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ABSTRACT 

The advancement of technology and the demands of the 21st century 
require prospective mathematics teachers not only to be proficient in 
content knowledge but also to possess adaptive computational thinking 
(CT) skills. This study aims to explore the CT abilities of prospective 
mathematics teachers based on their cognitive styles, namely field-
independent (FI) and field-dependent (FD). A descriptive qualitative 
approach was employed, involving four prospective mathematics teachers 
selected through purposive sampling based on the results of the Group 
Embedded Figures Test (GEFT) and their initial CT abilities. Data were 
collected through CT problem-solving tasks, think-aloud protocols, semi-
structured interviews, and direct observations, and were analyzed 
thematically. The findings reveal that all participants demonstrated 
competencies in the four dimensions of CT: decomposition, abstraction, 
pattern recognition, and algorithmic thinking. FI participants (S1 and S2) 
tended to exhibit CT with symbolic and reflective characteristics, such as 
symbolic-structural and reflective-tactical thinking. In contrast, FD 
participants (S3 and S4) displayed concrete-procedural and exploratory-
conceptual CT, emphasizing numerical and contextual strategies. These 
differences highlight the influence of cognitive styles on the CT tendencies 
of prospective teachers. This study underscores the importance of 
developing CT training programs that are adaptive to students’ cognitive 
styles in order to optimize their potential in mathematical problem-
solving. The practical implications support the implementation of 
differentiated CT instruction that accommodates individual thinking 
preferences within mathematics teacher education. 

INTRODUCTION 

As information technology advances and drives global competition, countries need to prepare 
students with appropriate technical knowledge and communication skills to compete in the 21st 
century. One way to address this challenge is by incorporating Computational Thinking (CT) into the 
curriculum (Bower et al., 2017; Maharani et al., 2019). CT  is one of the essential skills for successfully 
overcoming challenges in a complex society shaped by technological advances (Kale et al., 2018). 

CT is a fundamental skill for students in education, equivalent to reading and numeracy (Zhong 
et al., 2015). This is supported by Maharani et al. (2019), who state that integrating CT into the school 
curriculum generally enhances students' ability to think abstractly, develop algorithms, and apply 
logical reasoning. As a result, students are better equipped to tackle complex and open-ended 
problems. Activity-based learning strategies have been identified as an effective approach to 
improving adolescent cognition and guiding learning through manipulative activities and verbal 
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interactions (Cho & Lee, 2017). CT is regarded as a key competency because students not only need 
to master subjects influenced by computing, but also must be able to apply them in everyday 
situations and in the global economic context. 

Mathematics is one of the essential components of the school curriculum. Therefore, the 
integration of CT into mathematics instruction can enhance students’ conceptual understanding of 
mathematical content. Mathematics learning activities often require hands-on experience that help 
students develop their problem-solving skills (Maharani et al., 2021; Sung et al., 2017). CT and 
mathematics share a mutually reinforcing relationship, where computational methods can enrich 
learning in mathematics and science. Conversely, mathematical and applied science context can be 
used to deepen students’ understanding and application of computational concepts (Budyastomo & 
Yusuf, 2024). 

The primary reason for introducing CT in mathematics classrooms stems from the growing 
understanding that computerization is increasingly being applied across various fields of work. 
Mathematical ability is considered a key factor in predicting students' learning capacity. Gadanidis 
(2017) and Rambally (2017) argue that mathematical thinking plays an important role in the 
development of CT, as the process of solving mathematical problems is inherently constructive 
(Benakli et al., 2017; Junsay, 2016; Maharani et al., 2020). This constructive process requires an 
analytical perspective to solve problems that are both unique and fundamental to students. On the 
other hand, to teach CT effectively, teachers must have a comprehensive understanding of CT. 
Mathematics teachers need to consistently integrate CT into their instructional practices. Therefore, 
it is necessary to examine and understand the CT abilities of prospective mathematics teachers, so 
that when they enter the teaching profession, they are truly prepared.  

However, the implementation of CT in mathematics teacher education in Indonesia still faces 
various challenges. Research by Pertiwi et al. (2025) indicates that the integration of CT in 
mathematics learning across Indonesian educational institutions remains limited and inconsistent. 
This issue is compounded by teaching approaches that tend to be uniform and do not take into 
account individual differences in cognitive styles. Cognitive styles, particularly field-dependent (FD) 
and field-independent (FI), play an important role in how individuals process information and solve 
problems. Nicolaou and Xistouri (2011) found that students with FI cognitive styles demonstrated 
stronger abilities in structuring and solving mathematical problems compared to their FD 
counterparts. In the Indonesian context, a study by Hardiansyah et al. (2024) revealed that FI 
students are more capable of representing mathematical concepts abstractly, while FD students rely 
more on concrete representations. Unfortunately, current CT instructional approaches have not yet 
adapted to these cognitive style differences. As a result, the full potential of individuals in developing 
CT skills cannot be optimally realized. 

Previous research has shown that the integration of CT in mathematics education has been a 
major focus over the past decade, particularly in the context of K-12 education and teacher training. 
A systematic review by Ye et al. (2023) highlights that CT-based approaches, such as project-based 
learning and visual programming (e.g., Scratch), can enhance the understanding of mathematical 
concepts such as geometry, patterns, and algorithms. However, the study also notes that integration 
of CT is not always equally successful across all areas of mathematics and that challenge remain in 
aligning computational thinking with traditional mathematical reasoning.  

In addition, a literature review by Mohmad and Maat (2023) found that despite growing 
interest in CT-related activities among mathematics teachers, the number of studies specifically 
addressing CT practices in mathematics education remains limited. Most existing research has 
focused on the use of programming and robotics as tools to develop CT skills; however, few have 
explored how individual cognitive styles influence the application of CT in mathematics instruction. 
Research conducted by Reichert et al. (2020) shows that mathematics teachers’ CT skills were still 
weak prior to receiving training. However, the study did not address aspects of teachers’ cognitive 
styles, even though their responses and adaptations to CT approaches are likely influenced by the 
way they process information (e.g., reflective vs. impulsive), their visual or verbal preferences, and 
their tendency toward global or analytical thinking.  

Previous studies have highlighted the importance of integrating Computational Thinking (CT) 
into mathematics education and the need for approaches tailored to the individual characteristics of 
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teachers. However, there remains a lack of understanding regarding how the cognitive styles of 
prospective mathematics teachers influence the development and integration of CT. Therefore, by 
exploring the relationship between cognitive style and CT ability, this study aims to provide valuable 
new insights for designing more effective and personalized teacher training programs, while also 
enriching the existing literature on the integration of CT in mathematics education. 

This research offers novelty by integrating two important domains that are still rarely explored 
explicitly in the literature: Computational Thinking (CT) and cognitive style, particularly in the 
context of prospective mathematics teachers. To date, most CT-related research in mathematics 
education has focused on evaluating the effectiveness of CT-based instructional approaches or 
developing CT-oriented educational tools. Meanwhile, studies that examine how variations in 
cognitive style influence CT abilities—especially among future mathematics teachers—remain 
scarce. Using an exploratory approach, this study aims to investigate how field-independent and 
field-dependent cognitive styles affect individuals’ tendencies to develop CT components such as 
decomposition, abstraction, and algorithms. These findings are expected to serve as a foundation for 
designing teacher training programs that are more adaptive and responsive to individual differences, 
and to contribute to the advancement of differentiated CT learning models in mathematics education. 
The CT indicators used in this study are presented in Table 1. 

The research question is what is the level of CT ability in prospective mathematics teachers?  
What are the cognitive styles that prospective mathematics teachers have? What is the relationship 
between cognitive style and the CT ability of prospective mathematics teachers? What are the 
challenges and potentials in the development of CT based on different cognitive styles? 

METHODS 

This section describes the approaches, strategies, and procedures employed in the research to 
achieve the objectives and address the research questions. The study aims to explore the 
computational thinking (CT) abilities of prospective mathematics teachers based on their cognitive 
styles.  

Design 
This study employs a descriptive qualitative approach aimed at providing an in-depth 

description of the CT abilities of prospective mathematics teachers based on their cognitive styles. 
This approach was selected because it allows for a holistic understanding of thinking dynamics, 
problem-solving strategies, and individual characteristics that cannot be fully captured through a 
quantitative method. The research emphasizes a contextual understanding of how prospective 
teachers think when solving CT-based problems and how specific cognitive styles influence their 
construction of solutions. 

Participants 
The subjects in this study were 30 prospective mathematics teachers enrolled in the final 

semester of the Mathematics Education study program at Universitas PGRI Madiun. Subject selection 

Table 1  
CT indicators 

Aspect Characteristics/Indicators 

Decomposition The ability to break down complex problems into simpler parts 
that are easier to understand and solve 

Abstraction The ability to identify and focus on relevant information by 
deciding which elements to use or disregard 

Pattern Recognition The ability to identify similarities and patterns in order to 
formulate general solutions applicable to various problems, 
including the use of variables 

Algorithmic The ability to design a step-by-step process or set of actions to 
solve problems systematically 
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was carried out using purposive sampling based on the following criteria: (1) demonstrating 
computational thinking (CT) when solving the given mathematical problem, and (2) willingness to 
participate in the entire data collection process, including completing tests, CT tasks, and interviews. 
The selection process began with administering the Group Embedded Figures Test (GEFT) to identify 
students’ cognitive styles. Next, students were given a complex mathematical problem designed to 
measure their CT ability. In the third step, subjects were selected based on the criteria above for each 
cognitive style. 

From the results, it was found that 9 students had a field-independent (FI) cognitive style, and 
21 students had a field-dependent (FD) cognitive style. Based on this categorization, two students 
were selected from each cognitive style to become research subjects. Subjects S1 and S2 were 
categorized as FI, while S3 and S4 were categorized as FD.  

Data collection 
Data collection was conducted using several techniques and instruments. First, to identify the 

participants' cognitive styles, the researchers used a Likert-scale-based cognitive style questionnaire 
developed from relevant literature, along with visual tests such as the Group Embedded Figures Test 
(GEFT) to classify participants as either field-dependent or field-independent. Second, to assess CT 
abilities, participants were given CT-based problem-solving tasks that encompassed four main 
components: decomposition, abstraction, pattern recognition, and algorithms. While completing 
these tasks, participants were instructed to use the think-aloud technique, which involves verbally 
expressing their thought processes in real time. This technique enabled researchers to directly 
capture the cognitive strategies employed by participants during task completion. The following is 
the mathematical problem given to the subjects. 

In addition, semi-structured interviews were conducted after the assignments to gain deeper 
insight into the participants' understanding of CT concepts and their reflections on the strategies 
used. These interviews also aimed to explore their perceptions, challenges, and thinking habits when 
dealing with technology-based mathematics problems. As a complement, direct observations were 
carried out by the researchers during the CT task process, supported by field notes that recorded 
non-verbal behaviors, spontaneous responses, and participants’ engagement in their thought 
processes. The data collection flow is presented in Figure 1. 

Data analysis 
The data obtained were analyzed using a thematic analysis method, which involved identifying 

themes that emerged from interview transcripts, observation notes, and assignment documentation. 
The analysis was carried out in three main stages: (1) data reduction, the process of sorting and 
simplifying the data into initial thematic codes; (2) data presentation, which involved grouping 
information based on cognitive style categories and CT dimensions; and (3) drawing conclusions, an 
interpretive process that connects emerging patterns in the data and narrates them as the key 
research findings. 

To ensure data validity, several verification strategies were implemented. Triangulation was 
conducted by comparing data from various sources, including test results, CT assignments, 
interviews, and observations. In addition, member checking was performed by seeking confirmation 
from participants regarding the researchers' interpretations to ensure the findings accurately 
reflected their experiences. The researcher also conducted peer debriefing with supervisors or 
colleagues to test the strength of interpretations and reflections. The entire process was supported 
by a well-documented audit trail to maintain the transparency and replicability of the study. Through 
this approach, it is expected that the research will make a significant contribution to understanding 

A pastry shop has 72 doughnuts that will be packed into boxes of small (6 fills), medium 

(9 fills), and large (12 fills). With the availability of three box sizes, how many boxes do 

you need for all the donuts to be packed? Also, if all the boxes used are fully filled, are 

there any donuts left out of the total 72 donuts that the cake shop has? 
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how cognitive styles influence the computational thinking of prospective mathematics teachers, and 
serve as a basis for designing more adaptive and effective training and learning strategies.  

FINDINGS 

The results showed differences in CT between FI (Subjects S1 and S2) and FD (Subjects S3 and 
S4). All subjects met the CT criteria, but Subjects S1 and S2 showed different tendencies compared to 
Subjects S3 and S4. FI subjects tended to be analytical and reflective, while FD subjects were more 
practical and focused on numerical strategies.  

Decomposition 
In the decomposition stage, all subjects broke down complex problems into simpler ones, but 

differences were observed among the four subjects. Even subjects with the same cognitive style 
demonstrated different ways of simplifying the problems. 

FI subjects (S1 and S2) 
Figure 2 shows that S1 breaks down the problem of "arranging 72 donuts into different types 

of boxes" into: (1) identifying important information, such as the number of donuts per box (6, 9, 12); 
(2) assigning variables (n, m, q, r) to build the logical structure of the calculation; and (3) dividing the 
task into three sub-calculations based on the type of box. Through this approach, S1 systematically 
identifies the main sub-problems and breaks them down into manageable components. This reflects 
a well-developed and logical decomposition ability.  

While S2 starts by identifying the total number of donuts (72) and systematically dividing them 
into three types of boxes. He used a numerical approach by dividing 72 by 3 to get 24 donuts, making 
it easier to allocate them to all box types. Then, S2 attempted to distribute the 24 donuts into each 
type of box (6, 9, and 12) separately and in a structured manner. S2 demonstrated strong 
decomposition skills, as shown by breaking down the main problem into three focused sub-
calculations (small, medium, and large boxes). He also considered special conditions to manage any 
leftover donuts.  

Based on this, both S1 and S2 demonstrate strong decomposition skills. However, S1 is more 
analytical, while S2 is more numerical. This indicates that although both can solve problems 
effectively, the approaches they use differ according to their respective thinking tendencies. S1 tends 
to use symbolic representations and general models, whereas S2 relies more on concrete calculations 
and straightforward operational strategies.  

 

Figure 1. The data collection flowchart 
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FD subjects (S3 and S4) 
S3 begins by breaking down the number of donuts (72) according to the size of the boxes (6, 9, 

and 12), and calculating how many donuts each box size can hold if filled with a certain number of 
boxes: 6 × 3 = 18, 9 × 2 = 18, and 12 × 3 = 36. Then, S3 adds the results (18 + 18 + 36 = 72), thereby 
confirming that all the donuts have been distributed. After that, S3 compiles three steps to solve the 
problem: fill the large boxes first, then the medium ones, and finally the small ones. This step 
demonstrates logical sequencing in handling sub-problems. S3 exhibits good decomposition ability 
by breaking the problem into concrete units based on capacity and designing systematic steps to 
solve the entire problem.  

S4 begins by stating that the 72 donuts will be divided into three groups of 24 donuts each, 
which are then placed into three different box sizes (small, medium, and large). Then, he calculates 
the distribution of the 24 donuts for each box type: 24 ÷ 6 = 4 with no remainder (small), 24 ÷ 9 = 2 
with a remainder of 6 (medium), 24 ÷ 12 = 2 with no remainder (large). This shows that S4 has 
systematically divided the problem into segments based on box size. S4 demonstrates good 
decomposition skills by organizing the solution steps into logically relevant sub-units.  

Based on this, both S3 and S4 demonstrate good decomposition skills, but there are differences 
between the two. The difference lies in the direction of their decomposition approach: S3 focuses on 
the capacity of each type of box, while S4 emphasizes the equal distribution of the total donuts first. 
In other words, S3 uses a bottom-up approach (starting from box capacity), whereas S4 applies a top-
down approach (starting from the total number of donuts to subgroups). 

 

 
 

Figure 2. The process decomposition of subject S1 
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Abstraction 
At the abstraction stage, all subjects filtered out irrelevant information and focused on the 

essential elements of the problem. Even subjects with the same cognitive style performed this 
process in different ways. 

FI subjects (S1 and S2) 
S1 uses symbolic representations such as m = q × n + r, which is highly appropriate as an 

abstraction of the donut packaging problem. Rather than being confined to the literal context of 
"donuts," S1 simplifies the situation into a general mathematical form. All the information used is 
relevant and essential for solving the problem. S1 demonstrates excellent abstraction skills by 
reducing a real-world context into a logical and processable mathematical structure. 

S2 uses a general equation in the form of simple algebra: m = q × n + r, and arranges steps such 
as: 24 = 6 × 4 + 0; 24 = 9 × 2 + 6; 24 = 12 × 2 + 0. He focuses only on key numbers and variables, 
avoiding lengthy descriptions of the problem's context. The use of symbols and the generalization of 
formulas strongly reflect his strong abstraction skills. S2 demonstrates excellent abstraction by 
modeling real-world information into symbolic form and using mathematical notation to solve 
problems. 

Figure 3 shows that S1 and S2 both use symbolic representations, indicating that both possess 
strong abstraction skills and show similar tendencies. However, the difference lies in how they 
present the abstraction: S1 emphasizes more generalizable model forms, while S2 is more explicit in 
applying the model to specific numerical contexts. This shows that although both have high 
abstraction skills, S1 is more theoretical, whereas S2 is more application-oriented in using symbolic 
representations. 

FD subjects (S3 and S4) 
S3 selects only important information, namely the total number of donuts (72), the capacity of 

each box (6, 9, 12), and the filling strategy. He simplifies the question without writing down all the 
narrative context of the question at length. However, S3 does not use abstract symbols or algebraic 
variables, which means he is more comfortable thinking in concrete and numerical forms. S3 shows 
quite good abstraction, although it is numerical in nature. He successfully filters important 
information and compiles it in a format that directly supports the solution. 

S4 does not use symbolic variables (such as m = qn + r), but it expresses calculations in 
numerical form directly. Although it does not use algebraic notation, it is able to simplify the context 
of the problem into relevant numbers and mathematical operations. S4's abstraction skills are quite 
good, because even though it is not symbolic, it manages to focus on important data and not get 
caught up in the narrative context of the question. 

   

(a)                                                      (b) 
 

Figure 3. Abstraction subject S1 (a) and subject S2 (b) 
 

           
(a)                                                                 (b) 

 
Figure 4. The abstraction process of subject S3 (a) dan subject S4 (b) 
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Figure 4 shows that S3 and S4 both do not use symbolic variables in the abstraction process 
and rely more on numerical approaches. However, S3 stands out with a more systematic and efficient 
allocation strategy, while S4 tends to divide the problem evenly first before analyzing each part. This 
indicates that although both demonstrate fairly good numerical abstraction skills, S3 thinks more 
strategically, whereas S4 is more exploratory and experimental in simplifying the problem.  

Pattern Recognition 
At the pattern recognition stage, all subjects were able to identify regularities or similarities in 

the data. Even those with the same cognitive style showed different approaches in performing this 
process.  

FI subjects (S1 and S2) 
S1 does not explicitly write down the pattern, but uses a modulus and remainder division 

system (r) that demonstrates an understanding of repetitive structures (multiples). He applies a 
similar formula to the three types of boxes, namely: m = q × n + r for small, medium, and large boxes. 
This indicates the use of a consistent and repetitive problem-solving pattern. S1 demonstrates the 
ability to recognize patterns in the solution structure even without explicitly stating them. This 
reflects a strong understanding of procedural patterns.  

S2 realizes that 24 donuts can be divided into small and large boxes, but there are leftovers 
when using medium boxes. He then moves the remaining 6 from the medium box to a small box, 
showing an understanding that 6 donuts can be placed in 1 small box. This illustrates the use of a 
logical pattern among box sizes: he recognizes the multiplicative relationships between the 
capacities of the boxes (6, 9, 12). S2 shows excellent pattern recognition abilities, particularly in 
identifying the relationship between remainders and capacities and using that insight in logical 
decision-making. 

Based on this, both recognize patterns well, but there are differences in their approaches. The 
distinction lies in the method: S1 identifies patterns symbolically and procedurally through the 
application of general formulas, while S2 identifies patterns numerically and contextually through 
the management of leftover donuts across box types. In other words, S1's pattern recognition is based 
on algebraic structures, while S2's is based on the relationship of values and multiples among 
concrete units. 

FD subjects (S3 and S4) 
S3 identifies that 72 = 36 + 18 + 18, which results from: 3 large boxes (3 × 12), 2 medium boxes 

(2 × 9), and 3 small boxes (3 × 6). In the bottom right, he writes the factorizations: 6 = 2 × 3; 9 = 3 × 
3; 12 = 2 × 2 × 3. This demonstrates numerical awareness of the interconnectedness between 
numbers and the pattern of prime factor multiplication. S3 has good pattern recognition ability, as 
seen in the identification of relationships between box sizes and the use of factorization as validation 
and reinforcement of understanding. This is illustrated in Figure 5. 

S4 realized that dividing 24 donuts into three types of box sizes resulted in a pattern: two types 
of boxes (6 and 12) yielded divisions without remainders, while one type of box (9) resulted in a 
remainder. He also recognized that the leftover from the medium box (6 donuts) could be placed into 

 
Figure 5. Pattern recognition process in S3 
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a small box, showing an understanding of the relationship between the box sizes. S4 demonstrates 
good pattern recognition ability, as shown through the management of leftover donuts from one type 
of box to another compatible box. 

Based on the above, both S3 and S4 exhibit strong pattern recognition, but with different 
emphases. S3 focuses on patterns through mathematical structures and number factorizations, while 
S4 identifies patterns through functional relationships between remainders and box capacities in a 
practical manner. Thus, S3 reflects analytical and theoretical pattern recognition, whereas S4 shows 
an applicable and context-based approach. 

 

 

Figure 6. The Algorithmic of subjek S2 
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Algorithmic 
At the algorithmic stage, all subjects were able to devise logical and systematic steps to solve 

the problem. However, even those with the same cognitive style showed different ways of carrying 
out this process. 

FI subjects (S1 and S2) 
S1 constructs a highly systematic sequence of steps: assigning variables, applying the division 

formula for each type of box, ordering the process from small to medium to large boxes, and finally 
presenting the results and verifying the remaining donuts. There is a consistent and executable 
logical flow, supported by sound decision-making—for example, when there are leftovers from the 
medium box, they are allocated to the small box. S1 demonstrates strong algorithmic ability, as 
reflected in the logical, sequential, and efficient arrangement of steps.  

Figure 6 shows that S2 composes a well-structured sequence of steps: (1) testing the division 
using small boxes, resulting in 4 boxes with no remainder; (2) testing with medium boxes, yielding 2 
boxes with 6 donuts remaining; and (3) testing with large boxes, fitting 2 boxes with no remainder. 
These steps are rewritten into a result-based procedure, where the remaining donuts are transferred 
into an additional small box. He concludes that the final configuration—5 small boxes, 2 medium 
boxes, 2 large boxes, with 0 donuts remaining—is neat and logical. S2 demonstrates strong 
algorithmic ability, as shown through the logical sequencing of steps, verification of remainders, and 
decision-making based on outcome conditions (i.e., using if-then logic).  

Based on this, both S1 and S2 demonstrate high algorithmic abilities. However, S1 emphasizes 
formal and symbolic aspects in algorithm construction, while S2 focuses more on numerical 
application and explicit, concrete step sequences. This indicates that S1 tends to think algorithmically 
in an abstract and general manner, whereas S2 approaches algorithmic thinking in a practical and 
applied way. 

FD subjects (S3 and S4) 
S3 arranged the steps in logical order: (1) filling 3 large boxes, leaving 36 donuts; (2) filling 2 

medium boxes, leaving 18 donuts; and (3) filling 3 small boxes, resulting in zero leftover donuts. Each 
step is numbered and arranged vertically, indicating a procedural flow of thinking. He also double-
checks the remaining donuts after each step, showing control over the algorithmic process. S3 
demonstrates excellent algorithmic skills, characterized by logical sequencing, process monitoring, 
and final result verification (remainder = 0). 

S4 organized the process as follows: (1) dividing 72 donuts into 3 parts of 24 each, (2) 
calculating the number of boxes required for each size, (3) compiling the results with residual 
adjustments, and (4) concluding the total number of boxes and leftover donuts. The steps taken by 
S4 are structured and easy to follow, although not written as an explicit algorithm. S4 exhibits good 
algorithmic skills through a logical, consistent, and systematic workflow. 

Although both subjects structure their steps clearly, S3 stands out more in terms of process 
control and verification at each stage, while S4 emphasizes initial segmentation and final adjustment. 
This suggests that S3 applies a more procedural and detailed algorithmic approach, whereas S4 tends 
to simplify the process into broader, more concise steps. Based on the above description, Table 2 can 
be created to summarize the computational thinking (CT) tendencies of each subject in solving 
mathematical problems.  

DISCUSSION 

The results show that all four subjects (S1–S4) demonstrated good decomposition skills, albeit 
with different approaches. The field-independent (FI) subjects, S1 and S2, tended to break down the 
problem in a more systematic and structured manner. S1 employed algebraic symbolism to represent 
the problem abstractly, while S2 adopted a more numerical strategy, yet still organized the sub-
problems based on the types of boxes. These findings are in line with Suryanti & Masduki (2024), 
who state that students with a field-independent (FI) cognitive style are able to divide problems into 
logical components based on the internal structure of the problem, and tend to use analytical and 
individualistic approaches in mathematical problem solving. On the other hand, field-dependent (FD) 
subjects (S3 and S4) were also able to perform decomposition, but with a more practical and 
contextual strategy. S3 began from box capacities (bottom-up), while S4 started from the total 
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distribution of donuts (top-down). This corroborates the findings Kozhevnikov et al. (2014) which 
explains that FD individuals are more dependent on the global context and less exploratory of the 
internal structure of the problem.  

The FI subjects demonstrated excellent symbolic abstraction, as evidenced by their use of the 
general equation m = q × n + r. S1, in particular, emphasized generalizable forms of the model, 
indicating a strong capacity for abstract reasoning. This suggests that FI students possess a high 
ability to model concrete information into symbolic representations, a skill that is crucial for the 
development of CT. Research by Fauzan et al. (2024) shows that FI students excel in abstraction and 
reversible thinking strategies, enabling them to formulate mathematical solutions with symbolic 
flexibility. In contrast, FD subjects (S3 and S4) demonstrated a preference for numerical 
abstraction—focusing on extracting relevant information and simplifying the problem context—but 
without utilizing algebraic symbolism. Their approach reflects a practical orientation toward 
problem solving rather than a symbolic or theoretical one. This is consistent with the findings of 
Zhang and Sternberg (2005) who stated that students with the FD style tend to choose concrete 
experience-based strategies over theoretical modeling. 

In terms of pattern recognition, all subjects demonstrated good ability. FI subjects recognized 
patterns both procedurally and symbolically—for example, S1 applied a similar formula to all box 
types, while S2 identified patterns between box capacity and the remaining donuts. These findings 
support the research of Alvinaria et al. (2022), who found that FI students operate at a 
multistructural to relational level in pattern recognition and are capable of forming generalizations 
from numerical or symbolic representations. Meanwhile, FD subjects recognized patterns through 
numerical and practical approaches. S3 demonstrated a deeper understanding through factorization, 
while S4 intuitively recognized patterns between box sizes and leftover donuts. This suggests that 

Table 2 
The tendency of CT characteristics of each subject in solving Mathematical problem 

Subject 
Name 

Decomposition Abstraction Pattern Recognition Algorithmic 

S1 

Breaks the problem 
into 3 logical parts 
based on box type, 
using symbolic 
mathematical 
notation. 

Use algebraic 
variables and general 
models m=qn+r to 
simplify the context. 

Applies a consistent 
completion pattern 
for each box type, 
even if not stated 
explicitly. 

Construct 
symbolic and 
systematic steps 
that are 
replicable. 

S2 

Divides the problem 
into possible fillings 
for each box type in a 
structured and 
focused manner. 

Writes symbolic 
formulas, focuses on 
essential information, 
and excludes 
unnecessary 
narratives. 

Identifies 
relationships 
between box size and 
donut remainders, 
developing an 
optimal strategy. 

Follows a logical 
and structured 
sequence, 
including 
remainder 
management. 

S3 
Breaks down the total 
donuts based on box 
size numerically. 

Avoids symbols; 
thinks concretely and 
numerically. 

Relies on direct 
deductions from 
numerical 
relationships 
between box 
capacities. 

Uses manual and 
sequential steps, 
easy to follow 
even without 
symbolic 
notation. 

S4 

Divides the donuts 
into 3 groups and test 
each box size 
explicitly. 

Avoids symbols, 
focuses on real 
numbers and 
division, filters 
essential information. 

Identifies that 
remainders from 
medium boxes can be 
transferred to small 
boxes. 

Executes tracked 
and explicit steps, 
including 
decision-making 
based on 
remainder 
analysis. 
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while FD students are able to recognize patterns, they tend to do so more effectively in visual or 
concrete contexts. 

FI subjects (S1 and S2) demonstrated high algorithmic ability. S1 composed systematic steps 
using symbolic representations, while S2 arranged numerical steps explicitly and logically. This 
supports the findings of Saraswati and Putranto (2021) who stated that FI students tend to think 
algorithmically with a high level of planning and reflection and are capable of formulating solution 
strategies systematically. Meanwhile, FD subjects (S3 and S4) were also able to construct algorithms, 
but with a more practical approach based on real-world sequences. S3 exhibited strong process 
control and verification at each step, while S4 provided a more concise yet still logical sequence. 
These findings are consistent with Kholid et al. (2020); Nouri et al. (2020) who noted that FD 
students can form clear procedures when the problem context is concrete and tangible. 

The S1 subject demonstrates strong potential as a prospective mathematics teacher with the 
ability to think computationally in a systematic manner. He could serve as a model in developing 
contextual problem-solving strategies based on computational thinking (CT) in the classroom. The 
subject exhibits a high level of CT ability, particularly in symbolic modeling and algorithmic 
structuring. This aligns with findings that effective CT training can enhance prospective teachers’ 
understanding of CT concepts, problem-solving, and algorithmic thinking skills (Avcı & Deniz, 2022; 
Kite & and Park, 2023; Ye et al., 2023).  

S2 is a subject with very high computational thinking (CT) ability and can serve as a model in 
developing CT modules that integrate algebraic and heuristic strategies. S2 represents a group of 
prospective teachers with strong symbolic modeling skills and can serve as a point of comparison to 
subjects who demonstrate more numerical or concrete thinking styles. S2’s CT strength is 
particularly evident in the integration of algebra and heuristic reasoning. This highlights the 
importance of integrating CT into teacher education, emphasizing the development of training 
modules that address both theoretical and practical aspects (Kong, 2016; Sengupta et al., 2013; Yang 
& Lin, 2024; Yang, 2012). 

S3 demonstrates compatibility with a CT approach grounded in concrete numerical activities, 
such as the use of manipulatives or visualization-based heuristic strategies. To strengthen symbolic 
abstraction skills, S3 could be trained through tasks involving mathematical modeling or 
introductory programming (e.g., pseudocode). This subject tends to rely on concrete numerical 
reasoning in CT, making them well-suited for activity-based learning strategies that emphasize 
hands-on and visual learning. Research indicates that programming- and engineering design-based 
activities can enhance CT understanding among prospective teachers (Saad & and Zainudin, 2024; 
Xu et al., 2022; Yun & and Crippen, 2025).  

S4 can be viewed as a representative of the field-dependent cognitive style with strong 
computational thinking (CT) abilities. Appropriate CT learning strategies for this type of student 
include contextual, exploratory, and numerically concrete-based activities. S4 demonstrates that a 
practical, experience-based thinking style can lead to effective CT performance, even in the absence 
of symbolic abstraction. This subject reflects the characteristics of field-dependent learners who 
approach CT in an exploratory and context-driven manner. Learning strategies grounded in real-
world problems and numerical reasoning have been shown to be effective in fostering CT among 
prospective teachers (Agbo et al., 2021; Angeli & Giannakos, 2020; Umutlu, 2022). 

Prospective mathematics teachers generally exhibit two main types of cognitive styles: field-
independent (FI) and field-dependent (FD). The FI cognitive style is characterized by an analytical 
thinking tendency, the ability to separate information from its context, and a high level of 
independence in formulating problem-solving strategies. In contrast, the FD style relies more on 
external contexts, adopts a global thinking approach, and tends to depend on concrete examples and 
external assistance to comprehend information (Herlina et al., 2023; Nicolaou & and Xistouri, 2011). 
In the context of mathematics learning, FI individuals are better able to identify essential information 
from problems and construct mathematical models independently, whereas FD individuals tend to 
perceive problems holistically without filtering for critical details. 

The relationship between cognitive style and CT ability is highly significant. Research by 
Suryanti and Masduki (2024) shows that prospective teachers with a field-independent (FI) style 
tend to excel in the abstraction and algorithmic aspects of CT, as they are able to simplify problems 
into symbolic forms and think systematically. In contrast, prospective teachers with a field-
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dependent (FD) style demonstrate stronger abilities in solving concrete, numerical, and practical 
problems but often face challenges with abstraction and generalization. In other words, cognitive 
style plays a crucial role in shaping how individuals represent problems and develop solutions using 
a CT approach. 

The development of cognitive style-based computational thinking (CT) also faces several 
challenges. One of these is the continued use of uniform learning approaches that fail to 
accommodate individual thinking preferences, which hinders the optimal development of CT skills, 
particularly in field-dependent (FD) individuals (Papadopoulos, 2020). Additionally, limitations in 
abstract thinking and a reliance on external guidance pose further obstacles for FD students in 
developing independent and flexible CT (Fauzan et al., 2024; Zhang & Sternberg, 2005). Nevertheless, 
there remains significant potential for CT development. By designing adaptive, cognitive style-based 
learning modules for both field-independent (FI) and FD learners, CT development can be 
personalized. Prospective teachers with an FI style may benefit from symbolic activities and 
programming, while those with an FD style can be supported through contextual, visual, and 
manipulative approaches (Gadanidis, 2017b; Nouri et al., 2020). Integrating CT into mathematics 
teacher education curricula that take cognitive style into account is a strategic step in preparing 
future teachers who not only master content, but also think computationally and reflectively. 

CONCLUSIONS  

The results of this study confirm that cognitive styles influence students' CT, particularly in 
problem-solving approaches, symbolic modeling, and pattern recognition strategies. Field-
independent (FI) students tend to be abstract, reflective, and analytical, whereas field-dependent 
(FD) students are more concrete, contextual, and numerically oriented. Prospective mathematics 
teachers with an FI cognitive style tend to excel in conceptual abstraction and algorithmic thinking, 
making them well-suited for programming-based CT development or symbolic modeling. In contrast, 
aspiring mathematics teachers with an FD cognitive style demonstrate strengths in practical 
decomposition and numerical pattern recognition, making them more compatible with visualization- 
and context-based CT approaches. These differences in cognitive characteristics indicate that 
although all four subjects successfully completed the CT tasks, the approaches they used reflected 
distinct thinking styles. This is important to consider when designing learning that adapts to 
students’ cognitive styles.  

Among prospective mathematics teachers with a Field-Independent (FI) cognitive style, two 
primary tendencies in computational thinking (CT) were identified. The first is Symbolic-Structural 
CT, characterized by the ability to formulate solutions symbolically, structurally, and in a 
generalizable manner, as well as by logical thinking using formal models. The second is Reflective-
Tactical CT, which involves breaking down and formulating solutions systematically, reflectively, and 
numerically based on symbolic logic. Meanwhile, among prospective teachers with a Field-
Dependent (FD) cognitive style, two different CT tendencies also emerged. The first is Concrete-
Procedural CT, a thinking style that relies on concrete numerical calculations and a sequence of 
practical procedural steps to solve problems. The second is Exploratory-Conceptual CT, which 
involves the use of numerically based exploratory strategies to produce intuitive and easily 
understandable solutions. 

The practical implication of this study is the importance of differentiating CT-based learning 
according to students’ cognitive styles to enhance the effectiveness of teaching strategies. For 
example, FI students may benefit from algorithm-based challenges and mathematical modeling, 
while FD students are better suited to visual, concrete-numerical, or real-world context-based 
approaches. 

Based on the findings of this study, it is recommended that future research develop learning 
instruments or Computational Thinking (CT) training modules tailored to the cognitive styles of 
prospective teachers. In-depth research using a mixed-method approach could be conducted to test 
the effectiveness of differentially designed CT-based learning strategies for individuals with both 
field-independent and field-dependent styles. Additionally, further studies could explore the 
relationship between CT and other variables such as metacognitive abilities, technology-based 
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problem-solving, or digital teaching competencies. Large-scale classroom trials are also necessary to 
ensure the generalizability of findings and the sustainability of CT implementation in mathematics 
teacher education 

. 
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