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Abstract 
In the context of 21st-century education, deep mathematical thinking is key to developing higher-order cog-
nitive abilities. However, current mathematics learning predominantly focuses on procedural skills rather than 
conceptual understanding and reflection, often hindering the optimal development of students' deep mathe-
matical thinking. Therefore, this study aims to develop a theoretical Deep Mathematical Thinking model 
through the integration of deep learning pedagogical principles and the mathematical thinking framework. 
Employing a systematic theoretical synthesis approach, the developed model identifies and interconnects core 
elements of deep learning, such as conceptual connectivity, intrinsic motivation, and metacognition with com-
ponents of mathematical thinking, including reasoning, generalization, representation, and abstraction. The 
outcome is a three levels hierarchical Deep Mathematical Thinking model: the foundational level, the applied 
cognitive level, and the integrative level. This model offers theoretical and practical implications for curricu-
lum design, assessment, and instructional practices. While still conceptual and requiring further empirical 
validation, the model is flexible and adaptable across diverse educational levels and contexts, positioning it 
as a potentially robust conceptual framework for developing reflective and meaningful mathematics learning. 
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1. Introduction 
Mathematical thinking is an essential 

competency in the 21st century, encompas-
sing complex problem-solving, logical reaso-
ning, and knowledge transfer. This compe-
tency is crucial not only in academic settings 
but also in real-world contexts within the di-
gital information era (Lehtinen et al., 2017; 
Schoenfeld, 1992). Without mathematical 
thinking skills, learners are vulnerable to 

difficulties in comprehending quantitative in-
formation, formulating data-based arguments, 
and making rational decisions (Kania et al., 
2023; Yuliardi et al., 2024). Consequently, le-
arners ideally possess proficient mathematical 
thinking as a core 21st-century competency 
(Dahlan et al., 2024). Accordingly, educators 
must implement mathematics pedagogy that 
emphasizes not only procedures but also fos-
ters conceptual understanding, reflection, and 
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cognitive flexibility, thereby enabling the pro-
found and sustainable development of studen-
ts' mathematical thinking (Chosya & 
Takiddin, 2025). 

However, contemporary mathematics 
instructional approaches remain predominan-
tly dominated by strategies focused on proce-
dural memorization and algorithmic applica-
tion (Liu, 2022). This tendency cultivates stu-
dents as mere 'procedural followers' without 
grasping underlying structures or logic, resul-
ting in superficial and non-adaptive mindsets 
when encountering novel or non-routine pro-
blems (Nugroho et al., 2025). Conversely, 
21st-century education demands mastery of 
higher-order thinking skills, such as critical 
thinking, creativity, collaboration, and 
communication all grounded in mathematical 
reasoning (Marton & Säljö, 1997). Within this 
context, mathematical literacy plays a central 
role. Furthermore, mathematical literacy ex-
tends beyond computation to include concep-
tual understanding and cross-contextual ap-
plication (Maryani & Widjajanti, 2020). 
Thus, an approach is needed that transcends 
proceduralism to facilitate deep conceptual 
understanding and encourage students to re-
flect on their thought processes. This aligns 
with the principles of pedagogical deep lear-
ning (Engel et al., 2017). 

Pedagogical deep learning refers to a so-
cio-cognitive approach where students acti-
vely construct understanding through concept 
integration, reflective thinking, and self-regu-
lation characteristics congruent with deep le-
arning principles (Entwistle & Peterson, 
2004; Liu, 2022). Deep learners connect new 
material with prior experiences, fostering ex-
ploration, discussion, and metacognitive re-
flection (Maharani et al., 2024). This appro-
ach positions students as active agents who 
autonomously construct meaning rather than 
passively receive information. Thus, deep 

learning-based pedagogy creates opportuni-
ties for deeper cognitive engagement in ma-
thematics education. Despite its widely 
acknowledged theoretical benefits, the imple-
mentation of deep learning in actual mathe-
matics classrooms remains limited. Teaching 
materials and practices often provide insuffi-
cient opportunities for experimentation, dis-
cussion, or self-regulated learning (Orhani, 
2024). This creates a disconnect between cur-
riculum aspirations for meaningful understan-
ding and the reality of instruction-centered, 
procedural practices. 

This misalignment between theoretical 
ideals and practical implementation raises the 
question of how pedagogical deep learning 
principles can be effectively integrated with 
mathematical thinking processes. Unfortuna-
tely, literature reviews indicate that existing 
research is predominantly quantitative and fo-
cused on technology utilization, such as arti-
ficial intelligence. Conversely, conceptual 
studies explicitly linking deep learning to di-
mensions of mathematical thinking, such as 
reasoning, generalization, and abstraction re-
main scarce (Suglo, 2024). Yet, such research 
is vital for developing a unified theoretical 
foundation integrating both frameworks. 

Additionally, extant literature reveals 
that pedagogical deep learning and mathema-
tical thinking are typically investigated in iso-
lation, with limited explicit examination of 
their interrelationship. Deep learning approa-
ches are primarily developed in general con-
texts, such as meaningful pedagogy imple-
mentation in higher education, as explored by 
Biggs & Tang (2011), Entwistle & Peterson 
(2004), and Marton & Säljö (1976, 1997). 
Meanwhile, studies on mathematical thinking 
exemplified by Breen & O’Shea (2021) and 
Schoenfeld (1992, 2020) largely concentrate 
on reasoning and generalization within speci-
fic mathematical contexts. Consequently, no 
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conceptual model explicitly connects core 
elements of deep learning (e.g., conceptual in-
tegration, reflection, intrinsic motivation) 
with advanced mathematical thinking compo-
nents like abstraction and representation. 
Meta-analyses also report minimal theoretical 
synergy bridging these domains. The absence 
of an integrated theoretical framework impe-
des practitioners and researchers in designing 
pedagogical strategies or evaluative instru-
ments that simultaneously incorporate charac-
teristics of meaningful learning and complex 
mathematical thinking competencies. 

Therefore, an urgent need exists to deve-
lop a conceptual model integrating deep lear-
ning perspectives, such as conceptual inter-
connectedness, intrinsic motivation, and me-
tacognitive awareness into essential 
mathematical thinking structures. Such a mo-
del could provide a foundation for developing 
pedagogical strategies and assessment tools 
capable of evaluating deeper student unders-
tanding (Murayama et al., 2012). Accordin-
gly, this study aims to construct a theoretical 
Deep Mathematical Thinking model through 
systematic literature synthesis. This model is 
expected to: (a) strengthen the conceptual ba-
sis for meaningful mathematics learning, (b) 
provide a theoretical framework for curricu-
lum design and future research directions, and 
(c) offer evaluative indicators for assessing 
critical and reflective thinking in mathematics 
education. This research holds significant 
scholarly value by proposing an interdiscipli-
nary approach that remains systematically un-
derexplored. 

Pedagogical deep learning is a holistic 
and reflective educational approach where le-
arners construct understanding through inte-
grating new knowledge with prior experien-
ces, self-awareness, and intrinsic motivation 
(Grauerholz, 2001). Marton & Säljö (1976, 
1997) posit that deep learners contextualize 
new information within broader frameworks 

and strive to grasp its substantive meaning ra-
ther than merely memorizing facts. Entwistle 
& Peterson (2004) emphasize reflection as pi-
votal in developing understanding, as students 
critically examine their thinking and learning 
strategies to achieve more durable conceptual 
comprehension. Furthermore, intrinsic moti-
vation the inherent drive to know and unders-
tand deeply serves as the primary catalyst for 
learning, transcending external demands such 
as grades or assignments. Biggs & Tang 
(2011) framework links constructive elements 
like constructive alignment, collaboration, 
and reflection as foundational for fostering 
meaningful deep learning. 

Mathematical thinking encompasses 
complex cognitive domains that underpin rea-
soning, meaning-making, and mathematical 
problem-solving. A core component is rea-
soning, which involves logical thinking, argu-
ment evaluation, and mathematical proof ca-
pabilities essential for addressing open-ended 
problems and ambiguous situations (Mumcu 
& Aktürk, 2017). Robust reasoning frequently 
entails discerning deeper patterns and structu-
res, thereby catalyzing processes of generali-
zation and abstraction. According to Breen & 
O’Shea (2021) and Mason et al. (2010), gen-
eralization and abstraction denote the ability 
to recognize patterns across individual cases 
and apply them to broader or theoretical con-
texts, hallmarks of advanced mathematical 
thinking. 

Additionally, representation plays a criti-
cal role in facilitating mathematical thinking. 
The use of symbols, models, and diagrams 
functions not merely as visual aids but as me-
dia for constructing and reinforcing concep-
tual structures within mathematical cognition 
(Jakovác & Telcs, 2025). These dimensions 
are interconnected, forming an integrated 
cognitive framework wherein cognitive and 
metacognitive processes operate 
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synergistically from problem comprehension 
and solution strategy design to solution veri-
fication. 

 
2. Method 

The development of the theoretical Deep 
Mathematical Thinking model in this study 
employs a theoretical synthesis approach a 
method designed to systematically and criti-
cally summarize, integrate, and reconceptua-
lize existing theories (Baidoo, 2025; Salawu 
et al., 2023). This approach comprises three 
primary phases: (1) Selection and organiza-
tion of core theoretical frameworks (pedago-
gical deep learning and mathematical thin-
king); (2) In-depth analysis of foundational 
assumptions, key concepts, and inter-cons-
truct relationships within each framework at 
the macro level; and (3) Reconfiguration into 
a cohesive, integrated conceptual model. This 
process demands rigorous philosophical re-
flection and logical justification to ensure the-
oretical integration is epistemologically and 
functionally valid, not merely rhetorical, fol-
lowing Jaakkola (2020) principles of theory 
conceptualization. 

From the pedagogical deep learning pers-
pective, key concepts include: conceptual 
connectivity (Marton & Säljö, 1976, 1997), 
intrinsic motivation (Entwistle & Peterson, 
2004), and metacognition (Biggs & Tang, 
2011). The mathematical thinking framework 
contributes elements such as reasoning, gene-
ralization, representation, and abstraction 
(Mason et al., 2010; Mumcu & Aktürk, 2017; 
Schoenfeld, 2020). Concept selection was 
guided by their relevance to cognitive depth 
(deep learning) and advanced mathematical 

thinking structures, with conceptual validity 
strengthened through meta-synthesis of mea-
ningful mathematics learning research 
(Koskinen & Pitkäniemi, 2022). 

The resulting theoretical model maps lo-
gical relationships between elements of both 
frameworks through two core mechanisms: 
(1) Conditional relationships denoting prere-
quisite-functional linkages between elements, 
and (2) inferential pathways explaining how 
one element generates another within deep 
mathematical thinking contexts. For instance: 
conceptual connectivity underpins meaning-
ful representation formation; metacognition 
enables reflective abstraction processes; and 
intrinsic motivation drives student engage-
ment in reasoning and generalization. This in-
tegrative logic mirrors cross-domain integra-
tion techniques in STEM frameworks 
(Roehrig et al., 2021), where elements interact 
synergistically within a unified system. 

To clarify the model’s structure, a three-
tier hierarchical diagram visualizes compo-
nents: 1) Foundational Level (conceptual con-
nections, intrinsic motivation, metacogni-
tion), 2) Applied Cognitive Level (reasoning, 
generalization, representation, abstraction), 
and 3) Integrative Level (deep mathematical 
thinking processes) (see Figure 1). 

This architecture resembles a pulley sys-
tem in STEM 2.0 models (Roehrig et al., 
2021), where components mutually support 
systemic equilibrium. The visualization is de-
signed for practical application in curriculum 
design, assessment development, and further 
empirical research, aligning with blended fra-
mework approaches in instructional design 
(Baidoo, 2025). 
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Figure 1. Hierarchical Model of Deep Mathematical Thinking 

 

Though conceptual, the model is develo-
ped for empirical testability. Initial evaluation 
employs three approaches: 1) Document and 
content analysis (Koskinen & Pitkäniemi, 
2022); 2) Expert validation by panels of ma-
thematics education and cognition specialists; 
and 3) Task-based reflective mathematics in-
terviews/written responses coded according 
to model components. Validation procedures 
adopt cognitive modeling methodologies Sun 
et al. (2023), emphasizing hierarchical attri-
bute mapping with expert input. 

 
3. Result and Discussion 
a. Theoretical Implications for Instruc-

tional Design 
The development of the Deep Mathema-

tical Thinking model carries significant theo-
retical implications for mathematics instructi-
onal design. For decades, mathematics ins-
truction has predominantly emphasized 
procedural accuracy and computational 
speed, often employing superficial (surface-
level) and outcome-oriented approaches 
(Marton & Säljö, 1976). Such approaches not 
only constrain opportunities for developing 
students’ critical thinking but also inhibit 

deep cognitive engagement with mathemati-
cal conceptual structures. 

By integrating core principles from edu-
cational deep learning theory conceptual con-
nectivity, intrinsic motivation, and metacog-
nition mathematics pedagogy should be reori-
ented toward creating more reflective, 
meaningful, and autonomous learning experi-
ences. Biggs & Tang (2011) emphasize that 
deep learning requires environments where 
students can connect new knowledge to prior 
experiences, internalize meaning through re-
flection, and self-regulate their learning pro-
cesses. Here, the constructive alignment ap-
proach becomes essential ensuring consistent 
design coherence among learning objectives, 
activities, and assessments to optimize stu-
dents’ cognitive and affective engagement. 

This model advocates for learning activi-
ties that transcend procedural exercises to in-
corporate conceptual and reflective dimensi-
ons. For instance, when teaching functions, 
students should not merely graph equations or 
compute values but also: 1) reflect on real-
world meanings of representations, 2) analyze 
functional behavior across parameters, and 3) 
connect these to broader mathematical struc-
tures. This aligns with meaning-oriented 
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instruction (Entwistle & Peterson, 2004), the-
oretically enhancing students’ reasoning and 
generalization capacities. 

Furthermore, intrinsic motivation a core 
deep learning component implies the need for 
personalized, context-rich, and cognitively 
challenging tasks. Authentic mathematical ac-
tivities that foster emotional and intellectual 
investment can cultivate such motivation. As 
Trigwell & Prosser (1991) assert, personal en-
gagement with content stimulates reflective 
and creative thinking patterns. Thus, teachers 
should design learning scenarios incorpora-
ting open-ended exploration, inquiry-based 
questions, and multiple solution pathways 
moving beyond routine exercises. 

The model’s metacognitive component 
underscores the need for explicit strategies 
that develop awareness of one’s own thinking 
processes. Techniques like think-aloud proto-
cols, self-explanation, and reflective journals 
during or after problem-solving activities not 
only help students understand their reasoning 
but also strengthen executive control in ma-
thematical decision-making (Efklides, 2006). 

ntegrating mathematical thinking with 
deep learning also necessitates assessment re-
form. Evaluations must extend beyond solu-
tion accuracy to examine how students cons-
truct representations, formulate generalizati-
ons, and employ reasoning. Consequently, 
rubric-based formative assessments accom-
modating mathematical thinking dimensions 
become vital instruments for meaning-orien-
ted pedagogy (Schoenfeld, 2011).  

Collectively, the Deep Mathematical 
Thinking model’s theoretical implications ad-
vance a transformative framework for mathe-
matics education prioritizing integrative, re-
flective, and transfer-oriented design. Instruc-
tion shifts focus from mechanistic skills or 
end products toward developing deep thin-
king processes that enable students to com-
prehend mathematical structures and apply 
them flexibly across real-world contexts. 
Thus, learners evolve beyond skilled pro-
blem-solvers into reflective and adaptive ma-
thematical thinkers.

 
Tabel 1. Instructional Components and Strategies in the Deep Mathematical Thinking Model 

Component Theoretical Implications Instructional Strategy Examples Assessment  
Instruments 

Conceptual 
Connectivity 

Enables learners to link new 
mathematical ideas with prior 
knowledge, fostering deeper, 
more meaningful understand-
ing. 

– Initiate with a real-world scenario 
(e.g., daily temperature changes) 
and collaboratively build a concept 
map 
– Use group concept-mapping ac-
tivities 

Formative rubric evaluat-
ing depth of conceptual 
links 

Intrinsic Moti-
vation 

Cultivates emotional and intel-
lectual engagement by embed-
ding math tasks in authentic, 
challenging contexts. 

– Assign an open-ended household 
budget planning problem 
– Host small-team challenges to de-
sign innovative mathematical mod-
els 

Observation checklist of 
participation & journal 
reflections 

Metacognition Develops awareness of one’s 
own thinking processes, im-
proving self-regulation and stra-
tegic problem solving. 

– Implement think-aloud protocols 
during complex problems 
– Require reflective journals after 
group problem-solving sessions 

Self-assessment rubric 
measuring quality of 
metacognitive reflection 
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Component Theoretical Implications Instructional Strategy Examples Assessment  
Instruments 

Constructive 
Alignment 

Ensures coherence among 
learning objectives, activities, 
and assessments to optimize 
cognitive and affective engage-
ment. 

– Design tasks combining graphical 
analysis, reflective meaning-mak-
ing, and conceptual generalization 
– Use multi-layered performance 
assessments 

Performance rubric 
checking alignment of 
objectives, processes, 
and outcomes 

Meaning-Ori-
ented Instruc-
tion 

Promotes deep understanding 
and transferability by focusing 
on underlying structures and 
real-world applicability. 

– Engage students in a popula-
tion-growth modeling case study 
– Facilitate experiments varying 
function parameters to observe ef-
fects 

Portfolio showcasing ev-
idence of concept trans-
fer across contexts 

 
Based on Table 1, Conceptual Connecti-

vity highlights the importance of linking new 
mathematical ideas to students’ prior knowle-
dge. For example, before diving into func-
tions, an instructor might begin with a discus-
sion of daily temperature fluctuations an ex-
perience every student encounters and then 
collaboratively build a concept map showing 
how those fluctuations correspond to the 
shape of a function’s graph. Such activities 
strengthen the relational network among 
ideas, and a formative rubric can gauge how 
deeply learners integrate new concepts with 
their existing mental frameworks. 

The Intrinsic Motivation component 
seeks to foster students’ emotional and intel-
lectual engagement by presenting context-
rich, challenging tasks. As an illustration, le-
arners might tackle an open‑ended budgeting 
problem for a household requiring them to ap-
ply arithmetic and algebra in a real‑world sce-
nario or participate in small‑team competi-
tions to design innovative mathematical mo-
dels. Throughout these tasks, the teacher 
observes levels of participation and reviews 
students’ reflective journal entries to assess 
the emergence of genuine, self‑driven motiva-
tion. 

Metacognition centers on developing stu-
dents’ awareness of their own thinking pro-
cesses. Techniques such as think‑aloud proto-
cols during complex problem solving allow 

both teacher and peers to hear the student’s 
reasoning steps, while reflective journals 
written after group discussions encourage le-
arners to document and evaluate the strategies 
they employed. A self‑assessment rubric then 
provides a systematic way to measure the qua-
lity of each student’s metacognitive reflec-
tions, such as their ability to spot logical er-
rors or plan subsequent steps. 

With Constructive Alignment, every ele-
ment of the instructional design objectives, 
activities, and assessments is deliberately 
aligned to optimize both cognitive and affec-
tive engagement. In a lesson on functions, this 
means crafting tasks that require graphical 
analysis, meaning‑making reflections, and 
conceptual generalizations, all paired with a 
multi‑layered performance assessment. Clear 
rubrics guide the teacher in verifying that the 
learning objectives, the student processes, and 
the outcomes are all in sync. 

Finally, Meaning‑Oriented Instruction 
emphasizes deep understanding and the capa-
city to transfer knowledge to new contexts. 
For instance, students might work on an inte-
grated case study modeling population 
growth, then experiment with different func-
tion parameters to see firsthand how each 
change affects the outcome. A portfolio con-
taining evidence of their work across varied 
situations serves as an effective assessment 
tool, revealing the extent to which learners 
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can apply mathematical concepts flexibly in 
real‑world problems. 

 
b.  Implications for Future Research 

The Deep Mathematical Thinking model 
developed in this study offers not only a 
conceptual contribution but also opens 
avenues for multidimensional future research 
agendas. Implications for subsequent research 
include the need for empirical validation, 
cross-context exploration, evaluation 
instrument development, and studies on the 
roles of teachers and technology in model 
implementation. Given the theoretical and 
integrative nature of this model, the primary 
challenge for future research lies in 
operationalizing, measuring, and testing its 
constituent elements within diverse authentic 
mathematics learning contexts. 

Without a strong empirical foundation, 
this model risks becoming merely a normative 
theoretical framework that is difficult to ope-
rationalize in real practice. Therefore, testing 
in real classroom situations becomes an im-
portant step to ensure that every element in the 
model truly reflects the cognitive dynamics of 
students during the mathematics learning pro-
cess. 

Future research should prioritize empiri-
cal testing of inter-element relationships 
within the model. Although constructed from 
a conceptual synthesis of deep learning theory 
(Entwistle & Peterson, 2004; Marton & Säljö, 
1976) and mathematical thinking frameworks 
(Lithner, 2008; Schoenfeld, 2011), the inter-
connections among these elements lack empi-
rical verification. Subsequent studies could 
examine relationships between conceptual 
connectivity, intrinsic motivation, and meta-
cognition relative to students' reasoning, ge-
neralization, and abstraction abilities. This 
could be achieved through developing valid 
and reliable measurement instruments, such 

as scales, observational protocols, or mathe-
matical thinking process analyses. 

Such research may employ design-based 
research (DBR) or mixed-methods approa-
ches. DBR provides space to develop learning 
interventions based on this model and test 
them through iterative classroom cycles 
(Wang & Hannafin, 2011), enabling contex-
tual and dynamic refinement rather than static 
validation. Meanwhile, mixed methods allow 
triangulation between quantitative data (e.g., 
student motivation or metacognition) and 
qualitative data (e.g., visual representations or 
reasoning strategies employed in problem-
solving). 

Further research should also investigate 
contextual and cultural dimensions of model 
implementation. Cross-cultural or cross-edu-
cational system studies would reveal how this 
model functions within distinct learning fra-
meworks. In Indonesia's transitioning curricu-
lum shifting toward differentiated, compe-
tency-based learning opportunities exist to 
test deep learning elements amid structural 
educational challenges. Kember (2000) rese-
arch demonstrates that cultural learning orien-
tations significantly influence students' ten-
dencies toward deep or surface learning ap-
proaches. 

Another critical implication involves de-
veloping novel measurement instruments and 
indicators to capture latent dimensions of the 
model, such as mental representation cons-
truction or metacognitive strategies. Measu-
ring these dimensions requires methods that 
are not merely descriptive but also explora-
tory and interpretative. Relevant approaches 
include stimulated recall, verbal protocol 
analysis, and cognitive task analysis (Ericsson 
& Simon, 1993), which capture thought pro-
cesses not always directly observable. Deve-
loping rubrics, interview protocols, observa-
tion sheets, and learning analytics-based 
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digital applications constitutes vital future 
methodological directions. 

As educational technology evolves, the 
integration of learning analytics and adaptive 
learning platforms can be an effective means 
of tracking the development of mathematical 
thinking in real-time, while also providing au-
tomated feedback tailored to each student's 
cognitive profile. 

Moreover, teacher professional deve-
lopment emerges as an indispensable factor. 
While teachers are key actors in implemen-
ting meaningful learning, few studies expli-
citly connect teacher understanding of deep 
learning theory and mathematical thinking. 
Qualitative phenomenological or case study 
research could explore how teachers interpret 
and design mathematics instruction based on 
this model, aligning with Mellati et al. (2015) 
findings that teachers' pedagogical beliefs and 
knowledge substantially impact student lear-
ning experiences. Teacher competency stren-
gthening should not only encompass technical 
training for model implementation but also in-
volve the reconstruction of perspectives 
toward mathematics learning as a dialogical, 
reflective, and meaningful process, rather 
than merely the transmission of procedures 
and rules. 

Additionally, longitudinal studies 
tracking long-term development of deep ma-
thematical thinking are essential. Unlike 

procedural skills, reasoning and abstraction 
abilities develop gradually through complex 
processes. Long-term research would deepen 
understanding of how deep thinking processes 
form, evolve, or regress across students' aca-
demic trajectories. Such findings are crucial 
for informing sustainable curriculum policies 
and pedagogical interventions. Long-term re-
search can also provide insights into how deep 
mathematical thinking skills correlate with 
academic success across subjects, as well as 
life skills such as data-driven decision-ma-
king, complex problem-solving, and quantita-
tive literacy. 

Finally, this model enables development 
of more contextualized and specialized vari-
ants. Researchers could create sub-models for 
specific educational levels (e.g., elementary, 
middle, high school), mathematical domains 
(e.g., algebra, geometry, statistics), or student 
groups (e.g., gifted learners or those with le-
arning difficulties). This flexibility positions 
the Deep Mathematical Thinking model as an 
initial conceptual framework adaptable to di-
verse mathematics education research initiati-
ves. Thus, the model serves not merely as an 
endpoint of conceptual synthesis but as a pro-
mising springboard for further academic ex-
ploration in developing meaningful mathema-
tics learning theory, methodology, and prac-
tice. 

 
Tabel 2. Proposed Future Research Agenda for the Deep Mathematical Thinking Model 

Research Focus Key Questions Methods / Instruments Expected Outcomes 
Empirical Valida-
tion 

– To what extent do the 
model’s elements reflect stu-
dents’ actual cognitive pro-
cesses? 
– How are the elements interre-
lated? 

– Field testing in real class-
rooms 
– Measurement scales & ob-
servation protocols 
– Statistical analysis of vari-
able relationships 

– Empirical evidence for 
model validity 
– Mapping of each ele-
ment’s strengths and 
weaknesses 

Inter-Element Re-
lationships 

– Do conceptual connectivity, 
intrinsic motivation, and meta-
cognition influence reasoning 
abilities? 

– Reliable measures for each 
variable (surveys, verbal 
protocols) 
– Path analysis 

– Quantitative under-
standing of correlations 
and causal links among 
model elements 
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Research Focus Key Questions Methods / Instruments Expected Outcomes 
DBR & 
Mixed-Methods 

– How can the model be re-
fined through iterative class-
room cycles? 
– How do quantitative and 
qualitative data complement 
each other? 

– Design-Based Research 
(Wang & Hannafin, 2011) 
– Surveys, interviews, class-
room observations 

– Prototype learning in-
terventions based on the 
model 
– Continuous improve-
ment recommendations 

Contextual & 
Cultural Dimen-
sions 

– How does the model function 
across different educational 
systems and cultures? 
– What are the implications 
within Indonesia’s compe-
tency-based curriculum? 

– Cross-cultural / 
cross-school comparative 
studies 
– Analysis of cultural learn-
ing orientations (Kember, 
2000) 

– Adaptation mapping by 
cultural context 
– Implementation guide-
lines for varied settings 

Novel Measure-
ment Instruments 

– How can we measure mental 
representations and metacogni-
tive strategies? 
– Which tools are truly explor-
atory and interpretative? 

– Stimulated recall, verbal 
protocol, cognitive task 
analysis (Ericsson & Simon, 
1993) 
– Rubrics, observation 
sheets, LA apps 

– Valid and reliable in-
strument set for in-depth 
research 
– Sample rubrics and in-
terview/observation pro-
tocols 

Technology & 
Learning Analyt-
ics 

– How can learning analytics 
and adaptive platforms track 
and provide real-time feed-
back? 
– What impact do they have on 
development of mathematical 
thinking? 

– Development of an LA 
dashboard 
– Experimentation with 
adaptive learning platforms 

– Prototype cogni-
tive-progress monitoring 
system 
– Data on feedback effi-
ciency and effectiveness 
for students 

Teacher Profes-
sional Develop-
ment 

– How do teachers’ under-
standings of deep learning the-
ory translate into practice? 
– What role do pedagogical be-
liefs play? 

– Phenomenological / case 
studies (Mellati et al., 2015) 
– In-depth interviews and 
focus groups 

– CPD training model in-
corporating perspective 
reconstruction 
– Reflective practice 
training modules 

Longitudinal 
Studies 

– How do students’ reasoning 
and abstraction skills evolve 
over time? 
– How are these skills linked to 
academic success and life 
skills? 

– Multi-year longitudinal re-
search 
– Periodic assessments & 
student portfolio tracking 

– Trajectory charts of 
deep thinking develop-
ment 
– Evidence to inform sus-
tainable curriculum and 
policy 

Contextualized 
Model Variants 

– How can sub-models be 
adapted for specific grades or 
domains (algebra, geometry, 
statistics)? 
– How to tailor for special stu-
dent groups? 

– Development and valida-
tion of context-specific 
sub-models 
– Pilot tests with targeted 
samples 

– Detailed framework 
variants for each 
level/domain 
– Adaptation guidelines 
for gifted learners and 
those with learning diffi-
culties 

 
Based on Table 1, several key directions 

emerge for scholars aiming to deepen both 
theoretical and practical understanding of the 
model. First, empirical validation and 

investigation of inter‑element relationships 
are foundational. Field testing in real classro-
oms, combined with robust measurement sca-
les, observation protocols, and statistical 
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techniques such as path analysis, will esta-
blish whether the model’s components con-
ceptual connectivity, intrinsic motivation, and 
metacognition truly reflect students’ cogni-
tive dynamics and how they causally interact 
to support reasoning, generalization, and abs-
traction. 

Next, methodological innovation is para-
mount. Design‑Based Research (DBR) offers 
an iterative, context‑sensitive approach to re-
fine learning interventions, while mixed‑me-
thods designs will triangulate quantitative in-
dicators (e.g., motivation scores, metacogni-
tive self‑reports) with qualitative data (e.g., 
verbal protocol analyses, classroom dis-
course) to yield a richer, more nuanced pic-
ture of how deep mathematical thinking un-
folds. Equally important is the development 
of novel instruments stimulated recall, cogni-
tive task analyses, rubrics, and lear-
ning‑analytics dashboards that go beyond des-
criptive measures to capture latent dimensions 
like mental representation construction and 
real‑time feedback loops. 

Finally, contextual and longitudinal pers-
pectives will ensure the model’s adaptability 
and sustainability. Comparative studies 
across cultures and educational systems inclu-
ding Indonesia’s evolving competency‑based 
curriculum will map how local learning orien-
tations shape model implementation. Teacher 
professional development, explored through 
phenomenological or case‑study approaches, 
will reveal how educators’ beliefs and peda-
gogical practices mediate student engagement 
with deep thinking processes. Longitudinal 
research, spanning multiple academic years, 
will chart trajectories of reasoning and abs-
traction skills, informing curriculum policies 
and revealing connections to broader life‑long 
competencies. Moreover, creating specialized 
sub‑models for different grade levels, mathe-
matical domains, and learner populations will 
position the Deep Mathematical Thinking 

model as a flexible framework ready for di-
verse educational research and practice. 

 
c. Strengths and Limitations of the Mo-

del 
1) Strengths of the Model 

The Deep Mathematical Thinking model 
offers significant theoretical and practical 
advantages, positioning it as an innovative 
framework for designing meaningful and 
profound mathematics learning. Its strengths 
lie in its multidisciplinary synthesis, 
educational applicability, and flexibility 
across diverse learning levels and contexts. 

 
a) Systematic Integration of Two 

Theoretical Disciplines 
The model’s primary strength is its 

successful integration of two major 
theoretical approaches that have historically 
developed in parallel: deep learning theory in 
education (Biggs & Tang, 2011; Entwistle & 
Peterson, 2004) and mathematical thinking 
theory (Lithner, 2008; Schoenfeld, 2011). 
This integration is systematically achieved 
through a three-tiered hierarchical structure 
for deep mathematical thinking processes: (1) 
the foundational level encompassing intrinsic 
motivation, metacognition, and conceptual 
connectivity; (2) the applied cognitive level 
involving reasoning, generalization, 
representation, and abstraction; and (3) the 
integrative level as the pinnacle of deep 
thinking. Such an integrative approach is cru-
cial in modern education as it encourages 
synergy between general learning theories 
and domain-specific needs, resulting in peda-
gogical models that are more contextual and 
functional in real classroom practice. 

While deep learning theory has primarily 
been developed in general higher education 
contexts without domain-specific focus, 
mathematical thinking research has largely 
remained within mathematics education, 
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seldom explicitly linked to reflective learning 
processes. By unifying these approaches, the 
Deep Mathematical Thinking model provides 
a comprehensive cross-disciplinary synthesis 
that bridges general cognitive theory and 
mathematics-specific pedagogy. 

 
b) Practicality: Translates to Curriculum 

Design and Observational Instruments 
A key advantage is the model’s high 

applicability. Its hierarchical structure enables 
its use as a framework for designing learning 
activities, formative assessments, and 
classroom observation tools. For instance, at 
the foundational level, teachers can design 
activities fostering motivation and self-
reflection, such as learning journals, reflective 
discussions, or concept mapping. At the 
applied cognitive level, educators can develop 
exploratory tasks promoting diverse 
representations and generalization abilities. 

In classroom research contexts, the 
model provides a basis for developing rubrics 
or coding systems to identify students’ 
thinking levels during mathematical problem-
solving. As Panizzon (2003) emphasizes, 
explicit conceptual frameworks are essential 
for detecting variations in students’ cognitive 
levels a need directly addressed by this 
model’s structure. 
1. Flexibility Across Educational Levels and 

Classroom Contexts 
The model demonstrates notable 

flexibility, being adaptable from primary to 
higher education. While thinking complexity 
varies across levels, core elements, such as 
reasoning, representation, and metacognition 
can be identified and developed at all 
cognitive stages (Vosniadou, 2001). For 
example, conceptual connections and 
reasoning in primary education can be 
cultivated through concrete visual activities, 
while abstract generalization and proof in 

higher education can be facilitated via 
symbolic discourse and theoretical 
exploration. 

Furthermore, the model is pedagogy-
agnostic. It can be implemented across 
approaches like Problem-Based Learning 
(PBL), Realistic Mathematics Education 
(RME), and other constructivist methods. 
This allows teachers to integrate the 
framework into contextually responsive 
instructional designs aligned with student 
needs. The model's flexibility also allows for 
cross-curricular and cross-cultural adaptation, 
making it highly relevant for implementation 
in diverse educational systems, such as in the 
context of Indonesia's Merdeka Curriculum, 
which emphasizes differentiated and contex-
tual learning. 

 
2) Limitations of the Model 

Despite its conceptual and pedagogical 
contributions, the Deep Mathematical 
Thinking model has several limitations 
regarding practical implementation and 
theoretical scope. Acknowledging these 
constraints is essential for future refinement. 

 
a) Conceptual Nature Lacking Empirical 

Validation 
The primary limitation is the model’s 

conceptual status. Although grounded in a 
rigorous synthesis of theories and prior 
research, it lacks empirical validation in 
authentic learning contexts. Thus, its 
effectiveness in enhancing students’ 
mathematical thinking and its 
implementability by teachers remain 
unproven through direct evidence. 

Empirical validation is critical, 
particularly given the model’s complexity, 
which demands nuanced measurement tools 
and layered research designs. As Akker et al. 
(2007) assert, conceptual models only yield 
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significant contributions when systematically 
operationalized and tested within actual 
instructional settings. 
b) Underemphasized Affective and Socio-

Cultural Dimensions 
The model insufficiently addresses 

affective and socio-cultural factors crucial to 
mathematics learning. Notably absent is 
explicit consideration of mathematics anxiety, 
proven to inhibit reflective thinking and 
effective metacognitive strategy use (Marsh 
& Dolan, 2007). Such affective states 
influence students’ representation 
construction, reasoning approaches, and 
interpretation of errors as learning 
opportunities. 

Additionally, the model does not 
explicitly integrate sociocultural perspectives. 
Yet social interactions, learner identity, and 
mathematical language are vital for 
constructing deep mathematical meaning. As 
Boaler (2002) emphasizes, mathematics 
learning practices are shaped by classroom 
norms, teacher perceptions, and cultural 
values. Thus, expanding the framework to 

incorporate sociocultural perspectives would 
enhance its relevance and sensitivity to 
complex social contexts. 

 
c) Implementation Complexity in Time-

Constrained Classrooms 
The hierarchical structure spanning 

cognitive and affective dimensions requires 
deep educator understanding and meticulous 
lesson planning. Implementation may prove 
challenging in time-constrained classrooms 
facing curriculum pressures and high 
administrative burdens. Teachers unfamiliar 
with reflective approaches or untrained in 
meaningful mathematics pedagogy may 
struggle to design activities holistically 
addressing all model elements. 

Furthermore, pressures to meet national 
assessment targets often prioritize procedural 
mastery and immediate outcomes over deep 
thinking processes. As Murray (2013) 
explains, successful pedagogical reform 
hinges on teachers’ professional capacity and 
systemic support enabling innovation within 
rigid educational structures. 

 
Tabel 3. Summary of Strengths and Limitations of the Deep Mathematical Thinking Model 

Category Aspect Description 
Strength – Systematic Inte-

gration of Two 
Theoretical Disci-
plines 

– Combines deep learning theory in education (Biggs & Tang, 2011; Entwistle 
& Peterson, 2004) with mathematical thinking theory (Lithner, 2008; Schoen-
feld, 2011) into a three-tiered hierarchy (foundational, applied cognitive, inte-
grative), bridging general cognitive theory and math-specific pedagogy. 

– Practicality: 
Curriculum & Ob-
servational Instru-
ments 

– Provides a clear framework for designing learning activities (e.g., journals, 
concept maps), formative assessments, and classroom observation tools or ru-
brics, enabling teachers and researchers to identify and foster different levels of 
students’ mathematical thinking in real classrooms. 

– Flexibility 
Across Levels & 
Contexts 

– Adaptable from primary through higher education and pedagogy-agnostic 
(e.g., PBL, RME), supporting concrete visual tasks for young learners up to ab-
stract proof work in university, and capable of cross-cultural and cross-curricular 
use (e.g., Indonesia’s Merdeka Curriculum). 

Limitation – Conceptual Na-
ture Without Em-
pirical Validation 

– Remains a theoretically grounded but untested framework; its real-world ef-
fectiveness, measurement tools, and teacher implementability have not yet been 
demonstrated through systematic empirical studies in authentic classroom set-
tings. 
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Category Aspect Description 

– Underempha-
sized Affective & 
Socio-Cultural Di-
mensions 

– Does not explicitly address mathematics anxiety or other affective factors, nor 
sociocultural influences such as learner identity, social interaction, and cultural 
norms, all of which critically shape how students engage in representation, rea-
soning, and reflection. 

– Implementation 
Complexity in 
Time-Constrained 
Classrooms 

– Its multi-layered structure demands deep teacher understanding and detailed 
lesson planning, posing challenges under heavy curriculum pressures, limited 
class time, and high-stakes assessments especially where professional support 
for reflective, meaningful mathematics pedagogy is lacking. 

Based on Table 1, the Deep Mathematical 
Thinking model demonstrates three core 
strengths and three principal limitations. First, 
its systematic integration of deep learning 
theory in education with mathematical 
thinking theory creates a cohesive, three‐
tiered hierarchy that bridges general cognitive 
frameworks and domain‐specific pedagogy, 
enabling more contextualized and functional 
classroom practice. Second, the model’s 
practicality lies in its clear guidance for 
curriculum design and observational 
instruments teachers can draw on its levels to 
create motivational activities, reflective 
journals, concept maps, and rubrics that 
pinpoint students’ thinking during problem 
solving. Third, the model offers flexibility: it 
applies from primary through higher 
education, across pedagogical approaches 
such as Problem‑Based Learning or Realistic 
Mathematics Education, and is adaptable to 
various cultural or curricular contexts like 
Indonesia’s Merdeka Curriculum. 

However, Table 1 also highlights key 
limitations. Its conceptual nature means it 
remains untested in authentic classrooms; 
without empirical validation, its impact on 
student learning and the feasibility of teacher 
implementation are unknown. The model also 
underemphasizes affective and socio‑cultural 
dimensions, omitting factors such as 
mathematics anxiety and the role of social 
interaction, identity, and cultural norms that 

critically influence how students reason and 
reflect. Finally, its implementation 
complexity can overwhelm teachers working 
under tight time constraints, heavy 
assessment pressures, and limited 
professional support, making comprehensive 
adoption challenging without systemic 
training and support. 

 
4. Conclusion 

This study proposes the conceptual Deep 
Mathematical Thinking model as an 
integrative framework bridging deep learning 
theory in education with mathematical 
thinking theory in mathematics. The model 
represents a synthesis of three hierarchical 
levels: (1) the foundational level (intrinsic 
motivation, metacognition, and conceptual 
connectivity); (2) the applied cognitive level 
(reasoning, generalization, representation, 
and abstraction); and (3) the integrative level 
as the culmination of profound and reflective 
mathematical thinking. Through this 
structure, the model offers a cross-
disciplinary contribution that expands 
perspectives on designing meaningful 
learning to cultivate advanced mathematical 
understanding. 

The model's implications encompass ap-
plications in curriculum development, asses-
sment design, instructional planning, and fu-
ture research. Educators and curriculum deve-
lopers may utilize this framework to design 
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activities and evaluations that stimulate stu-
dents' conceptual understanding and reflec-
tive thinking. Furthermore, the model creates 
avenues for empirical research through struc-
tural validity testing and classroom imple-
mentation studies. Given its high flexibility, 
the Deep Mathematical Thinking model holds 
potential for adaptation not only within ma-
thematics education but also across discipli-
nary contexts emphasizing the integration of 
cognitive reasoning and deep reflection.  

This model not only presents a 
comprehensive theoretical construct but also 
provides a systematic foundation for 
transforming mathematics learning from a 
procedural nature into a meaningful, 
reflective, and contextual learning 
experience. In the era of 21st-century 
education, which demands mathematical 
literacy, critical thinking, and knowledge 
transfer abilities, this model emerges as a 
strategic alternative capable of addressing the 
challenges of modern curricula. Thus, Deep 
Mathematical Thinking not only serves as a 
result of theoretical synthesis but also as a 
potential instrument for creating 
transformative pedagogical change, oriented 
towards developing students' holistic, 
adaptive, and visionary competencies. 

The Deep Mathematical Thinking model 
developed by Santosa et al. (2021) is an 
innovative framework that unites a profound 
understanding of learning and mathematical 
thinking. Although still theoretical, this model 
holds great potential for reforming 
mathematics learning to be more reflective, 
contextual, and meaningful. Further research, 
especially classroom-based and with valid 
instruments, is highly needed to test and 
develop this model. 
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