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ABSTRACT 
This study investigates junior secondary students’ epistemological 
obstacles to learning algebraic operations through a praxeological 
framework grounded in the Anthropological Theory of the Didactic (ATD), 
with Didactical Design Research (DDR) as the conceptual orientation. 
Diagnostic algebra tasks and semi-structured interviews were 
administered to six seventh-grade students in Indonesia to examine their 
algebraic techniques and justifications. Students’ written and verbal 
responses were analysed by reconstructing tasks (T), techniques (τ), 
technologies (θ), and theories (Θ). The findings reveal that students 
generally exhibit procedural fluency in routine tasks, such as simplification 
and distributive expansion. However, substantial epistemological 
obstacles arise in tasks that require justification, relational interpretations 
of equality, variable generalisation, and contextual transfer. These 
obstacles are characterised by a misalignment between students’ correct 
techniques and weak or absent justificatory discourse, indicating that 
procedural correctness does not consistently reflect conceptual 
understanding. This study contributes to mathematics education by 
offering a fine-grained praxeological analysis that makes epistemological 
obstacles often overlooked in error-based analyses visible. By 
distinguishing students’ actions from their justifications, the study clarifies 
the structural nature of algebraic difficulties and identifies instructional 
directions that emphasise relational equality, explicit justification, and 
stable conceptions of variables to support deeper structural and 
theoretical understanding of algebra. 

INTRODUCTION 

Algebra plays a central role in secondary school mathematics and functions as a gateway to 
higher-order mathematical thinking. Proficiency in algebra is widely recognised as essential for 
students’ success in advanced mathematical topics, including functions, equations, and calculus 
(Kieran, 2016). Despite its importance, a substantial body of research has consistently shown that 
students encounter persistent difficulties in learning algebraic operations. These difficulties include 
simplifying expressions, distinguishing between constants and variables, and correctly applying 
fundamental algebraic properties (Chamundeswari, 2014; Muchoko et al., 2019; Demonty et al., 
2018). Such difficulties are often rooted in the overgeneralisation of arithmetic rules, superficial 
interpretations of symbolic representations, and a reliance on procedural strategies rather than 
conceptual reasoning (Booth et al., 2016; Welder, 2012). As a result, many students struggle to move 
beyond arithmetic reasoning and develop a structurally coherent understanding of algebra. 
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In mathematics education research, these persistent difficulties are commonly conceptualised 
as epistemological obstacles, which arise when students’ prior knowledge becomes inadequate or 
misleading in new mathematical contexts (Herscovics, 2018; Subroto & Suryadi, 2018). 
Epistemological obstacles differ from simple errors because they are embedded in learners’ ways of 
thinking and reasoning, rather than in momentary lapses or miscalculations. Recent studies further 
indicate that epistemological obstacles in algebra continue to impede students’ progression from 
arithmetic reasoning to algebraic thinking, with long-term consequences for their mathematical 
development and learning trajectories (Utami & Prabawanto, 2023). These obstacles therefore 
reflect deeper issues related to how mathematical knowledge is constructed, justified, and applied 
by learners, particularly in relation to variables, equality, and symbolic manipulation across different 
algebraic situations and problem contexts. 

Although numerous studies have investigated students’ algebraic errors and misconceptions 
and proposed instructional responses to address them (Fauziah et al., 2023; Utami et al., 2023; 
Wilujeng & Alvarez, 2025), much of the existing research remains largely descriptive. In many cases, 
students’ difficulties are catalogued as incorrect answers or procedural failures, without a systematic 
analysis of the epistemic structure underlying their mathematical activity. Consequently, the 
relationship between students’ observable techniques and the mathematical rationales that 
legitimise those techniques often remains insufficiently explored (Kabadaş & Mumcu, 2024; Dassa et 
al., 2024). This descriptive focus limits the explanatory power of prior studies and constrains efforts 
to understand why certain difficulties persist across tasks and contexts. These limitations highlight 
the need for an analytical framework that links students’ actions on algebraic tasks to the theoretical 
foundations of mathematical knowledge. 

The Anthropological Theory of the Didactic (ATD) offers such an analytical framework through 
the concept of praxeology, which conceptualises mathematical activity as an organised system of 
tasks (T), techniques (τ), technologies (θ), and theories (Θ) (Gascón, 2024). Praxeological analysis 
enables researchers to examine not only what students do when solving mathematical problems but 
also how their techniques are justified, stabilised, or remain fragile. Through this lens, students’ 
mathematical activity can be analysed in terms of both practical performance and epistemic 
justification. While praxeological approaches have been widely applied to the analysis of textbooks, 
curricula, and institutional mathematical practices (Hochmuth & Peters, 2021; Utami et al., 2022; 
Panjaitan et al., 2025; Agustito et al., 2025), relatively few studies have employed praxeology to 
analyse students’ empirical responses to algebraic tasks, particularly in relation to epistemological 
obstacles. 

Research within the tradition of Didactical Design Research (DDR) has emphasised the 
importance of identifying learning obstacles as a foundation for instructional improvement and 
didactical decision-making (Ruli et al., 2019; Supriadi, 2019; Rohimatunnisa et al., 2025). DDR 
highlights the pedagogical significance of analysing obstacles prior to designing instructional 
interventions. In the present study, however, DDR is not adopted as a full methodological framework 
involving iterative design experiments, classroom enactments, or metapedidactical reflection. 
Instead, its conceptual orientation serves as a theoretical inspiration, informing the analytical focus 
on epistemological obstacles as phenomena with didactic relevance. In this sense, DDR provides a 
background perspective for interpreting the instructional implications of praxeological findings 
rather than functioning as the primary research methodology (Pauji et al., 2023; Fardian et al., 2025). 

Against this background, the present study is a praxeological analysis of junior secondary 
students’ epistemological obstacles in learning algebraic operations, grounded in empirical data from 
students’ written work and interviews. By mapping students’ difficulties onto the components of 
praxeology, this study seeks to provide a systematic account of how epistemological obstacles are 
manifested in students’ algebraic activity. This approach moves beyond surface-level error 
identification by examining the relationships between tasks, techniques, technologies, and theories 
within students’ reasoning. Through this contribution, the study aims to enrich mathematics 
education research by offering a theoretically grounded and analytically precise understanding of 
students’ algebra learning difficulties and their underlying epistemic structures. 
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Literature Review  
Algebraic operations in secondary education 

Algebra is widely regarded as a foundational domain in mathematics education and has long 
been positioned as a gateway for students’ transition from arithmetic reasoning to more advanced 
and abstract mathematical thinking (Carraher et al., 2006). Mastery of algebraic operations—
including the manipulation of variables, the simplification of expressions, and the application of 
distributive properties—plays a pivotal role in fostering students’ abilities in abstraction, 
generalisation, and problem solving (Kieran, 2020). Historically, algebra has occupied a central place 
in school curricula, reflecting its function in structuring mathematical knowledge and shaping 
students’ learning trajectories (Puig & Rojano, 2004). In response to persistent learning difficulties, 
reform-oriented scholarship has emphasised the need to move beyond a strictly procedural 
orientation toward instructional approaches that promote conceptual and algebraic thinking (Kaput, 
1999). Systematic reviews further confirm that algebraic competence emerges from the integration 
of conceptual and procedural knowledge with representational fluency, enabling learners to engage 
more meaningfully with mathematical structures (Sibgatullin et al., 2022). From a theoretical 
perspective, algebra is not merely a symbolic code but a semiotic and cultural practice through which 
learners construct meaning about abstract mathematical relations (Radford, 2010). Nevertheless, a 
substantial body of research consistently indicates that algebra remains one of the most challenging 
areas of mathematics learning across educational contexts (Hodgen et al., 2018). These challenges 
are not limited to procedural errors; rather, they reflect enduring conceptual gaps in students’ 
understanding of variables, expressions, and equations (Donevska-Todorova, 2016). Cognitive 
research has long documented the presence of epistemological obstacles in symbolic manipulation, 
highlighting the depth and persistence of these difficulties (Sleeman, 1984). Empirical evidence from 
Indonesia similarly shows that early algebra learning is frequently characterised by misconceptions 
and weak conceptual foundations (Jupri et al., 2014). Parallel findings from broader Asian contexts 
further suggest that students’ algebraic problem-solving difficulties persist over time, underscoring 
the need for pedagogical designs that balance procedural fluency with conceptual understanding 
(Ying et al., 2020; Poon & Leung, 2010). 

Learning obstacles and epistemological obstacles 
Students’ difficulties in learning algebra have frequently been examined through the concept 

of learning obstacles, understood as barriers that hinder the acquisition and development of 
mathematical concepts. Prior research indicates that such obstacles may arise from cognitive 
limitations, instructional practices, or the inherent complexity of mathematical structures 
themselves (Hendriyanto et al., 2024). Among these categories, epistemological obstacles are 
particularly salient because they originate from learners’ prior knowledge or intuitive reasoning that 
is productive in certain contexts but becomes inadequate or misleading in algebraic situations 
(Schneider, 2014). For instance, students often transfer arithmetic rules directly into algebra without 
recognising the symbolic and relational roles of variables, resulting in persistent errors in symbolic 
manipulation and algebraic reasoning (Ndemo & Ndemo, 2018; Adnan et al., 2021). Empirical studies 
further demonstrate that such epistemological obstacles extend beyond procedural difficulties, 
constraining students’ abilities to generalise, justify, and coordinate mathematical ideas across 
different algebraic contexts (Nansiana et al., 2024). From a historical-epistemological perspective, 
these difficulties reflect long-standing challenges in the didactics of algebra, rather than isolated 
instructional shortcomings (Gallardo, 2001). 

However, much of the existing research has approached epistemological obstacles primarily 
through descriptive accounts of errors or misconceptions, offering limited insight into how these 
obstacles are structurally embedded in students’ mathematical activity. In particular, prior studies 
rarely examine how students’ observable strategies are connected to the underlying mathematical 
rationales that legitimise, or fail to legitimise, their techniques. This limitation points to the need for 
an analytical framework that can systematically relate students’ tasks, techniques, and justifications 
to uncover the epistemic structure of their algebraic difficulties. Such a requirement motivates the 
use of a praxeological perspective, as articulated within the Anthropological Theory of the Didactic, 
to analyse epistemological obstacles not merely as errors but as manifestations of disrupted or 
incomplete mathematical praxeologies. 
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The anthropological theory of the didactic and praxeology 
The Anthropological Theory of the Didactic (ATD) provides a robust theoretical framework for 

analysing mathematical knowledge and practice by conceptualising them as praxeologies, that is, 
organised systems of human activity grounded in epistemic and didactic structures (Chevallard & 
Bosch, 2020). Within this framework, a praxeology is composed of four interrelated components: 
tasks, techniques, technologies, and theories, which together coherently structure mathematical 
activity (Chevallard et al., 2015). Tasks refer to the types of problems to be addressed, techniques 
denote the procedures or strategies employed to solve those tasks, technologies encompass the 
explanations and justifications that legitimise the use of particular techniques, and theories 
represent broader bodies of mathematical knowledge that provide epistemic coherence to 
technologies (Chevallard, 2007; Chevallard & Sensevy, 2014). 

This praxeological framework enables researchers to model mathematical activity not only in 
terms of observable performance but also in terms of the epistemic justifications underlying 
students’ actions. In this sense, ATD offers a systematic analytical lens for examining how 
mathematical knowledge is produced, taught, learned, and institutionalised within educational 
settings (Haspekian et al., 2023; Schmidt, 2016). More recent developments in ATD have further 
highlighted its relevance to didactic transposition, particularly in mapping the relationships between 
knowledge to be taught and institutional demands within specific mathematical domains (Strømskag 
& Chevallard, 2024). In the context of the present study, praxeology offers an appropriate analytical 
perspective for investigating students’ epistemological obstacles in algebra by tracing how learning 
difficulties manifest through the relationships, or disruptions, among tasks, techniques, technologies, 
and theories in students’ mathematical activity. 

Praxeological analysis of student work 
Although praxeological analysis has traditionally been applied to the examination of curricular 

materials, such as textbooks and instructional designs (Utami et al., 2024; Fitriasari et al., 2025), it 
also offers substantial analytical potential for investigating students’ mathematical activity. Students’ 
responses to mathematical tasks can be conceptualised as instances of praxis, in which tasks and 
techniques are directly observable through written solutions and verbal reasoning (Winsløw, 2011). 
In contrast, the technological and theoretical components of praxeology are typically less explicit and 
must be inferred from students’ explanations, justifications, or implicit conceptions of mathematical 
ideas (Hausberger, 2018). 

Applying a praxeological lens to student work enables researchers to move beyond surface-
level descriptions of errors by systematically relating observable techniques to the justifications that 
support—or fail to support—their use. In this way, errors and misconceptions can be interpreted as 
indicators of gaps or disruptions within specific components of praxeology, such as fragile 
technologies or underdeveloped theoretical understandings (Cosan, 2024). This analytical mapping 
provides a more coherent and theoretically grounded explanation of epistemological obstacles in 
algebra, revealing that students’ difficulties are structurally embedded in their mathematical activity 
rather than arising from isolated procedural failures. Consequently, praxeological analysis offers a 
robust framework for understanding the persistence of students’ algebraic difficulties. It aligns 
closely with the present study's aim of examining epistemological obstacles through students’ actual 
work (Diskin & Hutchinson, 2024). 

Didactical design research as an intervention 
Didactical Design Research (DDR) is widely recognised as a cyclical process of analysing 

learning obstacles, designing didactical interventions, and evaluating their effectiveness in fostering 
conceptual understanding (Suryadi et al., 2017). Within this framework, hypothetical didactical 
designs are systematically developed to address students’ specific difficulties, enabling researchers 
and teachers to explore alternative pathways of mathematical instruction (Fuadiah et al., 2017). 
When combined with praxeological analysis, DDR offers a dual lens: while praxeology captures the 
structural nature of students’ obstacles through praxis, techniques, and underlying theories, DDR 
provides a reflective mechanism for constructing responsive instructional solutions (Jatisunda et al., 
2025). This integration not only strengthens the theoretical grounding of mathematics education 
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research but also ensures practical applicability in classroom practice. Empirical studies further 
demonstrate that DDR supports teacher professionalism and facilitates hybrid didactical approaches 
to address nonroutine problems, thereby enhancing both instructional design and student learning 
outcomes (Rudi et al., 2020; Sukarma et al., 2024). 

METHODS 

Research approach 
This study employed a qualitative research approach with a praxeological analytical 

framework grounded in the Anthropological Theory of the Didactic (ATD). The primary aim was to 
explore and interpret junior secondary students’ epistemological obstacles in learning algebraic 
operations by analysing their written work and interview responses. Praxeological analysis was used 
to reconstruct students’ mathematical activity in terms of tasks, techniques, technologies, and 
theories. Didactical Design Research (DDR) was not adopted as a full methodological framework in 
this study. Instead, DDR served as a theoretical orientation that underscores the didactical 
importance of diagnosing learning obstacles prior to instructional design, without extending to 
iterative design experimentation or classroom enactment. Accordingly, the present study focuses on 
analytical interpretation rather than the development or implementation of didactical interventions. 

Subjects of the study 
The study was conducted at a state Islamic junior secondary school (MTs) in Majalengka, 

Indonesia. Six seventh-grade students were selected through purposive sampling to represent a 
range of mathematical achievement levels (high, medium, and low). The small, context-specific 
sample was intentionally selected to enable in-depth, case-based analysis of students’ algebraic 
reasoning and epistemological obstacles. As a qualitative exploratory study, the findings are not 
intended to be generalised to broader populations but to provide rich, interpretive insights into 
students’ mathematical activity.. 

Research procedure 
The study was conducted through three main stages designed to support a praxeological 

analysis of students’ algebraic reasoning. 
Preparation of algebraic tasks 
A set of algebraic operations tasks was developed in alignment with the Grade 7 junior secondary 
curriculum, with particular emphasis on simplification, application of the distributive property, and 
identification of like terms. The tasks were designed as diagnostic instruments to elicit students’ 
algebraic techniques and to reveal potential epistemological obstacles related to variables, 
expressions, and operations. 
Administration of diagnostic tasks 
Students individually completed the tasks in a written test format. Their written responses were 
collected as empirical data to capture observable tasks (T) and techniques (τ), including correct 
procedures, errors, and non-standard strategies that indicated possible epistemological obstacles. 
Follow-up semi-structured interviews 
Semi-structured interviews were conducted with each participant to explore their reasoning 
processes further. Interview questions focused on eliciting students’ explanations, justifications, and 
interpretations of the algebraic tasks. These verbal data were used to analytically infer the 
technological components (θ), namely the explanations students employed to legitimise their 
techniques, as well as the theoretical components (Θ) that were implicit, incomplete, or absent in 
their reasoning. The inference of θ and Θ was grounded in students’ articulated reasoning rather than 
being assumed a priori. 

Materials and instruments 
The materials and instruments employed in this study were designed to support a 

praxeological analysis of students’ algebraic reasoning and consisted of the following components. 
Diagnostic algebra tasks 
A set of contextual and symbolic tasks on algebraic operations was developed in alignment with the 
junior secondary curriculum. The tasks focused on simplification, distributive properties, and the 
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identification of like terms, and were intended to elicit students’ algebraic techniques and potential 
epistemological obstacles. 
Interview protocol 
A semi-structured interview guide was designed to probe students’ reasoning processes, 
justifications, and interpretations of algebraic rules. The interview questions were explicitly 
designed to elicit explanations that could be interpreted analytically as technological elements (θ), 
as well as indications of implicit, incomplete, or absent theoretical understandings (Θ). 
Documentation forms 
Researcher field notes and classroom records were used to capture contextual information related 
to task administration and students’ responses, providing supplementary data to support 
interpretation. 

Data collection 
Data were collected from multiple sources to enable triangulation within the praxeological analysis. 
Written student work 
Students’ written responses to the diagnostic tasks provided empirical evidence of the tasks (T) 
encountered and the techniques (τ) employed, including standard procedures, non-standard 
strategies, and errors indicative of epistemological obstacles. 
Interview transcripts 
Audio-recorded interviews were transcribed verbatim and analysed to capture students’ verbal 
explanations and justifications. These data formed the primary basis for the analytical inference of 
technological components (θ) and for identifying gaps or fragilities in students’ theoretical 
understandings (Θ). 
Curricular and textbook references 
Relevant curriculum documents and textbooks were consulted as normative references to identify 
the expected theoretical structures associated with the algebraic content. These references 
functioned as analytical benchmarks rather than data sources, enabling comparison between 
students’ actual reasoning and institutionally expected mathematical theories. 

Data analysis techniques 
Data analysis was conducted using a systematic, two-stage procedure to support a 

praxeological interpretation of students’ algebraic reasoning. 
Identification of epistemological obstacles 
In the first stage, students’ written responses were examined to identify recurring patterns of errors, 
non-standard strategies, and inconsistencies in algebraic reasoning. These patterns were interpreted 
analytically as potential epistemological obstacles arising from concepts, procedures, or operational 
techniques in algebraic operations. This initial analysis was inductive in nature and aimed to 
characterise areas of difficulty without imposing predefined categories. 
Praxeological reconstruction and mapping 
In the second stage, each student’s written and verbal responses were reconstructed as a praxeology 
following the framework of the Anthropological Theory of the Didactic. This reconstruction involved 
the analytical identification of the following components: 
• Tasks (T): The algebraic problems presented to the students. 
• Techniques (τ): The procedures or strategies employed by students, including both conventional 

and non-conventional approaches. 
• Technologies (θ): The explanations, justifications, or rules articulated by students during 

interviews to legitimise their techniques. 
• Theories (Θ): The implicit, incomplete, or absent mathematical structures inferred from students’ 

reasoning that were expected to underpin the identified technologies. 
The identification of θ and Θ was grounded in students’ verbal explanations and patterns of 

reasoning, rather than being assumed a priori. Curriculum documents and textbooks were used as 
normative references to represent institutionalised praxeologies, enabling analytical comparison 
between students’ reconstructed praxeologies and expected mathematical structures. Through this 
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comparative analysis, the nature and sources of epistemological obstacles in students’ algebraic 
activity were systematically identified. 

FINDINGS 

The findings of this study are presented through a praxeological analysis of students’ responses 
to four tasks on algebraic operations. Each response was analytically reconstructed into tasks (T), 
techniques (τ), technologies (θ), and theories (Θ) in accordance with the Anthropological Theory of 
the Didactic. In this study, techniques refer to the observable procedures used by students, 
technologies denote the explanations or justifications articulated by students to legitimate their 
techniques, and theories represent the mathematical norms or structures that are expected to 
support such justifications but may be implicit, fragile, or absent. This reconstruction enabled a 
systematic identification of epistemological obstacles by revealing disconnections between what 
students could do and how they justified their actions. The praxeological profile of Student 1 is 
presented in Table 1.  

The praxeological analysis of Student 1 reveals a clear contrast between stable procedural 
techniques and fragile or absent epistemic justification. In Problem 1, the student successfully 
expanded the expression and combined like terms to obtain the correct result 7𝑥 + 𝑦. This indicates 
procedural fluency at the level of technique (τ). However, the student’s justification remained 
procedural. It was not grounded in an explicit articulation of the distributive property as a general 
mathematical principle, suggesting a limited technological foundation (θ). More pronounced 
epistemological obstacles emerged in tasks requiring justification and relational reasoning. In 
Problem 2, the student did not attempt to prove the identity 2(𝑦 + 3) + 𝑦 = 3𝑦 + 6and expressed 
uncertainty about how to proceed, indicating that algebraic properties were not internalized as tools 
for validation. In Problem 3, the substitution of 𝑠 = 5Reflects a fragile conception of variables as 
generalized quantities and an absence of the theoretical norm underlying algebraic equality. Finally, 
the omission of the contextual task (Problem 4) suggests difficulty in transferring symbolic 
techniques to contextual modeling. Overall, Student 1’s praxeology is characterized by stable 
techniques in routine manipulation but epistemological obstacles arising from the disconnection 
between techniques, justifications, and underlying theoretical structures. 

The interview data further illuminate the praxeological structure underlying Student 1’s 
written responses as presented in Table 2. In the simplification task (Problem 1), the student 
articulated a procedural justification focused on “multiplying the numbers outside the brackets” and 
combining like terms. This explanation reflects a stable technique (τ) supported by a procedural form 

Table 1 
Praxeological analysis of students’ 1 responses 

Task 
Technique (τ): What the 

student did 
Technology (θ): 

Student’s justification 
Theory (Θ): Expected but 

absent/fragile 

Simplify the 
algebraic 

expression. 

 
3

2
(3𝑥 + 2𝑦) +

1

2
(5𝑥 − 4𝑦) 

 

Expanded each fraction 
into the parentheses and 
combined like terms to 

obtain (7x+y). 

“I multiplied the 
numbers outside the 

brackets, then combined 
the same terms.” 

Distributive property and linear 
structure of algebraic expressions 

as general rules (not explicitly 
conceptualised). 

Prove that 
 

2(y + 3) + y 
=  3y +  6 

Not attempted by the 
student. 

No justification 
articulated; the student 
expressed uncertainty 

about how to begin. 

Structural understanding of 
algebraic identities and the use of 

properties as tools for proof 
(absent). 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠

+ 𝑠 + 4  
= 2(𝑠 + 2) + 2𝑠 

Substituted (s) with 5, 
expanded both sides 

numerically, and 
compared results. 

“I thought it was like a 
number, so I tried using 

5.” 

Variable as a generalised quantity 
and relational meaning of equality 

(absent). 

Contextual 
problem (books 

on the shelf) 

Not attempted by the 
student. 

No explanation 
provided. 

Translation between contextual 
situations and symbolic algebraic 

representations (absent). 
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of technology (θ), but without explicit reference to algebraic properties as general principles. As such, 
the student’s success in routine manipulation was not accompanied by a fully articulated theoretical 
justification. In contrast, the interview responses to Problems 2 and 3 reveal more pronounced 
epistemological obstacles. The student’s uncertainty about how to begin proving the (𝑦 +  3)  +
 𝑦 =  3𝑦 +  6 indicates that algebraic properties were not internalized as tools for justification. In 
the equality task, the substitution of a variable with a fixed number (“I thought s was like a number”) 
reflects a fragile conception of variables as generalized quantities and an absence of the theoretical 
norm that underpins algebraic equality. Finally, the lack of response to the contextual problem 
suggests difficulty in mobilizing symbolic techniques beyond routine procedural contexts. Taken 
together, the interview data corroborate the praxeological analysis by showing that Student 1’s 
difficulties arise not from a lack of procedural skill, but from weak or absent connections between 
techniques, justifications, and underlying theoretical structures.  

Table 2 
Students’ 1 interview 

Problem Interviewer (I) Student (S) 

Simplify the algebraic expression. 

 
3

2
(3𝑥 + 2𝑦) +

1

2
(5𝑥 − 4𝑦) 

 

Can you explain how 
you solved this 
expression? 

I multiplied the numbers outside the brackets. So, 
3

2
× 3𝑥 =

9

2
𝑥 and 

3

2
× 2𝑦 = 3𝑦. Then I did the same 

with the second part: 
1

2
× 5𝑥 =

5

2
𝑥, and 

1

2
× (−4𝑦) =

−2𝑦. After that, I combined like terms to get 7𝑥 +
 𝑦.  

Prove that 
 

2(y + 3) + y 
=  3y +  6 

Did you try to solve 
this? 

I did not write it. I was not sure how to begin. 
Perhaps expand the bracket, but I was concerned it 
might be incorrect. 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠 + 4  

= 2(𝑠 + 2) + 2𝑠 

How did you 
approach this 
problem? 

I thought ss was like a number, so I tried with 5. 
Then I wrote 2(5 + 2) + 2𝑠 = 25 + 25 + 4 

Determine the number of novels 
and textbooks remaining on the 
main shelf after transfer/return. 

Can you explain what 
you wrote for the 
book's problem? 

I did not answer this question. 

 
Table 3 

Praxeological analysis of students’ 2 responses 

Task 
Technique (τ): What the 

student did 
Technology (θ): Student’s 

justification 
Theory (Θ): Expected, 

emerging, or fragile 

Simplify the 
algebraic 

expression. 
3

2
(3𝑥 +

2𝑦) +
1

2
(5𝑥 − 4𝑦) 

 

Expanded each fraction 
into the parentheses and 
combined like terms to 

obtain (7𝑥 + 𝑦). 

“I multiplied each fraction 
into the brackets and then 

added the same terms 
together.” 

Distributive property and 
linearity of expressions 

(implicitly recognised, not 
formalised). 

Prove that 
 

2(𝑦 + 3) + 𝑦
= 3𝑦 + 6 

Expanded (2(y+3)), added 
(y), regrouped terms, and 

rewrote as (3y+6). 

“I used the distributive 
property, then regrouped 

because of the commutative 
and associative properties.” 

Fundamental algebraic 
properties as tools for 
justification (explicitly 

emerging). 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠
+ 4 
= 2(𝑠 + 2) + 2𝑠 

Simplified both sides 
separately to (5s+4) and 

(4s+4) without reconciling 
the difference. 

“I simplified each side, but 
they did not look the same, so 

I just wrote the results.” 

Relational meaning of 
equality as equivalence 

between expressions 
(absent or fragile). 

Contextual problem 
(books) 

Modeled the situation 
algebraically and 

simplified to (5x) novels 
and (2y) textbooks. 

“I subtracted what was moved 
and added what was 

returned.” 

Algebraic modeling of 
contextual situations using 

like terms (functioning). 
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The praxeological analysis of Student 2 reveals a more articulated epistemic structure than that 
of Student 1, particularly in tasks involving algebraic justification as presented in Table 3. In 
Problems 1 and 2, the student demonstrated stable techniques (τ) supported by explicit 
technological discourse (θ). Notably, in proving the identity 2(𝑦 + 3) + 𝑦 = 3𝑦 + 6 The student 
explicitly referred to distributive, commutative, and associative properties, indicating that these 
properties functioned as tools for justification rather than merely procedural rules. This suggests the 
emergence of an underlying theoretical awareness (Θ) in routine proof contexts. However, this 
theoretical activation was not consistently mobilized across tasks. In the equality problem, the 
student simplified both sides independently without attempting to establish equivalence, revealing 
a fragile conception of equality as a relational structure. Here, the technique was procedurally 
correct, but the absence of a relational theoretical norm prevented the student from resolving the 
discrepancy. By contrast, in the contextual problem, the student successfully translated the situation 
into algebraic expressions and manipulated them meaningfully, indicating coherence between 
technique, justification, and context. Overall, Student 2’s praxeology is characterized by strong 
procedural and emerging theoretical resources, with epistemological obstacles localized primarily in 
the structural interpretation of algebraic equality.  

The interview data further clarify the praxeological structure underlying Student 2’s written 
responses as presented in Table 4. In Problems 1 and 2, the student demonstrated stable techniques 
(τ) supported by explicit technological discourse (θ). Notably, when proving the identity 2(𝑦 + 3) +
𝑦 = 3𝑦 + 6, the student explicitly invoked the distributive, commutative, and associative properties, 
indicating that these properties functioned as tools for justification rather than as implicit procedural 
rules. This suggests that, in routine proof contexts, the underlying theoretical norms of elementary 
algebra (Θ) were partially activated and operationalized. However, this theoretical activation was 
not consistently mobilized across all tasks. In the equality problem, the student simplified both sides 
of the equation independently but did not attempt to establish their equivalence, treating the equality 
as two separate computations. This reveals a localized epistemological obstacle in the relational 
interpretation of equality, despite otherwise coherent techniques and justifications. By contrast, in 
the contextual problem, the student successfully translated the situation into algebraic expressions 
and manipulated them meaningfully, demonstrating alignment between technique, justification, and 
context. Overall, Student 2’s praxeology is characterized by strong procedural techniques and explicit 
technologies, with epistemological obstacles emerging specifically where relational theoretical 
norms, such as equality as equivalence, are required but not activated. 

 

Table 4 
Students’ 2 interview 

Problem  Interviewer (I) Student (S) 

Simplify the algebraic 
expression. 

 
3

2
(3𝑥 + 2𝑦) +

1

2
(5𝑥 − 4𝑦) 

 

 I: Can you explain how 

you solved  
3

2
(3𝑥 +

2𝑦) +
1

2
(5𝑥 − 4𝑦) ? 

First, I multiplied each fraction into the 

parentheses. I got 
9𝑥

2
+

6𝑦

2
+

5𝑥

2
−

4𝑦

2
. Then I 

combined the like terms to get 7x + y. 

Prove that 
 

2(y + 3) + y 
=  3y +  6 

 
I: How did you prove 
that  
2(y + 3) + y =  3y +
 6? 

I used the distributive property: 2(y + 3) = 2y +
6. Then I added yy so it became 2y + 6 + y. After 
that, I regrouped to (2 + 1)y + 6 = 3y + 6. I also 
know this is because of distributive, commutative, 
and associative properties. 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠 + 4  

= 2(𝑠 + 2) + 2𝑠 

 I: What did you think 
when solving  

𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠 + 4  
= 2(𝑠 + 2) + 2𝑠 

I simplified the left side into 5s + 4 and the right 
side into 4s + 4. They don’t look the same, so I just 
wrote the results. I wasn’t sure how to make them 
equal. 

Determine the number of 
novels and textbooks 
remaining on the main shelf 
after transfer/return. 

 I: How did you find the 
number of novels and 
textbooks left after the 
transfer? 

For novels, I wrote 5x − 2x + 2x = 5x . For 
textbooks, I did 3y − y = 2y. So the answer is 5x5x 
novels and 2y textbooks. 
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The praxeological analysis of Student 3’s work reveals stable procedural techniques 

accompanied by fragile epistemic support as presented in Table 5. In Problems 1 and 2, the student 
successfully expanded expressions and regrouped terms to obtain correct results, indicating fluency 
at the level of technique (τ) in routine symbolic manipulation. However, the accompanying 
explanations remained procedural. They did not explicitly articulate algebraic properties as general 
principles for justification, suggesting that the technological level (θ) was limited and the underlying 
theoretical norms (Θ) were only implicitly activated. More pronounced epistemological obstacles 
emerged in tasks requiring relational reasoning and contextual consistency. In the equality task, the 
student simplified only the left-hand side of the expression and explicitly expressed uncertainty 
about how to determine equivalence, indicating the absence of a relational conception of equality as 
a theoretical norm. Similarly, in the contextual problem, although the student attempted to model 
the situation symbolically, an incorrect handling of subtraction led to an inaccurate result. This 
suggests difficulty in maintaining coherence between symbolic techniques and contextual 
interpretation. Overall, Student 3’s praxeology is characterized by effective techniques in routine 
tasks but epistemological obstacles arising from weak connections between techniques, 
justifications, and theoretical structures. To further clarify the nature of these obstacles, a follow-up 
interview was conducted. The interview data provided insight into the students’ procedural 
reasoning, limited justifications, and expressed uncertainties, thereby substantiating the 
praxeological interpretation of fragile technologies and absent theoretical norms. Selected excerpts 
from the interview are presented in Table 6.  

The praxeological analysis of Student 3 reveals stable procedural techniques accompanied by 
fragile epistemic justification. In Problems 1 and 2, the student successfully expanded expressions 
and regrouped terms to obtain correct results, indicating fluency at the level of technique (τ). 
However, the accompanying technologies were limited to procedural explanations (“expanding” and 
“adding”) and made no explicit reference to algebraic properties as general principles for 
justification. As a result, the underlying theoretical norms (Θ) were only partially activated and 
remained implicit. More pronounced epistemological obstacles emerged in tasks requiring relational 
reasoning and contextual consistency. In the equality task, the student simplified only one side of the 
equation and explicitly expressed uncertainty about how to determine whether the two sides were 
equivalent, indicating the absence of a relational conception of equality. Similarly, in the contextual 
problem, although the student attempted to model the situation symbolically, an incorrect handling 
of subtraction led to an inaccurate result. These difficulties suggest that while Student 3’s techniques 

Table 5 
Praxeological analysis of students’ 3 responses 

Task 
Technique (τ): What the 

student did 
Technology (θ): 

Student’s justification 
Theory (Θ): Expected but 

absent/fragile 

Simplify the 
algebraic 

expression. 
3

2
(3𝑥 +

2𝑦) +
1

2
(5𝑥 − 4𝑦) 

 

Expanded each term 
distributively and 

combined like terms to 
obtain (7x+y). 

“I multiplied each term 
inside the parentheses 
and then combined like 

terms.” 

Distributive property and 
linear structure of expressions 
as general principles (implicitly 

used, not articulated). 

Prove that 2(𝑦 +
3) + 𝑦 = 3𝑦 + 6 

Expanded (2(y+3)), added 
(y), and regrouped terms 

to obtain (3y+6). 

“I expanded it, then 
added (y) and 
regrouped.” 

Algebraic properties as tools 
for justification in identity 
proofs (partially activated, 

procedural). 

Prove equality 𝑠 +
𝑠 + 𝑠 + 𝑠 + 𝑠 + 4 =

2(𝑠 + 2) + 2𝑠 

Simplified only the left-
hand side to (5s+4); did 

not continue with the 
right-hand side. 

“I was not sure how to 
check if they are the 

same.” 

Relational meaning of equality 
and equivalence between 

expressions (absent). 

Contextual problem 
(books) 

Modeled the situation 
symbolically but 

misapplied subtraction, 
yielding (5x+4y). 

“I subtracted what was 
moved and added what 

was returned.” 

Consistent algebraic modeling 
of contextual situations 

(fragile). 
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function effectively in routine symbolic manipulation, they are not consistently supported by robust 
technologies and theoretical structures when tasks demand justification or transfer across contexts. 
This disconnection between technique, justification, and theory characterizes the epistemological 
obstacles identified in Student 3’s praxeology. To capture these patterns systematically, Student 4’s 
work was reconstructed into tasks, techniques, technologies, and theories. The details of this 
praxeological analysis are presented in Table 7.  

The praxeological analysis of Student 4’s work reveals stable procedural techniques in routine 
manipulation, alongside significant epistemological obstacles in tasks that require justification and 
structural reasoning. In the simplification task (Problem 1), the student expanded expressions and 
combined like terms correctly, indicating fluency at the level of technique (τ). However, the 
accompanying explanation remained procedural and did not explicitly articulate algebraic properties 
as general principles, suggesting limited technological support (θ) and only implicit activation of 
theoretical norms (Θ). More pronounced epistemological obstacles emerged in proof-related tasks. 
In Problem 2, the student did not attempt to prove the identity 2(𝑦 + 3) + 𝑦 = 3𝑦 + 6, indicating 
uncertainty in using algebraic properties as tools for justification. In the equality task (Problem 3), 

Table 6 
Student 3 interview 

Problem Interviewer (I) Student (S) 

Simplify the algebraic expression. 
3

2
(3𝑥 + 2𝑦) +

1

2
(5𝑥 − 4𝑦) 

 

I: Can you explain 
how you solved this 

expression? 

S: I multiplied each term inside the 

parentheses, then wrote 
9𝑥

2
+

6𝑦

2
+

5𝑥

2
−

4𝑦

2
. After 

that, I combined like terms and got 7x + y. 

Prove that 2(𝑦 + 3) + 𝑦 = 3𝑦 + 6 
I: How did you prove 

this identity? 

S: I expanded it: 2(y + 3) = 2y + 6.  Then I 
added yyy, so it became 2y + 6 + y. After 
regrouping, I got (2 + 1)y + 6 = 3y + 6. 

Prove equality 𝑠 + 𝑠 + 𝑠 + 𝑠 +
𝑠 + 4 = 2(𝑠 + 2) + 2𝑠 

I: What did you do 
when solving this 

equality? 

S: I simplified the left side only, so s + s + s +
s + s + 4 = 5s + 4. I didn’t continue with the 

right side because I wasn’t sure how to check if 
they are the same. 

Determine the number of novels 
and textbooks remaining on the 
main shelf after transfer/return. 

I: Can you explain 
what you wrote for 
the book problem? 

S: I started with 5x+3y. Then two novels and 
one textbook were moved, so I wrote −2x − y. 
Then the two novels were returned, so I added 

+2x. My final result was 5x + 4y. 

Table 7 
Praxeological analysis of students’ 3 responses 

Task 
Technique (τ): What the 

student did 
Technology (θ): 

Student’s justification 
Theory (Θ): Expected but 

absent/fragile 

Simplify the 
algebraic 

expression. 
3

2
(3𝑥 +

2𝑦) +
1

2
(5𝑥 − 4𝑦) 

Expanded each fraction 
into the parentheses and 
combined like terms to 

obtain (7x+y). 

“I multiplied each term 
inside the brackets and 

then added the same 
terms.” 

Distributive property and 
linear structure of expressions 

as general rules (implicitly 
used, not articulated). 

Prove that 
2(𝑦 + 3) + 𝑦 

= 3𝑦 + 6 
Not attempted. 

No justification 
provided; student 

expressed uncertainty. 

Algebraic identities and use of 
properties as tools for proof 

(absent). 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠

+ 4 
= 2(𝑠 + 2) + 2𝑠 

Substituted (s=5), 
expanded numerically, 
and compared results. 

“I thought (s) could be a 
number, so I tried 5.” 

Variable as a generalized 
quantity and relational 

meaning of equality (absent). 

Contextual problem 
(books) 

Modeled the situation 
symbolically and 

simplified to (5x+2y). 

“I subtracted what was 
moved and added what 

was returned.” 

Algebraic modeling of 
contextual situations using 

symbols (functioning). 
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the student substituted the variable with a fixed number, revealing a fragile conception of variables 
as generalized quantities and an absence of the relational meaning of equality as a theoretical norm. 
By contrast, in the contextual problem (Problem 4), the student successfully modeled the situation 
symbolically and obtained the correct result, indicating coherence between technique and context. 
Overall, Student 4’s praxeology is characterized by effective techniques in routine and contextual 
tasks, but epistemological obstacles arise from weak or absent theoretical structures in proof-based 
and relational-reasoning contexts. To further elucidate these obstacles, a follow-up interview was 
conducted. The interview data provided insight into the students’ procedural reasoning, variable 
interpretation, and expressed uncertainties, thereby substantiating the praxeological interpretation 
of fragile technologies and the absence of theoretical norms. Selected excerpts from the interview are 
presented in Table 8.  

The interview data provide further insight into the praxeological structure underlying Student 
4’s written responses. In the simplification task (Problem 1), the student articulated a procedural 
justification focused on multiplying each term inside the parentheses and combining like terms. This 
explanation indicates stable techniques (τ) supported by a procedural form of technology (θ), while 
the underlying algebraic properties remained implicit rather than explicitly articulated as general 
principles (Θ). More pronounced epistemological obstacles emerged in tasks requiring justification 
and structural reasoning. In Problem 2, the student did not attempt to prove the identity 2(𝑦 + 3) +
𝑦 = 3𝑦 + 6 and explicitly expressed uncertainty about how to begin, indicating that algebraic 
properties were not internalized as tools for justification. In the equality task (Problem 3), the 
student substituted a variable with a fixed number, reflecting a fragile conception of variables as 
generalized quantities and an absence of equality's relational meaning as a theoretical norm. By 
contrast, in the contextual problem (Problem 4), the student successfully modeled the situation 
symbolically and obtained the correct result, demonstrating coherence between technique and 
context. Overall, the interview corroborates the praxeological analysis by showing that Student 4’s 
epistemological obstacles do not stem from a lack of procedural skill, but from weak or absent 
connections between techniques, justifications, and underlying theoretical structures. Following this 
analysis, Student 5's responses were examined to further explore patterns of procedural fluency and 
epistemological obstacles across cases as presented in Table 9. 

The praxeological analysis of Student 5’s work reveals a relatively articulated epistemic 
structure that nonetheless remains fragile across tasks. In Problems 1 and 2, the student 
demonstrated stable procedural techniques (τ) supported by procedural justifications (θ), 
successfully simplifying expressions and proving the identity 2(𝑦 + 3) + 𝑦 = 3𝑦 + 6 . In these 

Table 8 
Student 4 interview 

Problem Interviewer (I) Student (S) 

Simplify the algebraic expression. 
3

2
(3𝑥 + 2𝑦) +

1

2
(5𝑥 − 4𝑦) 

Can you explain how 
you solved this 

expression? 

I multiplied each term inside the parentheses. 
So,  

3

2
× 3𝑥 =

9

2
𝑥,

3

2
× 2𝑦 = 3𝑦,

1

2
× 5𝑥 =

5

2
𝑥, 

and 
1

2
𝑥(−4y) = −2y, After that, I combined the 

terms into 7x + y. 

Prove that 
2(𝑦 + 3) + 𝑦 

= 3𝑦 + 6 

How did you solve 
this identity? 

I didn’t try it. I was not sure how to begin, so I 
left it blank. 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠 + 4 

= 2(𝑠 + 2) + 2𝑠 

What did you do 
when solving this 

equality? 

I thought sss could be a number, so I tried using 
s = 5. Then I wrote 2(5 + 2) + 2s = 25 + 25 +

4. I wasn’t sure how to make both sides the 
same. 

Determine the number of novels 
and textbooks remaining on the 
main shelf after transfer/return. 

Can you explain 
what you wrote for 
the book problem? 

I started with 5x + 3y. Then two novels and one 
textbook were moved, so I subtracted −2x − y. 
Then the two novels were returned, so I added 

+2x. My final result was 5x + 2y. 
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contexts, algebraic properties appeared to function as emerging tools for justification, indicating 
partial activation of the underlying theoretical norms (Θ). However, this theoretical activation was 
not consistently mobilized. In the equality task, the student simplified both sides of the expression 
independently but did not attempt to establish equivalence, revealing a limited relational conception 
of equality. Similarly, in the contextual problem, although the student represented the situation 
symbolically, an error in handling subtraction led to an incorrect result. These difficulties suggest 
that while Student 5 possesses strong procedural skills and emerging theoretical awareness in 
routine tasks, epistemological obstacles arise when coordination between techniques, justifications, 
and theoretical structures is required across contexts. Thus, Student 5’s praxeology illustrates how 
partial theoretical activation may coexist with persistent epistemological obstacles in algebraic 
reasoning. To further examine the student’s reasoning and justifications, a follow-up interview was 
conducted. The interview data provide additional insight into how algebraic techniques were 
explained, how properties were invoked, and where epistemological obstacles became apparent. 
Selected excerpts from the interview are presented in Table 10.  

Table 9 
Praxeological analysis of students’ 5 responses 

Task 
Technique (τ): What the 

student did 
Technology (θ): Student’s 

justification 
Theory (Θ): Expected, 

emerging, or fragile 

Simplify the 
algebraic expression. 

3

2
(3𝑥 + 2𝑦) +
1

2
(5𝑥 − 4𝑦) 

 

Expanded each fraction 
into the parentheses and 
combined like terms to 

obtain (7x+y). 

“I multiplied each 
fraction into the brackets 

and then combined the 
same terms.” 

Distributive property and 
linear structure of 

expressions (implicitly 
used, not formalized). 

Prove that 
2(𝑦 + 3) + 𝑦 = 3𝑦

+ 6 

Expanded (2(y+3)), added 
(y), regrouped terms, and 

rewrote as (3y+6). 

“I expanded it and 
regrouped the terms to 

show they are the same.” 

Algebraic properties as 
tools for justification in 

identity proofs (emerging). 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠 + 4 

= 2(𝑠 + 2) + 2𝑠 

Simplified both sides 
separately to (5s+4) and 

(4s+4) without reconciling 
equivalence. 

“I simplified each side, 
but I did not know how to 

make them equal.” 

Relational meaning of 
equality as equivalence 

between expressions 
(absent or fragile). 

Contextual problem 
(books) 

Modeled the situation 
symbolically but 

misapplied subtraction, 
yielding (5x+4y). 

“I subtracted what was 
moved and added what 

was returned.” 

Consistent algebraic 
modeling of contextual 

situations (fragile). 

Table 10 
Student 5 interview 

Problem Interviewer (I) Student (S) 

Simplify the algebraic 

expression. 
3

2
(3𝑥 + 2𝑦) +

1

2
(5𝑥 −

4𝑦) 

Can you explain how 
you solved this 

expression? 

I multiplied each term inside the parentheses. So,  
3

2
× 3𝑥 =

9

2
𝑥,

3

2
× 2𝑦 = 3𝑦,

1

2
× 5𝑥 =

5

2
𝑥, 

and 
1

2
𝑥(−4y) = −2y, After that, I combined the 

terms into 7x + y. 

Prove that 
2(𝑦 + 3) + 𝑦 

= 3𝑦 + 6 

How did you prove 
this identity? 

S: I expanded 2(y + 3) = 2y + 6. Then I added 
yyy, so it became 2y + 6 + y. After regrouping, it 
was (2 + 1)y + 6 = 3y + 6. That’s why they are 

equal. 

Prove equality 
𝑠 + 𝑠 + 𝑠 + 𝑠 + 𝑠 + 4 

= 2(𝑠 + 2) + 2𝑠 

What did you do 
when solving this 

equality? 

S: I simplified the left side to 5s + 4, and the right 
side to 4s + 4. They didn’t match, so I just wrote 

both results without showing they are equal. 

Determine the number of novels 
and textbooks remaining on the 
main shelf after transfer/return. 

Can you explain 
what you wrote for 
the book problem? 

S: I started with 5x + 3y. Then I subtracted 2x 
and y because two novels and one textbook were 

moved. After that, I added +2𝑥 because the 
novels were returned. My result was 5x + 4y. 
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The interview with Student 5 provides important insights into the relationship between 
procedural techniques and epistemic justification in algebraic reasoning. In Problem 1, the student 
articulated a clear sequence of operations, describing how each fraction was expanded distributively 
and how like terms were subsequently combined. This explanation reflects stable procedural 
techniques (τ) supported by operational justifications (θ), indicating fluency in routine symbolic 
manipulation. In Problem 2, the student explained the proof of the identity 2(𝑦 + 3) + 𝑦 = 3𝑦 + 6by 
expanding, adding, and regrouping terms. Although algebraic properties such as distributivity and 
regrouping were effectively used, these properties functioned primarily as procedural resources 
rather than as explicitly theorized principles. This suggests an emerging but localized activation of 
the underlying theoretical norms (Θ), limited to familiar identity tasks. However, in Problem 3, the 
student simplified both sides of the equation independently without establishing equivalence. The 
student’s explanation indicates that equality was interpreted as a comparison between two final 
expressions rather than as a relational statement that requires justification. This reveals an 
epistemological obstacle in coordinating techniques and justifications within a relational conception 
of equality. Similarly, in the contextual problem, although the student constructed an algebraic 
representation of the situation, an error in handling subtraction led to an incorrect result. This 
suggests difficulty in consistently transferring symbolic procedures to applied contexts. Overall, the 
interview corroborates the praxeological analysis by showing that Student 5 possesses strong 
procedural competence and partial theoretical awareness but encounters epistemological obstacles 
when coordinating techniques, justifications, and theoretical structures across different types of 
algebraic tasks. 

DISCUSSION 

This study examined students’ algebraic activity through the praxeological lens of the 
Anthropological Theory of the Didactic (ATD), distinguishing tasks (T), techniques (τ), technologies 
(θ), and theories (Θ) across four types of algebraic problems: routine simplification, identity proof, 
equality between forms, and contextual modeling. While praxeological analysis has been widely 
applied to textbooks, instructional practices, and curriculum design (Putra & Aljarrah, 2021; Dewi & 
Juandi, 2025; Llanos & Otero, 2024), fewer studies have employed it to systematically investigate 
students’ discourse as evidence for the presence or absence of technological and theoretical 
justification. The findings of this study reveal a consistent pattern in which procedural competence 
coexists with epistemological fragility, particularly in tasks requiring justification, relational 
reasoning, and generality. 

Across students, routine simplification tasks exhibited strong procedural fluency. Most 
participants successfully expanded expressions and combined like terms to reach the correct 
simplified form, indicating that the required techniques (τ) were well established. However, 
students’ explanations were predominantly procedural narratives rather than explicit justifications. 
Statements such as “I multiplied each term inside the brackets” describe what was done but do not 
articulate why the step is mathematically valid. In praxeological terms, such utterances do not fully 
function as technologies (θ), because they fail to invoke the underlying theoretical norms (Θ), such 
as the distributive property as a general algebraic law. This finding suggests that mastery of 
technique can mask an absence of theoretical grounding, a phenomenon that may remain invisible 
when analysis focuses solely on final answers. 

The epistemological gap becomes more pronounced in identity and equality tasks. Several 
students either avoided attempting the identity proof or limited their work to simplifying one side of 
the equation. Even when both sides were simplified, students often failed to establish their 
equivalence explicitly. This pattern indicates that the equals sign is often interpreted operationally—
as an instruction to calculate, rather than relationally, as a statement asserting equivalence between 
two expressions. The absence of explicit reference to properties such as commutativity, associativity, 
or distributivity as justificatory tools reflects a missing Θ concerning equality as a relation preserved 
under transformation. These findings align with Bosch’s (2015) observation that epistemological 
obstacles in school algebra often arise when students are required to move from procedural 
manipulation to structural reasoning. 
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Interestingly, performance on contextual problems reveals a different configuration. Some 
students who struggled with proof and formal equality were nevertheless able to model contextual 
situations appropriately and carry out relevant calculations. This suggests that contextual sense-
making and formal symbolic reasoning may develop as partially independent praxeologies. Prior 
studies have similarly reported that students can succeed in word-problem modeling despite 
difficulties with formal algebraic structures (Ningrum et al., 2019; Powell & Fuchs, 2014). From a 
cognitive perspective, Nathan et al. (1992) argue that contextual problems engage semantic and 
situational reasoning processes that differ from those required for formal symbolic manipulation. In 
the present study, however, contextual success was often accompanied by sign errors or inconsistent 
operations, indicating that semantic understanding alone is insufficient without stable theoretical 
norms governing algebraic manipulation. 

Three interrelated explanations account for these patterns. First, classroom practices may 
emphasize procedural fluency over justificatory discourse, providing limited opportunities for 
students to articulate why algebraic steps are valid. This imbalance reflects the longstanding tension 
between procedural and conceptual knowledge in algebra (Hiebert & Lefevre, 2013; Kieran, 2013) 
and is consistent with findings that justification does not emerge spontaneously without explicit 
instructional support (Simon & Blume, 1996; Lannin, 2005). Second, students’ conception of 
variables often collapses into a specific numerical value, undermining the generality required for 
algebraic proof and identity reasoning. Such misconceptions have been widely documented as 
barriers to algebraic generalization (Martinez & Castro Superfine, 2012; Žanko et al., 2019). Third, 
the semantic load of contextual problems may overload working memory, increasing the likelihood 
of sign errors even when students possess relevant procedural skills (Kieran, 2013; Wladis et al., 
2019). 

From a didactical design perspective inspired by DDR principles, these findings carry 
important implications. Tasks that foreground relational equality, requiring symmetric 
transformations on both sides of an equation, are needed to counter the operational interpretation 
of the equals sign (Harbour et al., 2016; Jones et al., 2012). Instruction should also explicitly surface 
technologies (θ) by prompting students to name the properties that justify their actions and to reflect 
on the validity of each step (Ayala-Altamirano & Molina, 2021). Furthermore, variable-as-general-
number conceptions can be strengthened through tasks that contrast “true-for-all” and “true-for-
some” statements, helping students distinguish algebraic generality from arithmetic instantiation 
(Malisani & Spagnolo, 2009). Finally, contextual transfer can be supported by representational tools 
that explicitly track quantities and operations, reducing cognitive load and improving sign 
consistency (Booth et al., 2015). 

A key strength of the praxeological approach lies in its capacity to analytically separate 
technique from technology, thereby making visible situations in which students can perform 
algebraic steps (τ) without accessing the theoretical norms (Θ) that would legitimate those steps. By 
restricting the identification of Θ to what can reasonably be inferred from student discourse, this 
study avoids overattributing theoretical understanding and offers a more conservative, discourse-
grounded account of epistemological obstacles (Winsløw, 2007; Zakiah et al., 2025). Nevertheless, 
the study is limited by its small sample size and task set, which constrains generalisability (Marek & 
Laumann, 2025). In addition, interview prompts may have shaped the forms of justification students 
provided, introducing potential interpretive bias (Van Dooren, 2025; Lammers et al., 2013). The 
absence of systematic analysis of classroom interaction further limits ecological triangulation 
(Abrahamson & Sánchez-García, 2016; Ma & Norwich, 2007). The praxeological analyses indicate 
that procedural competence in algebra can coexist with significant epistemological obstacles in proof, 
equality reasoning, and contextual transfer. Addressing these obstacles points to the need for 
instructional designs that foreground relational equality, explicit justification, and stable conceptions 
of variables, thereby supporting students’ progression from procedural fluency toward structural 
and theoretical understanding. 
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This study contributes to the praxeology literature within ATD by demonstrating that 

epistemological obstacles in algebra are not limited to the absence of techniques or technologies, but 
may also take the form of technologies that remain epistemically weak, that is, student explanations 
that narrate procedures without invoking the theoretical norms that justify them. While previous 
praxeological studies have primarily examined teachers’ praxeologies and agency in instructional 
design (e.g., Mensah et al., 2024; Mensah, 2025), the present study extends this line of work by 
providing an empirically grounded account of students’ praxeological configurations, highlighting 
systematic misalignments between τ, θ, and Θ. In particular, the findings reveal a persistent tension 
between contextual modeling praxeologies and formal algebraic praxeologies, suggesting that 
success in one domain does not guarantee access to the theoretical structures required in the other. 
Methodologically, the study advances ATD-based analysis by adopting a conservative inferential 
stance toward Θ, coding theoretical elements only when supported by student discourse rather than 
analyst assumptions. This approach strengthens the explanatory power of praxeological analysis and 
clarifies how epistemological obstacles can be identified with greater precision in studies of student 
mathematical activity.  The praxeological patterns summarised in Table 11 demonstrate how 
epistemological obstacles in students’ algebraic activity can be systematically located in the 
misalignment between techniques (τ), technologies (θ), and theories (Θ), thereby strengthening the 
explanatory potential of ATD in empirical studies of student learning.  

CONCLUSION  

This study addressed its objective of examining students’ epistemological obstacles in 
algebraic operations by applying a praxeological framework that distinguishes techniques (τ), 
technologies (θ), and theories (Θ). The findings show that students’ difficulties are not primarily 
rooted in a lack of procedural skill, but in persistent misalignments between what students do and 
how they justify their actions. In particular, the analysis reveals that procedural fluency in routine 
simplification can coexist with fragile or absent justificatory discourse, especially in tasks involving 
proof, relational interpretations of equality, variable generalization, and contextual transfer. These 
results clarify the nature of students’ epistemological obstacles by demonstrating that the 
correctness of procedures alone does not guarantee access to the theoretical norms underlying 

Table 11 

Cross-case praxeological synthesis of students’ algebraic activity 

Task Type 
Technique (τ): What the 

student did 

Technology (θ): What the 

student said to justify it 

Theory (Θ): Expected but 

absent theoretical norm 

Routine 

simplification 

Expanded brackets and 

combined like terms to 

reach a simplified form (e.g., 

7x + y) 

Described procedural 

steps (“I multiplied each 

term, then added them”) 

Distributive law and linearity 

as general algebraic properties 

Identity proof 

Expanded one side of the 

identity or avoided the task 

entirely 

Asserted sameness 

without justification or 

gave no explanation 

Equality as an identity holding 

for all values; laws of 

operation as justificatory tools 

Equality between 

forms 

Simplified only one side or 

simplified both sides 

without reconciling them 

Treated the equals sign 

as a signal to compute 

Equality as a symmetric and 

relational statement is 

preserved under 

transformation 

Contextual 

algebraic 

problem 

Modeled the situation 

symbolically and performed 

calculations 

Used contextual cues 

(“moved,” “returned”) as 

informal justification 

Consistent sign conventions 

grounded in quantitative 

change and invariance 

Variable 

handling across 

tasks 

Substituted a specific 

number for the variable 

Implicitly treated the 

variable as a fixed value 

Variable-as-general-number 

and generality of algebraic 

statements 
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algebraic reasoning. From a didactical perspective, the study points to several concrete implications 
for teaching and curriculum design. Algebra instruction should move beyond an emphasis on 
obtaining correct simplified forms toward systematically engaging students in justifying 
transformations, establishing equivalence relationally, and articulating the properties that legitimate 
algebraic steps. Teachers are encouraged to design tasks that require symmetric manipulation of 
both sides of an equation, explicit use of algebraic properties as warrants for reasoning, and 
sustained work with variables as generalized quantities rather than as fixed numerical values. In 
addition, contextual problem-solving should be supported through representational scaffolds that 
help students track quantities and maintain sign consistency, thereby strengthening the coordination 
between symbolic manipulation and situational meaning. Conceptually, the articulation between 
praxeological analysis and principles drawn from Didactical Design Research (DDR) proved valuable 
for mapping students’ epistemological obstacles and identifying directions for potential instructional 
design. In this study, DDR functions as a didactic horizon rather than a comprehensive 
methodological framework, supporting the interpretation of praxeological findings without 
extending to the design of experiments. While the study's scope is limited by a small sample size, a 
restricted task set, and the absence of broader classroom interaction data, the results offer 
theoretically grounded insights with clear didactic relevance. Future research should therefore 
involve larger and more diverse samples, adopt longitudinal designs, and incorporate systematic 
analyses of classroom discourse to examine further how students’ praxeological configurations 
develop from procedural fluency toward stable structural and theoretical understanding in algebra. 
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