiple Heuristics [24]

MA Memetic Algorithm [25]

RII Randomised Iterative Improvement [26]

TVNS Tabu - Variable Neighbourhood Search [27]

GC Graph Coloring [28]

TS Tabu Search [29]

MSLS MultiSwap Algorithm with Local Search [30]

MMAS Max-Min Ant Systems [19]

The results of this research were compared to
previous studies and are presented in Table 6. The
Tabu-Simulated Annealing Hyper-Heuristics algorithm
performed best for the small instance, with a penalty
score of 0. For medium1, the algorithm was ranked 4th
out of 10 compared algorithms. In the case of medium2,
the algorithm was ranked 6th, while for medium3, it was
ranked 2nd, only behind the MultiSwap Algorithm with
Local Search. The algorithm was ranked 5th for medium4
and produced the best solution for medium5 compared
to other benchmark solutions. The produced the best
value of 936 and the algorithm was ranked 5th out of 10
compared algorithms. Overall, the developed algorithm
was ranked 2nd among the 10 algorithms compared.

Table 6. The Comparison of the Penalty Score Result

Instance
TSA MBO FMH MA RII TVNS GC TS MSLS

MMAS
Best Average Best Best Best Best Best Best Best Average

small1 0 0.9 25 10 0 0 0 6 1 2 1

small2 0 1.5 22 9 0 0 0 7 2 4 3

small3 0 1.8 19 7 0 0 0 3 0 2 1

small4 0 2.2 14 17 0 0 0 3 1 2 1

small5 0 0.1 17 7 0 0 0 4 0 0 0

medium1 198 230.9 394 243 221 242 317 372 146 174 195

medium2 195 235.5 378 325 147 161 313 419 173 184 184

medium3 208 271.3 305 249 246 265 357 359 267 188 248

medium4 181 219.7 282 285 165 181 247 348 169 180 164,5

medium5 116 151.2 276 132 130 151 292 171 303 132 219,5

large 936 1048 1015 1138 529 757 932 1068 1166 994 851,5

6. Conclusion

The research aimed at developing a hybrid
algorithm to tackle the course timetabling problem. The
algorithm was created by combining the strengths of both
simulated annealing and tabu search algorithms. The
results showed that the developed hybrid algorithm had
a promising performance. It ranked second among the 10
algorithms developed in previous studies and produced

the best results for 6 out of the 11 datasets tested. The
study had limitations, particularly in the utilization of
low-level heuristics, therefore future research could focus
on enhancing the exploration of low-level heuristics.

References

[1] J. S. Tan, S. L. Goh, G. Kendall, and N. R.
Sabar, ‘A survey of the state-of-the-art of

http://journals.ums.ac.id/index.php/khif

Automated Course Timetable... 20

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 10 No. 1 | April 2024

optimisation methodologies in school timetabling
problems’, Expert System with Application,
vol. 165, p. 113943, Mar. 2021, doi: 10.1016/j.
eswa.2020.113943.

[2] R. A. Oude Vrielink, E. A. Jansen, E. W. Hans,
and J. van Hillegersberg, ‘Practices in timetabling
in higher education institutions: a systematic
review’, Annals of Operation Research, vol. 275,
no. 1, pp. 145–160, Apr. 2019, doi: 10.1007/
s10479-017-2688-8.

[3] M. M. Tavakoli, H. Shirouyehzad, F. H. Lotfi, and
S. E. Najafi, ‘Proposing a novel heuristic algorithm
for university course timetabling problem with
the quality of courses rendered approach; a case
study’, Alexandria Engineering Journal, vol. 59,
no. 5, pp. 3355–3367, Oct. 2020, doi: 10.1016/j.
aej.2020.05.004.

[4] T. Thepphakorn and P. Pongcharoen,
‘Performance improvement strategies on Cuckoo
Search algorithms for solving the university
course timetabling problem’, Expert System with
Application, vol. 161, p. 113732, Dec. 2020, doi:
10.1016/j.eswa.2020.113732.

[5] I. G. A. Premananda, A. Tjahyanto, and A.
Muklason, ‘Hybrid Whale Optimization
Algorithm for Solving Timetabling Problems
of ITC 2019’, in 2022 IEEE International
Conference on Cybernetics and Computational
Intelligence (CyberneticsCom), IEEE, Jun.
2022, pp. 317–322. doi: 10.1109/CyberneticsC
om55287.2022.9865647.

[6] M. H. Cruz-Rosales et al., ‘Metaheuristic
with Cooperative Processes for the University
Course Timetabling Problem’, Applied Sciences
(Switzerland), vol. 12, no. 2, 2022, doi: 10.3390/
app12020542.

[7] N. Pillay and E. Özcan, ‘Automated generation of
constructive ordering heuristics for educational
timetabling’, Annals of Operation Research, vol.
275, no. 1, pp. 181–208, Apr. 2019, doi: 10.1007/
s10479-017-2625-x.

[8] X. Pan, L. Xue, Y. Lu, and N. Sun, ‘Hybrid particle
swarm optimization with simulated annealing’,
Multimedia Tools and Applications, vol. 78, no.
21, 2019, doi: 10.1007/s11042-018-6602-4.

[9] M. Abdel-Basset, W. Ding, and D. El-Shahat, ‘A
hybrid Harris Hawks optimization algorithm
with simulated annealing for feature selection’,
Artificial Intelligence Review, vol. 54, no. 1, 2021,
doi: 10.1007/s10462-020-09860-3.

[10] H. Lv, X. Chen, and X. Zeng, ‘Optimization of
micromixer with Cantor fractal baffle based on
simulated annealing algorithm’, Chaos, Solitons
and Fractals, vol. 148, 2021, doi: 10.1016/j.
chaos.2021.111048.

[11] X. Hao, J. Liu, Y. Zhang, and G. Sanga,
‘Mathematical model and simulated annealing
algorithm for Chinese high school timetabling
problems under the new curriculum innovation’,
Frontiers of Computer Science, vol. 15, no. 1, p.
151309, Feb. 2021, doi: 10.1007/s11704-020-
9102-4.

[12] Y. Alotaibi, ‘A New Meta-Heuristics Data
Clustering Algorithm Based on Tabu Search and
Adaptive Search Memory’, Symmetry (Basel), vol.
14, no. 3, 2022, doi: 10.3390/sym14030623.

[13] M. Chen, X. Tang, T. Song, C. Wu, S. Liu, and
X. Peng, ‘A Tabu search algorithm with controlled
randomization for constructing feasible university
course timetables’, Computers & Operations
Research, vol. 123, p. 105007, Nov. 2020, doi:
10.1016/j.cor.2020.105007.

[14] C. W. Fong, H. Asmuni, and B. McCollum, ‘A
Hybrid Swarm-Based Approach to University
Timetabling’, IEEE Transactions on Evolutionary
Computation, vol. 19, no. 6, pp. 870–884, Dec.
2015, doi: 10.1109/TEVC.2015.2411741.

[15] R. A. Aziz, M. Ayob, Z. Othman, Z. Ahmad,
and N. R. Sabar, ‘An adaptive guided variable
neighborhood search based on honey-bee mating
optimization algorithm for the course timetabling
problem’, Soft Computing, vol. 21, no. 22, pp.
6755–6765, Nov. 2017, doi: 10.1007/s00500-
016-2225-8.

[16] S. L. Goh, G. Kendall, N. R. Sabar, and S. Abdullah,
‘An effective hybrid local search approach for the
post enrolment course timetabling problem’,
American Journal of Open Research: OPSearch,
vol. 57, no. 4, pp. 1131–1163, Dec. 2020, doi:
10.1007/s12597-020-00444-x.

[17] T. Song, M. Chen, Y. Xu, D. Wang, X. Song, and X.
Tang, ‘Competition-guided multi-neighborhood
local search algorithm for the university course
timetabling problem’, Applied Soft Computing,
vol. 110, p. 107624, Oct. 2021, doi: 10.1016/j.
asoc.2021.107624.

[18] R. Esmaeilbeigi, V. Mak-Hau, J. Yearwood, and
V. Nguyen, ‘The multiphase course timetabling
problem’, European Journal of Operational
Research, vol. 300, no. 3, 2022, doi: 10.1016/j.
ejor.2021.10.014.

[19] K. Socha, J. Knowles, and M. Sampels, ‘A
MAX-MIN ant system for the university course
timetabling problem’, in Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2002. doi: 10.1007/3-540-
45724-0_1.

[20] S. L. Goh, G. Kendall, and N. R. Sabar, ‘Simulated
annealing with improved reheating and learning

http://journals.ums.ac.id/index.php/khif

Automated Course Timetable...21

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 10 No. 1 | April 2024

for the post enrolment course timetabling
problem’, Journal of the Operational Research
Society, vol. 70, no. 6, pp. 873–888, Jun. 2019,
doi: 10.1080/01605682.2018.1468862.

[21] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and J. R. Woodward, ‘A classification
of hyper-heuristic approaches: Revisited’, in
International Series in Operations Research and
Management Science, 2019. doi: 10.1007/978-3-
319-91086-4_14.

[22] S. S. Choong, L. P. Wong, and C. P. Lim,
‘Automatic design of hyper-heuristic based on
reinforcement learning’, Information Science
(N Y), vol. 436–437, 2018, doi: 10.1016/j.
ins.2018.01.005.

[23] L. W. Shen, H. Asmuni, and F. C. Weng, ‘A
modified migrating bird optimization for
university course timetabling problem’, Jurnal
Teknologi (Sciences and Engineering), vol. 72, no.
1, 2015, doi: 10.11113/jt.v72.2949.

[24] H. Asmuni, E. K. Burke, and J. M. Garibaldi,
‘Fuzzy multiple heuristic ordering for course
timetabling’, in Proceedings of the 2005 UK
Workshop on Computational Intelligence, UKCI
2005, 2005.

[25] S. Abdullah, ‘Heuristic approaches for university
timetabling problem’, University of Nottingham,
2006.

[26] S. Abdullah, E. Burke, and Barry McCollum, ‘A
randomised iterative improvement algorithm
with composite neighbourhood structures
for university course timetabling’, in The 6th
Metaheuristic International Conference, 2005.

[27] S. Abdullah, E. K. Burke, and B. Mccollum, ‘An
investigation of variable neighbourhood search
for university course timetabling’, in Proceedings
of the 2nd Multi-disciplinary International
Conference on Scheduling: Theory and
Applications (MISTA), 2005.

[28] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic,
and R. Qu, ‘A graph-based hyper-heuristic
for educational timetabling problems’, Eur J
Oper Res, vol. 176, no. 1, 2007, doi: 10.1016/j.
ejor.2005.08.012.

[29] E. K. Burke, G. Kendall, and E. Soubeiga, ‘A
Tabu-Search Hyperheuristic for Timetabling and
Rostering’, Journal of Heuristics, vol. 9, no. 6,
2003, doi: 10.1023/B:HEUR.0000012446.94732.
b6.

[30] M. A. Al-Betar, A. T. Khader, and O. Muslih,
‘A multiswap algorithm for the university course
timetabling problem’, in 2012 International
Conference on Computer and Information
Science, ICCIS 2012 - A Conference of World

Engineering, Science and Technology Congress,
ESTCON 2012 - Conference Proceedings, 2012.
doi: 10.1109/ICCISci.2012.6297258.

http://journals.ums.ac.id/index.php/khif

