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ABSTRACT 
Persistent difficulties in learning abstract algebraic concepts—particularly 
among preservice mathematics teachers—continue to hinder students’ 
mathematical development. While prior studies have documented general 
misconceptions, few have grounded their analysis in comprehensive 
learning theories. Addressing this gap, the present study adopts the APOS 
(Action, Process, Object, Schema) theoretical framework to examine the 
cognitive obstacles encountered in understanding logarithmic, matrix, and 
quadratic function concepts. This qualitative study employed a descriptive 
case study design involving six preservice mathematics teachers with 
varying levels of mathematical ability (high, moderate, and low). Data were 
collected through written responses, semi-structured interviews, 
classroom observations, and cognitive mapping. The findings revealed that 
most participants were at the action stage, relying on procedural steps 
without deep conceptual understanding. Key cognitive obstacles included 
errors in applying logarithmic properties, difficulties integrating 
logarithms with matrices, and an inability to perceive systems of equations 
as unified entities. Group discussions proved effective in helping 
participants transition through the learning stages. Collaborative 
interactions enabled participants to identify errors, correct 
misconceptions, and strengthen conceptual understanding through 
reflection and validation. Furthermore, the use of visual tools, graphical 
representations, and real-world contexts supported deeper conceptual 
integration. This study underscores the importance of implementing 
APOS-based instructional strategies, including group discussions, 
exploratory exercises, and problem-based learning, to facilitate transitions 
between stages. The implications of these findings highlight the need for 
developing APOS-based diagnostic tools and innovative instructional 
designs to address cognitive obstacles effectively.  

INTRODUCTION 

Algebra serves as a foundational component of mathematics education (Hartono, 2025; Jamil 
et al., 2025), acting as a critical bridge between arithmetic and higher-level mathematical thinking 
(Jung et al., 2024). Research consistently highlights the challenges students face in mastering 
fundamental algebraic concepts, which are pivotal for advanced mathematics (Hyland & O’Shea, 
2022; Umiralkhanov et al., 2024). Despite high levels of achievement in some areas of school 
mathematics, many students—including high-achieving undergraduates—struggle with essential 
topics such as solving equations and inequalities, indicating gaps in both conceptual understanding 
and procedural fluency (Copur-Gencturk & Doleck, 2021; López-Martín et al., 2022; Sari et al., 2024). 
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Addressing these challenges is critical, as the continuity of algebra instruction across secondary and 
higher education levels plays a significant role in ensuring student adaptation and long-term success 
in university mathematics (Alsina et al., 2024; Faustino & Sales, 2024; Ontiveros et al., 2025; 
Umiralkhanov et al., 2024). Furthermore, the effective transfer of mathematical skills to other 
domains, such as physics and engineering, highlights the interdisciplinary value of strong 
mathematical foundations. These efforts are supported by research suggesting that conceptual 
understanding is crucial in mediating and enhancing learning in algebra fields (Agustyaningrum et 
al., 2020; Mera et al., 2022). In addition, current research findings emphasize the urgency of 
improving mathematical readiness at the tertiary level to better equip students for both academic 
and professional challenges (Nhat et al., 2024; Padernal & Tupas, 2024; Pasigon, 2024). 

Nevertheless, existing research consistently reveals that students across educational levels 
continue to experience persistent difficulties in understanding algebraic concepts (Pape et al., 2022; 
Thomaidis & Tzanakis, 2022), including misconceptions in symbolic manipulation (Mutambara & 
Bansilal, 2022), limited conceptual comprehension (Wilkins & Norton, 2018), and challenges in 
translating among various representations (symbolic, graphical, and verbal) (Soneira et al., 2021). 
Moreover, a deeper exploration into students’ difficulties reveals that cognitive obstacles are not 
limited to general mathematics but extend to specific areas such as algebra and calculus, where 
misconceptions frequently emerge (Fitriani et al., 2021; Fitriawan et al., 2022). For instance, students 
often struggle with interpreting abstract mathematical concepts, translating real-world problems 
into mathematical models, and articulating their reasoning clearly (Cinar et al., 2023; Pinter & 
Siddiqui, 2024; Žakelj et al., 2024). These issues highlight the need for educational approaches 
addressing cognitive and communicative obstacles in mathematics education. While some students 
demonstrate proficiency in fundamental mathematical principles (Farida et al., 2019; Schillinger, 
2021; Yerizon et al., 2019), others encounter persistent difficulties in domains such as geometry 
(Volikova et al., 2019), particularly in extracting information from complex problems and applying 
appropriate calculation methods (Hasan, 2020; Roulstone et al., 2024). The prevalence of these 
challenges across diverse mathematical domains underscores the importance of adopting targeted, 
evidence-based interventions that bridge conceptual and procedural gaps. 

One promising theoretical framework for addressing these issues is APOS (Action, Process, 
Object, Schema) theory, which offers a constructivist approach to understanding how students 
develop mathematical concepts (Moru, 2020; Bilondi & Radmehr, 2023; Tatira, 2021). APOS theory 
posits that learning mathematics involves transitioning through four mental structures—action, 
process, object, and schema—each building upon the previous. Studies applying APOS theory to 
topics such as derivatives, binomial expansions, and trigonometric functions have demonstrated its 
effectiveness in diagnosing and addressing cognitive obstacles (Nga et al., 2023; Tuktamyshov & 
Gorskaya, 2024). Additionally, the integration of the activity, classroom discussion, and exercise 
learning cycle within APOS-based instruction has been shown to enhance students’ academic 
performance (Arnawa et al., 2021; Nga et al., 2023) and attitudes toward mathematics (Pham & 
Nguyen, 2023; Tuktamyshov & Gorskaya, 2024). This underscores the potential of APOS theory to 
identify students’ misconceptions and provide a structured pathway for their conceptual 
development. 

In the context of teacher education, prospective mathematics teachers face unique challenges 
in conceptual and pedagogical development. Studies in Indonesia reveal that many prospective 
teachers rely heavily on procedural approaches and memorization (Istanto et al., 2024; Ndiung & 
Menggo, 2024; Romadhon et al., 2024; Suwardika et al., 2024), often struggling to develop and convey 
a deeper conceptual understanding of topics such as linear equations and systems (Dewi et al., 2021; 
Martín Molina et al., 2024; Zayyadi et al., 2019). Moreover, their instructional practices frequently 
emphasize procedural fluency over conceptual exploration, limiting their ability to foster critical 
thinking and problem-solving skills in students (Kania et al., 2023; Siswono et al., 2019; Usmayati & 
Gürbüz, 2024). These findings highlight an urgent need to strengthen content knowledge and PCK in 
teacher preparation programs, emphasizing scaffolding strategies and metacognitive approaches to 
enhance teaching effectiveness. 
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Given the foundational role of algebra in mathematics education, this study focuses on the 
cognitive obstacles prospective mathematics teachers encounter in learning number concepts, 
particularly through the lens of APOS theory. Two key research questions guide this investigation: 
(1) What cognitive obstacles do prospective mathematics teachers face in developing algebraic 
concepts? Furthermore, (2) How do they integrate their mental construction of numbers with the 
introduction to genetic decomposition? By examining these aspects, this study aims to provide new 
insights into the cognitive processes underlying the learning of algebraic concepts among 
prospective mathematics teachers. Furthermore, it seeks to inform the design of instructional 
strategies that support their conceptual and pedagogical development, ultimately enhancing their 
ability to teach mathematics effectively.  

Given the interpretive orientation of this qualitative inquiry and the theoretical grounding in 
APOS (Action–Process–Object–Schema) theory, the following working hypotheses are formulated to 
guide the investigation: 
1. Prospective mathematics teachers are anticipated to experience specific cognitive obstacles in 

constructing algebraic concepts related to number systems. These difficulties are expected to 
emerge predominantly during the early developmental phases of the APOS framework—namely, 
the Action and Process stages—where procedural fluency and conceptual integration are often 
insufficiently developed. 

2. The implementation of instructional strategies grounded in genetic decomposition is 
hypothesised to enhance the mental construction of algebraic knowledge among pre-service 
teachers. 

METHODS 

This study adopted an interpretive research paradigm to investigate the cognitive obstacles 
preservice mathematics teachers encounter while learning, particularly algebra, within a basic 
mathematics course. Adigun et al. (2025) asserted that the interpretive paradigm was chosen 
because it aims to understand individuals' subjective experiences and interpret meaning through 
qualitative inquiry, aligning with the study’s focus on the mental constructions of mathematical 
concepts. The methodological framework follows a qualitative approach, which is well-suited for 
exploring complex phenomena within their real-life context. This approach allows for a deeper 
understanding of the research subject by examining the participants' meanings, experiences, and 
perspectives.  

Specifically, the study employs a single-case study methodology, providing a comprehensive, 
detailed analysis of a particular case, event, or individual (Jiang et al., 2024; Mwakililo et al., 2025). 
The objective is to gain insights into the unique context and intricacies of the case, uncovering 
patterns, underlying causes, or nuances that may not be immediately apparent in more generalised 
research methods. By focusing on a single case, the research can explore a specific phenomenon 
within a defined setting, revealing deeper insights that might otherwise be overlooked in broader 
contexts. 

Participant 
A purposive sampling technique was employed to select participants for this study, which was 

conducted at a private university located in Majalengka, West Java, Indonesia. Initially, three first-
year preservice mathematics teachers enrolled in a Basic Mathematics course within the Bachelor of 
Education program in mathematics were selected. To enhance the depth and validity of the findings, 
the sample size was expanded to six to ensure greater diversity and triangulation of findings. 
Participants were selected based on the following refined criteria: 

1. Active engagement in learning algebraic concepts, 
2. Representation of diverse academic abilities (high and medium-performance levels), 
3. Willingness to participate in extensive and iterative data collection processes, including 

follow-up interactions. 
The expanded participant pool allowed for greater variability in experiences and cognitive 

patterns, strengthening the transferability of the study’s conclusions while maintaining a focus on in-
depth exploration. 
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Data collection 
A multi-method data collection strategy was implemented, grounded in APOS theory. 

Instructional activities followed the activities class, discussion, and exercises learning cycle, designed 
to foster deep engagement and active learning according to (Mutambara & Tsakeni, 2022). The data 
collection methods included: 
1. Collaborative problem-solving sessions, where participants worked in pairs or groups to solve 

algebraic problems. These sessions emphasised reflective discussions to uncover cognitive 
obstacles and learning strategies. 

2. Diagnostic worksheets with scaffolding techniques focused on algebraic structures and number 
concepts. Worksheets incorporated conceptual, procedural, and application-level tasks to 
analyze participants' understanding comprehensively. 

3. Semi-structured interviews, conducted in multiple rounds to capture participants' evolving 
cognitive processes. Questions were refined based on participants' written responses and 
classroom observations. Follow-up interviews probed deeper into specific cognitive challenges. 

4. Non-participant classroom observations, with detailed field notes capturing interactions, peer 
discussions, and instructional interventions. Observations served to identify behavioral 
indicators of conceptual difficulty and provided contextual data. 

5. Reflective journals, where participants documented their thought processes, challenges, and 
problem-solving approaches after completing tasks. 

These methods were designed to ensure triangulation and validity. They capture cognitive 
obstacles from multiple perspectives while aligning with the APOS framework. 

Data analysis 
The four stages of learning a mathematical concept, as proposed in APOS theory, are based on 

the foundational work of Dubinsky (1997), which provides a clear framework for understanding the 
genetic decomposition of complex numbers. Building upon this, the researchers developed the 
following genetic decomposition for numbers, which serves as a tool for analyzing the cognitive 
processes involved in mastering such concepts. 

Thematic analysis procedure 
Thematic analysis in this study followed a structured coding protocol grounded in the APOS 

theory (Dubinsky & Wilson, 2013), aimed at identifying students’ cognitive constructions and 
obstacles in learning algebraic concepts. The analysis was conducted in four sequential stages: 

Initial coding 
Raw data—including interview transcripts, written responses, and classroom observation 

notes—were segmented into components corresponding to the APOS framework: Action, Process, 
Object, and Schema. This step enabled researchers to map cognitive responses to specific theoretical 
constructs.  

Identification of cognitive obstacles 
Within each APOS component, instances of misconceptions, incomplete mental constructions, 

and procedural errors were identified. These obstacles were coded and categorized to reveal areas 
where participants struggled in forming coherent mathematical understanding. 

Cross-case analysis 
A detailed cross-case analysis was performed to compare cognitive patterns across the six 

participants. This involved examining the consistency and variation in how each participant 
navigated through the APOS stages. The analysis revealed recurring cognitive difficulties, especially 
in the Action and Process stages, such as rigid reliance on algorithms, difficulty transitioning from 
procedures to mental processes, and weak abstraction of algebraic structures. However, distinct 
context-specific challenges were also identified. For instance, participants with stronger procedural 
fluency sometimes lacked representational flexibility, while others demonstrated conceptual insight 
but struggled with symbolic manipulation. 
These comparisons provided insight into both shared learning trajectories and individualized 
obstacles, allowing for a nuanced understanding of pre-service teachers' cognitive development. 
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Genetic decomposition analysis 
Participants’ learning trajectories were analyzed to trace the development and transformation 

of introductory number and algebraic concepts through the lens of APOS theory. This genetic 
decomposition illuminated how participants constructed mental actions, progressed to internal 
processes, and eventually formed structured schemas. 
This analysis served as a theoretical model to interpret how participants overcame (or failed to 
overcome) specific cognitive barriers. Table 1 presents the refined genetic decomposition aligned 
with basic algebraic concepts and the APOS framework. 

To ensure reliability and credibility, the coding scheme and interpretive themes were reviewed 
in peer debriefing sessions with two independent researchers. Discrepancies were discussed and 
resolved through consensus. Additionally, triangulation of data sources—including interviews, 
worksheets, classroom observations, and reflective journals—enhanced the trustworthiness of the 
findings.  

Ethical consideration 
Ethical approval for the study was granted by the institutional review board, ensuring 

compliance with established ethical research standards. Informed consent was obtained from all 
participants, and their confidentiality was rigorously safeguarded. Pseudonyms were employed 
throughout the study, and all audio and video recordings were securely stored on encrypted devices. 
Participants were kept informed about the study's progress at regular intervals, promoting 
transparency and fostering trust. 

FINDINGS 

This research explores the cognitive obstacles participants face in learning algebra, focusing 
on the concepts of logarithms, matrices, and quadratic functions. Data collected through various 
sources—including written answers, observations of group interactions, semi-structured interviews, 
diagnostic tasks, and cognitive mapping using APOS theory—revealed significant difficulties related 
to procedural understanding and limitations in abstract thinking, as shown in Table 2. 

Cognitive obstacles in mathematical proof 
Many participants experienced difficulty simplifying logarithmic expressions in the logarithm 

and matrix questions. Most of the answers showed confusion in applying the basic rules of logarithms 
or in connecting the concept of logarithms with matrix operations. When asked to determine the 
determinant of the logarithm matrix, many participants could not solve the problem correctly. Their 
answers were more procedural, without a deep understanding of the basic principles of logarithms 
and how these concepts are applied in a matrix context (Ndlovu & Brijlall, 2015). This suggests that 

Table 1 
Genetic decomposition and analysis  

Stage Description (Aligned with Number Concepts and Introductory Algebra) 

Action 

 

Individuals begin to manipulate algebraic expressions involving number operations (e.g., 
integer operations, basic properties of operations, identities) by applying memorised 
procedures without necessarily understanding underlying structures. 

Process 

 

Individuals internalise the procedures and begin to conceptualise operations (e.g., 
commutativity, associativity, distributivity) as dynamic processes. At this stage, they can 
mentally transform algebraic expressions and begin to identify and generalise patterns. 

Object 

 

Individuals encapsulate processes into mental objects. For instance, they can perceive an 
algebraic expression as a manipulable entity, recognise inverse operations, and 
understand equivalence of expressions beyond procedural execution. 

Schema 

 

Individuals construct a coherent mental structure linking various number concepts and 
algebraic operations. They can flexibly navigate between representations (symbolic, 
verbal, and tabular), reason abstractly about relationships among concepts, and apply 
these concepts in unfamiliar contexts. 
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most participants were operating at the action stage in APOS theory, where they focused more on the 
mechanical steps than understanding the underlying concepts.  

Similar findings have been documented in recent studies. For instance, (Aksu et al., 2022) 
found that pre-service mathematics teachers often rely on memorised procedures without 
demonstrating conceptual understanding, especially in algebraic contexts. Likewise, Mustafa and 
Derya (2016) reported that many university students could carry out symbolic manipulation 
correctly while failing to interpret the underlying mathematical structures, indicating a 
predominance of action-level reasoning. These results underscore the persistent gap between 
procedural fluency and conceptual understanding among prospective mathematics teachers, 
particularly during the early phases of cognitive development in algebraic thinking. 

Figure 1 shows the problem involves multiplying two matrices containing logarithmic 
expressions, which requires not only algebraic manipulation but also a strong conceptual 
understanding of the properties of logarithms and matrix operations. In the action stage, students 
apply basic procedural steps such as substituting logarithm values and performing basic matrix 
operations. However, errors in calculations or misapplication of logarithm properties often indicate 
a reliance on memorised procedures rather than an understanding of the underlying concepts. In the 
process stage, students move from performing individual operations to understanding the 
relationships between matrix elements. However, challenges may arise due to misunderstandings 
regarding the rules of logarithms or the procedure for matrix multiplication, highlighting the need 
for a deeper understanding of the interrelationships of these operations. Thus, the Object and Schema 
stages cannot be performed. 

The following is a discussion that highlights the cognitive challenges faced by students to 
provide a clearer picture of the difficulties they experience in understanding mathematical proofs 
and how teachers help them overcome these obstacles; 

Table 2  
Overview of cognitive obstacles across APOS stages 

APOS Stage 
Cognitive Obstacle 

Description 
Example of Student 

Difficulty 
Pedagogical 
Implication 

Action 
Mechanical manipulation 
without conceptual 
understanding 

Incorrect simplification of 
log expressions; procedural 
matrix multiplication 

Reinforcement of 
algebraic properties 
through guided 
practice 

Process 
Partial conceptualisation; 
difficulties integrating steps 

Errors in elimination steps 
for solving systems 

Visual aids and step-
by-step scaffolded 
instruction 

Object 
Difficulty perceiving 
mathematical structures as 
wholes 

Misinterpretation of 
determinant meaning and 
matrix-log relations 

Conceptual linking 
between abstract 
entities 

Schema 
Inability to generalise and 
integrate concepts 

Difficulty connecting 
quadratic forms to graph 
and real-world context 

Integration of multiple 
representations and 
problem contexts 

 

 

Figure 1. Participant’s response showing procedural focus and misconceptions 
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Teacher:    Before we proceed, let us start with this simple problem. How do we simplify log a(xy)? Can 
anyone explain? 

Student 1: For me, I divide loga(x) and loga(y). 
Teacher: Ah, that is a common mistake. Remember, the correct property is log a(xy)= log a(x) + log a(y). 

So we cannot divide them. Can anyone show us the correct way? 
Student 2: So, we add log a(x) and log a(y)? That sounds reasonable, but what if we have to multiply in 

logarithms? 
Teacher: Yes, that is right. Remember this as a rule that applies when we work with logarithms. Now, 

what if we try to calculate the determinant of this matrix? 
Student 3: I am confused, sir. Should we calculate these logarithms one by one first or go straight to the 

matrix operation? 
Teacher: Let's simplify the elements of the logarithm. Let's do the steps one by one. 
Student 1: And then? 
Teacher: After we simplify, the matrix becomes easier to calculate. Does anyone have difficulty with 

simplifying logarithms? 
Student 1: I am still a bit confused, ma'am, about how to visualise the relationship between logarithms 

and these matrix operations. Why do we need to convert logarithms to ordinary numbers? 
Teacher: That is a great question! It is important because we want to simplify the calculations to focus 

on the bigger steps. Remember, logarithms help us express numbers in a form that's easier to 
process in some cases. 

Research on mathematical errors among students reveals common challenges in matrix 
operations, algebraic calculations, and problem-solving. Factors contributing to these errors include 
insufficient practice, lack of attention to problem details, and poor retention of mathematical 
concepts. Addressing these challenges requires a focus on strengthening conceptual understanding 
and providing diverse problem-solving opportunities for students. 

Here is a discussion that illustrates the cognitive obstacles students face at the Process stage of 
APOS theory, along with how teachers can help them overcome these obstacles to improve their 
understanding of mathematical proofs: 

Teacher:  Now, how do you calculate the determinant of the simplified matrix? 
Student 2: I tried using the determinant formula, which is ad−bc, but I am afraid I will make a mistake when 

simplifying. 
Teacher: Okay, let us see together. What if we use the elements that we simplified earlier? 
Student 3: Adi, we have a matrix, and now we calculate its determinant. 
Student 1: The determinant is 2(ad−bc). I am a little hesitant to calculate it 
Teacher: Good! Is anyone having trouble with this step? What happens if we use logarithms in a more 

complicated context? 
Student 2: Do the properties of logarithms still apply, like log a(xn)=n log a(x)? I often get confused about 

when to apply them. 
Teacher: Yes, they are important, and sometimes they can be confusing. The key is understanding when 

we can manipulate exponents or logarithms in that way. Remember, whenever we see an 
exponential or logarithmic form, we can try to exploit these properties. 

Research on mathematical abstraction and connections reveals challenges students face in 
advanced topics like matrix algebra and logarithms. Students also have difficulty generalising 
concepts and connecting logarithms with other applications, such as converting to exponential form. 
These issues stem from various obstacles, including cognitive, genetic, psychological, and 
epistemological obstacles. To address these challenges, interventions like reinforcing prerequisite 
material, providing scaffolding, and using convergent questioning are recommended. Additionally, 
fostering connections between different representations, part-whole relationships, and 
mathematical procedures is crucial for problem-solving success. Improving instructional methods 
based on understanding students' mental constructions can help overcome mathematical 
abstraction and connection difficulties. 

Here is a discussion that illustrates the cognitive obstacles students face at the Object stage of 
APOS theory, along with how teachers can help them overcome these obstacles to improve their 
understanding of mathematical proofs: 
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Teacher: At this point, we want to look at logarithms and matrices not as separate elements but as an 
integrated object. What happens if we change the elements of this matrix to exponential form? 
Does the determinant remain the same? 

Student 1: Would we get the same result for the determinant? I do not think I understand the relationship 
between logarithms and exponentials. 

Teacher: That is a good question. Let us try to understand that logarithms are the inverse of exponentials, 
so changing the form can affect the way we view the matrix. What if we try to visualise this 
matrix in a graphical context? 

Student 2: I am still confused about how logarithms affect this matrix operation. Why do we need to know 
how these elements work together?” 

Teacher: Logarithms give us a way to understand changes in a more structured form. By seeing these 
elements as part of a larger object, we can integrate their properties more easily. This will help 
us understand more concepts in the future.” 

The APOS theory provides a framework for understanding students' conceptualization of 
mathematical concepts. While APOS theory has been influential in mathematics education research, 
it is not universally accepted as a Kuhnian paradigm and may be better described as a Lakatosian 
research program.  

Here is a discussion that illustrates the cognitive obstacles students face and how teachers help 
them overcome these obstacles, mainly focusing on the conceptual integration at the Schema stage: 

Teacher: Look at the relationship between logarithms and matrices in a broader context. How can we 
apply these concepts to solve other problems, such as systems of exponential equations? 

Student 3: Can we relate logarithms and matrices to solve systems of exponential equations? I am still not 
sure how these concepts are related.” 

Teacher: That is right! We can use the properties of logarithms and matrix operations to solve such 
systems. Imagine connecting these two concepts. What patterns do you notice when you 
compare the determinant results with different logarithm elements? 

Student 2: I am beginning to see how these previously separate concepts can be related. However, I am 
still having trouble finding the right pattern.” 

Teacher: This is an important step in forming our mental schema. The more you connect these concepts, 
the easier it will be for you to recognise patterns and use them to solve other problems. 

This discussion helps students address the cognitive obstacles they encounter in 
understanding logarithms and matrices. Obstacles such as confusion in applying the properties of 
logarithms, concerns in understanding matrix operations and difficulties in seeing relationships 
between mathematical concepts can be addressed stepwise from a more mechanical to a more 
integrated understanding. The APOS-based approach allows students to build more profound and 
flexible understandings, helping them overcome cognitive obstacles and preparing them for more 
complex mathematical challenges. 

Group discussions provided further insight into the cognitive obstacles that participants faced. 
Based on the students' work, the APOS theoretical framework can effectively analyse cognitive 
obstacles in mathematical proof. The given problem requires solving a system of linear equations to 
determine the parameters a, b, and c in the quadratic equation y=ax2+bx+c. This process demands a 
conceptual understanding of algebraic structures, procedural fluency in manipulating equations, and 
the ability to transition from an operational to an abstract comprehension of quadratic functions. 
Many students encounter difficulties at the action and process stages, where they focus on procedural 
execution without a deeper grasp of the underlying mathematical relationships. Challenges in 
transitioning to the object and schema stages often manifest in errors related to equation 
manipulation, misinterpretation of system constraints, and the inability to generalise results. 
Addressing these cognitive obstacles through targeted instructional strategies can enhance students’ 
ability to construct mathematical proofs and develop a robust conceptual understanding of quadratic 
equations. 

Figure 2 presents the written response of a participant solving a system of linear equations to 
determine the coefficients a, b, and c in the quadratic function y=ax2+bx+c. The problem requires 
substituting given coordinate points into the general quadratic equation, forming a system of 
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equations, and solving for the unknowns. Using the APOS framework, cognitive obstacles in the 
participant's problem-solving process can be analysed across different stages.  

In the action stage, students demonstrate the initial ability to substitute point values (x, y) into 
a quadratic equation. Although this step is mechanical, some students tend to make errors in basic 
algebraic operations, such as incorrect addition or elimination of equations. A common obstacle at 
this stage is difficulty understanding the initial steps relevant to the problem, such as determining 
the relationship between the given points and the coefficients a, b, and c. In the process stage, the 
systematic elimination of variables indicates an emerging grasp of equation-solving techniques. 
However, minor computational errors or inconsistencies may highlight difficulties in comprehending 
relationships between equations.  

Moving to the object stage, the participant arrives at specific values for a, b, and c, 
demonstrating an ability to conceptualise the quadratic function as a structured mathematical entity. 
However, any inconsistencies in their final solution could suggest gaps in recognising broader 
algebraic implications. At the schema stage, a fully developed understanding would require the 
participant to recognise alternative solution methods, generalise their approach to different 
quadratic problems, and validate the correctness of their results. This analysis underscores common 
cognitive obstacles in solving quadratic equations and highlights the need for instructional 
interventions that enhance both procedural fluency and conceptual comprehension. 

The following is a conversation that highlights the cognitive obstacles that students face during 
the stages of solving a quadratic equation system problem, which illustrates cognitive obstacles at 
the Action Stage according to APOS theory: 

Teacher:  We will solve the system of equations to find the values of aa, bb, and cc in the quadratic 
equation y=ax2+bx+c. For example, we are given points such as (x1,y1), (x2,y2), and (x3,y3). Try to 
substitute the values of these points into the quadratic equation. 

Student 1: Okay, I substitute the values of x1 and y1 into the equation. I get y1=ax12+bx1+c. Then I continue 
for the other points. 

Teacher:  Good. However, pay attention to whether the substitution results are correct. Are you sure there 
are no addition or multiplication errors in basic algebra? 

Student 2: I feel a little confused about the negative signs in the equation. Why are the results not as 
expected? 

Teacher:  Pay attention again to each step and the negative signs. At this stage, it is important to be 
careful with each algebraic operation you do. 

Research on students' difficulties with quadratic equations reveals common errors across 
educational contexts. These include mishandling signs, computational errors in introductory algebra, 

 

Figure 2. Participant’s response highlighting cognitive obstacles  
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and challenges in applying equation-solving procedures. Students struggle with factorization, using 
the quadratic formula, and distinguishing between solving and simplifying equations. Performance 
patterns are similar across well-resourced and poorly-resourced schools, suggesting systemic issues 
in curriculum design. To address these challenges, studies recommend immediate feedback, whole-
class discussions of errors, and targeted instructional strategies. Incorporating incorrect examples in 
teaching can improve equation-solving abilities, particularly for students with limited algebraic 
knowledge. Teachers are advised to pay more attention to integer operations and the cognitive shifts 
required in solving equations with variables on both sides. 

Here is a conversation that highlights the cognitive obstacles students face at the Process stage 
of solving quadratic equation systems, illustrating the obstacles according to APOS theory at the 
Process stage and the need for reinforcing understanding: 

Teacher:  Next, let us try the elimination process. From the system of equations you have, try to 
eliminate one of the variables to reduce the number of equations. What do you get after the 
first step?" 

Student 3: I tried to eliminate c, but the result was not what I thought. There was something wrong with 
my steps. 

Teacher: Did you notice how the negative sign affected this elimination? Sometimes, mistakes happen 
because we are not consistent in handling these signs. 

Student 1: I struggle to subtract two equations with negative signs. I often get confused about whether I 
need to change the sign. 

Teacher: This is indeed a common mistake at this stage. When eliminating, be sure to double-check 
each step and sign and ensure that the logic of elimination remains consistent. Try to visualise 
these steps to make them clearer. 

Research suggests that students face challenges in mastering systems of linear equations 
(SLEs) and related algebraic concepts. Students may struggle to validate solutions at the object stage 
or understand that elimination results must satisfy all original equations. Some students achieve only 
an action-level understanding of unique solutions but struggle with non-unique solutions requiring 
process and object conceptions. 

Interestingly, algebraic expertise involves retraining the visual system to perceive hierarchical 
structure in equations, with object-based attention playing a role in parsing expressions. 
Mathematical modelling tasks can help characterise students' learning routes and identify 
difficulties, particularly in validating results. These findings highlight the complexity of learning 
algebraic concepts and suggest potential strategies for improving instruction. 

Here is a conversation highlighting the cognitive obstacles students face during the stages of 
solving quadratic equation systems problems, specifically focusing on the object stage of APOS theory 
and the process of forming a mathematical object: 

Teacher: At this stage, we need to look at the elimination result as a more complete object. Does this 
elimination result satisfy all the equations you started with? 

Student 2: I feel confused because I only did the algebraic part. However, I am not sure if my elimination 
result is consistent with the whole equation. 

Teacher:  This is a common problem. At this stage, you should start to see the system of equations and the 
elimination result as an integrated object, not just separate parts. Try to double-check each 
solution you find, and make sure that it satisfies all the original equations. 

Student 3: I sometimes get caught up in algebraic manipulations and ignore whether the result fits the 
whole equation. This makes me doubt my final solution. 

Research on students' understanding of quadratic equations reveals several challenges. 
Students often struggle to integrate their knowledge of systems of equations, algebraic operations, 
and parameter relationships within the quadratic context. The lack of flexibility in thinking is evident 
in students' inability to connect algebraic and geometric concepts, such as relating solutions to 
parabolas passing through specific points. Small algebraic errors frequently impact final results, 
reflecting weak mental schema structures. To address these issues, researchers suggest allocating 
more time for developing conceptual understanding and procedural fluency, incorporating figural 
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pattern generalisation to stimulate visual-algebraic reasoning coordination, and explicitly 
considering mental constructions in the learning process. 

The following conversation highlights the cognitive obstacles students face during the stages 
of solving quadratic equation systems problems, specifically focusing on the Schema stage of APOS 
theory and the integration of concepts at this stage: 

Teacher: At this stage, we should be able to see how the relationship between the parameters aa, bb, and 
cc affects the form of the quadratic equation. Try to relate your results to its geometric form, 
which is the parabola that passes through these points. 

Student 1: I find it difficult to relate the algebraic result to the form of the parabola. How do I know that 
the values of a, b, and c affect the form of the parabola? 

Teacher: This is a very common challenge at this stage. Try to visualise the parabola using a graph. What 
happens if the value of a is greater or less? How does that affect the slope of the parabola? 

Student 2: I feel confused because I only do the algebraic process without understanding how the results 
change the graphical form. I cannot yet connect the numbers to the graph that is formed. 

Teacher: At this stage, you should be able to relate the algebraic result to the graphical form of the 
quadratic equation. This is important for developing a broader understanding because the 
results you get apply not only to the numbers but also to the geometric form. 

This conversation illustrates how students encounter cognitive obstacles at each problem-
solving stage according to the APOS theory. Students struggle to comprehend and correctly execute 
fundamental algebraic procedures at the action stage, often making errors in basic manipulations. 
Moving to the process stage, they begin to construct an understanding but continue to face challenges 
in algebraic manipulation, particularly in handling negative signs and maintaining procedural 
accuracy. At the object stage, difficulties arise in perceiving the system of equations as a structured 
mathematical entity rather than a sequence of isolated steps. In the schema stage, students cannot 
connect their algebraic solutions to geometric representations, specifically the parabolic nature of 
quadratic equations. 

This analysis highlights the necessity of targeted learning interventions to facilitate students' 
progression through the APOS theory more effectively. For the Action stage, instructional strategies 
should emphasise a deep understanding of fundamental algebraic properties through structured 
exercises. During the process stage, students must be encouraged to reflect on their problem-solving 
steps and develop skills to verify the consistency of their results. To address challenges in the Object 
and Schema stages, incorporating visual representations—such as parabolic graphs—can enhance 
students' comprehension of the relationships between coefficients, equations, and their graphical 
interpretations. These findings further support the need for an APOS-based pedagogical approach 
that ensures seamless transitions between cognitive stages, ultimately mitigating mathematical 
proof and problem-solving obstacles. 

DISCUSSION 

The findings of this study provide critical insights into the cognitive obstacles pre-service 
mathematics teachers encounter in algebraic learning. These obstacles have significant implications 
for both instructional practice (Anwar et al., 2023; Nikou et al., 2024; Travé González et al., 2017) 
and educational theory (Al-Adwan et al., 2024; Allmon, 2011; Chabursky et al., 2024). This is also 
supported by Cristea et al. (2025) and Zakaria et al. (2025), who said identifying common cognitive 
obstacles emphasises the need for tailored instructional strategies that effectively address these 
challenges. Specifically, educators should prioritise conceptual understanding alongside procedural 
fluency (Kilp-Kabel & Mädamürk, 2024; Lee et al., 2024; Rivard, 2024), ensuring students progress 
beyond rote memorisation to deeply comprehend mathematical concepts' underlying structures. 
This study also suggests that structured peer collaboration can be an effective intervention for 
students at different proficiency levels by fostering deeper engagement with mathematical 
reasoning. 

Cognitive obstacles at the early stages of learning indicate that students are still operating at a 
low procedural level (Susiswo et al., 2021). This may be attributed to the insufficient instructional 
emphasis on algorithmic mastery and limited exposure to real-world applications of logarithmic 
functions in mathematical proofs (Keller, 2012; Murre, 2023). For example, while students may recall 
the basic determinant formula, they often fail to apply it correctly due to misconceptions regarding 
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logarithmic properties, such as log (a)+log (b)=log (ab). This difficulty points to an incomplete 
transition from the action stage to the process stage within the APOS framework, highlighting a 
critical gap in the development of conceptual understanding (Borji et al., 2020; Martínez-Planell & 
Trigueros, 2020). Addressing this gap requires instructional interventions to facilitate a smoother 
transition between these cognitive stages (Oktaç et al., 2022; Trigueros, Cabrera, et al., 2024). Guided 
problem-solving exercises that explicitly connect algorithmic procedures with conceptual reasoning 
can effectively bridge this gap (Abakah & Brijlall, 2024; Trigueros, Badillo, et al., 2024) . These 
findings underscore the necessity for an APOS-based pedagogical approach that enhances procedural 
fluency and strengthens students' ability to generalise mathematical principles across different 
contexts. 

Students often struggle to perceive logarithms as mathematical objects that can be 
manipulated within broader structures, such as matrices. Logarithmic elements in the context of 
determinants should be understood as integrated units that interact systematically within matrix 
operations. However, students’ inability to recognise these relationships indicates weak conceptual 
integration across different mathematical domains. At this stage, students should be able to connect 
multiple concepts—logarithms, matrices, and determinants—into a coherent cognitive framework. 
This finding suggests that instructional strategies must move beyond isolated procedural tasks and 
foster a more integrated understanding of these concepts. 

Findings and conceptual understanding: APOS theory 
The analysis of students' work in solving systems of linear equations to determine the 

parameters a, b, and c in the quadratic equation y=ax2+bx+c reveals distinct cognitive obstacles at 
each stage of the APOS framework. Research on pre-service mathematics teachers' understanding of 
complex mathematical concepts has identified various cognitive barriers within the APOS 
framework. Ndlovu and Brijlall (2016) found that many pre-service teachers remain at the Action 
and Process stages when learning determinant concepts, often demonstrating procedural knowledge 
without a deep conceptual understanding. Similar challenges are observed in logarithmic 
differentiation, where misconceptions persist among learners at the Action and early Process stages 
(Asghary et al., 2023). Additionally, difficulties in solving logarithmic equations, especially in proofs, 
highlight significant gaps in foundational knowledge of logarithmic concepts and rules (Okoye-
Ogbalu & Nnadozie, 2024). These findings underscore the need for mathematics teacher education 
programs to emphasise both procedural fluency and conceptual understanding, as addressing 
misconceptions and enhancing competency will better prepare pre-service teachers for effective 
instruction. 

Students face significant challenges when working with logarithms, often exhibiting errors 
rooted in both conceptual and procedural misunderstandings. Common mistakes include technical 
miscalculations, misapplication of algebraic rules, and difficulty applying logarithmic properties 
correctly (Bardini et al., 2004; Rafi & Retnawati, 2018). Rather than relying on rote memorisation 
and intuition, which often lead to incorrect reasoning, students should be encouraged to develop a 
solid understanding of logarithmic definitions (Dintarini, 2018; Tatira & Mukuka, 2024). Conceptual 
errors are the most prevalent among error types, followed by procedural and technical mistakes 
(Angraini et al., 2024; Yodiatmana & Kartini, 2022). These difficulties arise from weak foundational 
knowledge, leading to misconceptions such as treating "log" as a variable or failing to recognise 
structural relationships between different logarithmic expressions (Campo-Meneses et al., 2021; 
Yodiatmana & Kartini, 2022). While students perform adequately on routine calculations, they 
struggle with problems requiring higher-order thinking skills (Kania & Kusumah, 2025).  

Findings from this study corroborate the patterns reported in prior research, particularly 
regarding students’ dominance at the action stage in APOS theory, where reliance on mechanical 
procedures often overshadows conceptual understanding. Similar to the findings of Bardini et al. 
(2004) and Yodiatmana and Kartini (2022), our participants frequently misapplied logarithmic rules, 
revealing a lack of structural comprehension. Moreover, while previous studies identified isolated 
errors in procedural or technical steps, this study extends those insights by illustrating how such 
errors cluster within specific APOS stages, offering a more detailed mapping of cognitive obstacles in 
learning logarithms. Thus, consistent with Dintarini (2018) and Tatira and Mukuka (2024)  our 
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results emphasize the importance of strengthening conceptual foundations, especially during the 
transition from process to object stage. This deeper alignment between our findings and the 
literature reinforces the relevance of APOS theory as a lens to analyze and address the layered nature 
of algebraic difficulties among pre-service mathematics teachers.  

At the Action stage, students primarily engage in the mechanical execution of algebraic 
procedures, such as substituting given coordinate points (x,y) into quadratic equations. This stage 
involves fundamental algebraic operations, yet students frequently make errors in basic 
manipulations, such as handling negative signs, addition, and subtraction. These errors indicate 
incomplete mastery of algebraic skills, which are essential before progressing to more complex 
problem-solving tasks. Consequently, the Action stage tends to emphasize mechanical execution 
without integrating the conceptual reasoning behind each step (Langi’ et al., 2023; Trigueros, Badillo, 
et al., 2024).  In contrast, the Process stage marks a shift in students' understanding—from 
performing individual operations to comprehending relationships between mathematical elements, 
such as those found in matrix theory. At this stage, students begin to recognize patterns in logarithmic 
simplifications and execute matrix multiplication with greater accuracy (Feriyanto & Putri, 2020; 
Kania et al., 2023). Despite this progress, misconceptions regarding logarithmic properties or matrix 
multiplication rules often persist, underscoring the need for a deeper, more nuanced understanding 
of these operations' interrelations. Moreover, during the Process stage, students begin to recognize 
relationships within systems of linear equations and apply methods such as elimination or 
substitution. A significant challenge at this stage is managing procedural complexity. Many students 
rely on memorized steps without fully comprehending the underlying logic, leading to errors when 
eliminating variables or processing signs. Additionally, students often fail to verify the consistency of 
intermediate results with the original equations, revealing a fragile conceptual grasp of the system. 
These findings suggest that instructional strategies should encourage students to critically engage 
with each step of their solution process, emphasizing the verification of results as key to 
strengthening their conceptual understanding. 

At the Object stage, students are expected to view the system of equations and the elimination 
process as an integrated mathematical structure. However, obstacles at this stage include the lack of 
solution validation. While students may successfully determine the values of aaa, bbb, and ccc, they 
often neglect to check whether these values satisfy all original equations. This oversight suggests that 
students perceive problem-solving as a sequence of isolated steps, hindering their ability to 
generalize and apply strategies in different contexts. Reflective problem-solving tasks that encourage 
students to check their solutions against the entire system of equations are essential at this stage. 
Students must understand these concepts structurally (Abu-Hilal et al., 2013) and move beyond 
individual calculations (Padmanabhan et al., 2013). Inconsistencies in determinant calculations or 
misapplied logarithmic transformations may indicate gaps in their understanding of determinant 
formulas and logarithmic properties, suggesting the need for further conceptual development. 

At the Schema stage, students should synthesize their understanding across multiple 
representations, linking algebraic solutions to their geometric interpretations (e.g., as a parabola). 
However, many students struggle to make this connection, demonstrating a limited ability to 
generalize their findings beyond the immediate problem. This indicates that current instructional 
strategies may not adequately emphasize the conceptual coherence between algebraic 
manipulations and their geometric significance. Integrating visual aids, such as graphs or geometric 
representations, could significantly enhance students' ability to make these conceptual links. At this 
stage, Oktaç et al. (2022) stated that students should develop the ability to generalize their approach 
to broader contexts, such as solving matrix equations involving logarithmic expressions in various 
applications. Learners should not only understand individual mathematical objects but also integrate 
them and apply their understanding to solve complex problems across different areas of 
mathematics. 

These findings highlight the necessity for an APOS-based pedagogical approach that 
systematically addresses cognitive obstacles through structured learning interventions. Progressing 
from Action to Process requires reinforcing algebraic fluency with exercises that emphasize both 
procedural accuracy and conceptual understanding. Advancing from Process to Object requires 
reflective tasks that encourage students to critically analyze their solution steps, verify results, and 
understand the mathematical structures behind their work. Educators should incorporate visual 
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representations (e.g., graphing quadratic functions) and contextual applications that help students 
internalize the interconnected relationships between algebraic expressions and their geometric 
interpretations, facilitating progression from Object to Schema. 

Role of group discussion in overcoming cognitive obstacles 
Group discussion plays a strategic role in addressing cognitive obstacles encountered by 

students, particularly in algebraic learning involving logarithms, matrices, and quadratic functions. 
Research on the APOS framework supports the idea that group discussions significantly enhance 
students' progression through each stage of mathematical understanding (Hlangwani & Dhlamini, 
2024; Tuktamyshov & Gorskaya, 2024).  

At the Action stage, students often rely on mechanical procedures without understanding the 
conceptual foundations of the mathematics involved. Group discussions help students identify and 
correct misconceptions (Saleemad et al., 2022; Wester, 2021), such as errors in applying logarithmic 
properties, by creating a space where they can articulate their reasoning and receive peer feedback. 
Such collaborative settings not only highlight individual mistakes but also encourage deeper 
engagement with the conceptual relationships underlying the procedures. As a result, students move 
beyond rote memorization, developing a more meaningful understanding of the material (Andrews 
et al., 2020; Schwarz et al., 2022). These discussions foster critical thinking and create opportunities 
for students to explore the rationale behind their actions, thus promoting the development of 
procedural fluency alongside conceptual awareness. 

As students progress to the process stage, they begin to form connections between procedural 
steps and underlying theories. Group discussions offer a reflective space where students can critically 
evaluate their reasoning and refine their approaches. This collaborative validation process helps 
students recognize how logarithmic and matrix properties influence their solutions within broader 
mathematical contexts (Campo-Meneses et al., 2021; Kolar & Hodnik, 2021). By discussing the 
interactions between different mathematical operations, such as the properties of logarithms in the 
context of matrix transformations, students gain insight into how various mathematical elements 
integrate. This transition from procedural fluency to conceptual understanding is particularly 
enhanced by group interaction, which allows for the sharing of diverse perspectives on solving 
problems (Faridayanti et al., 2025; Lee et al., 2024). 

At the object stage, students are expected to perceive mathematical concepts as integrated 
entities. Group discussions facilitate this by providing opportunities for students to explore the 
interaction between concepts (Ballard et al., 2023; Oppong et al., 2024) such as logarithms, matrices, 
and quadratic functions. For instance, students can analyze how logarithmic determinants behave 
within matrix structures, deepening their understanding of these interconnections and recognizing 
their role in more complex problem-solving scenarios (Junarti et al., 2022; Kania et al., 2024). By 
discussing how concepts interrelate, students develop a more holistic understanding of 
mathematical structures, enabling them to see the 'big picture' rather than isolated concepts. 

Finally, at the schema stage, students must integrate their acquired knowledge into a 
comprehensive framework that connects logarithms, matrices, and quadratic functions across 
various applications. Group discussions expose students to multiple problem-solving approaches, 
encouraging them to explore alternative solutions and overcome conceptual obstacles (Moru & 
Mathunya, 2022). The collaborative nature of these discussions fosters higher-order cognitive 
development, enabling students to apply their knowledge in more abstract or applied contexts, such 
as solving real-world problems (Osman et al., 2016) or exploring advanced mathematical topics 
(Yuanita et al., 2023). By presenting and defending their approaches in a group setting, students can 
refine their thinking, challenge their assumptions, and extend their problem-solving strategies to 
new and unfamiliar contexts. This not only enhances their understanding of the material but also 
helps develop the cognitive flexibility needed for abstract mathematical reasoning (Ningrum et al., 
2020; Richland & Simms, 2015). 

In sum, group discussions offer a powerful tool for overcoming cognitive obstacles at each 
stage of the APOS framework. By fostering reflection, validation, and integration of mathematical 
concepts, these discussions help students progress from isolated procedural skills to a deep, 
interconnected understanding of mathematical ideas. Educators should therefore incorporate 
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collaborative learning opportunities into their teaching practices, as these can significantly enhance 
students' ability to solve complex mathematical problems and apply their knowledge in diverse 
contexts. 

CONCLUSION 

This study underscores the significance of an APOS theory-based learning approach in 
overcoming cognitive obstacles in algebra, particularly with concepts such as logarithms, matrices, 
and quadratic functions. The study's findings reveal that most students and pre-service teachers 
remain at the Action stage, where they tend to rely on procedural steps without fully understanding 
the underlying concepts. Common cognitive obstacles include errors in applying logarithmic 
properties, difficulties in integrating logarithms into matrix operations, and an inability to view 
systems of equations as cohesive entities. Group discussions have proven effective in helping 
students navigate through these stages by providing a platform for reflection, collaboration, and 
validation of understanding. When combined with visual tools and exploration-based learning, this 
strategy enhances students' conceptual understanding and fosters critical thinking and problem-
solving skills. 

The implications of this study emphasise the need for a more structured and student-centred 
mathematics learning design, with a focus on facilitating gradual transitions through each stage of 
the APOS framework. Teachers should adopt group discussions, exploration-based activities, and 
problem-based learning methods to strengthen students' comprehension of complex mathematical 
concepts. The integration of graphical representations, simulations, and real-world application 
contexts can further support students in acquiring more holistic knowledge. Moreover, this study 
opens avenues for the development of APOS-based diagnostic tools, which can identify cognitive 
obstacles in real-time, enabling teachers to provide targeted, effective interventions. In conclusion, 
the results of this study contribute to the advancement of innovative mathematics education 
practices and support the creation of meaningful learning experiences for students. 

Future research should explore the effectiveness of APOS-based interventions across different 
educational levels, including junior high school and vocational education settings, to assess the 
broader applicability of this approach. Longitudinal studies may also be conducted to examine how 
students’ progression through the APOS stages evolves, particularly when supported by sustained, 
structured instructional designs. Additionally, mixed-method research that integrates qualitative 
insights with quantitative performance data could offer a more comprehensive understanding of how 
specific learning strategies affect students’ conceptual transitions. 
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