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Abstract

In the context of 21st-century education, deep mathematical thinking is key to developing higher-order cog-
nitive abilities. However, current mathematics learning predominantly focuses on procedural skills rather than
conceptual understanding and reflection, often hindering the optimal development of students' deep mathe-
matical thinking. Therefore, this study aims to develop a theoretical Deep Mathematical Thinking model
through the integration of deep learning pedagogical principles and the mathematical thinking framework.
Employing a systematic theoretical synthesis approach, the developed model identifies and interconnects core
elements of deep learning, such as conceptual connectivity, intrinsic motivation, and metacognition with com-
ponents of mathematical thinking, including reasoning, generalization, representation, and abstraction. The
outcome is a three levels hierarchical Deep Mathematical Thinking model: the foundational level, the applied
cognitive level, and the integrative level. This model offers theoretical and practical implications for curricu-
lum design, assessment, and instructional practices. While still conceptual and requiring further empirical
validation, the model is flexible and adaptable across diverse educational levels and contexts, positioning it
as a potentially robust conceptual framework for developing reflective and meaningful mathematics learning.
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1. Introduction difficulties in comprehending quantitative in-

Mathematical thinking is an essential
competency in the 21st century, encompas-
sing complex problem-solving, logical reaso-
ning, and knowledge transfer. This compe-
tency is crucial not only in academic settings
but also in real-world contexts within the di-
gital information era (Lehtinen et al., 2017;
Schoenfeld, 1992). Without mathematical
thinking skills, learners are vulnerable to

formation, formulating data-based arguments,
and making rational decisions (Kania et al.,
2023; Yuliardi et al., 2024). Consequently, le-
arners ideally possess proficient mathematical
thinking as a core 21st-century competency
(Dahlan et al., 2024). Accordingly, educators
must implement mathematics pedagogy that
emphasizes not only procedures but also fos-
ters conceptual understanding, reflection, and
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cognitive flexibility, thereby enabling the pro-
found and sustainable development of studen-
ts' mathematical thinking (Chosya &
Takiddin, 2025).

However, contemporary mathematics
instructional approaches remain predominan-
tly dominated by strategies focused on proce-
dural memorization and algorithmic applica-
tion (Liu, 2022). This tendency cultivates stu-
dents as mere 'procedural followers' without
grasping underlying structures or logic, resul-
ting in superficial and non-adaptive mindsets
when encountering novel or non-routine pro-
blems (Nugroho et al., 2025). Conversely,
21st-century education demands mastery of
higher-order thinking skills, such as critical
thinking, collaboration, and
communication all grounded in mathematical
reasoning (Marton & Sdljo, 1997). Within this
context, mathematical literacy plays a central
role. Furthermore, mathematical literacy ex-

creativity,

tends beyond computation to include concep-
tual understanding and cross-contextual ap-
plication (Maryani & Widjajanti, 2020).
Thus, an approach is needed that transcends
proceduralism to facilitate deep conceptual
understanding and encourage students to re-
flect on their thought processes. This aligns
with the principles of pedagogical deep lear-
ning (Engel et al., 2017).

Pedagogical deep learning refers to a so-
cio-cognitive approach where students acti-
vely construct understanding through concept
integration, reflective thinking, and self-regu-
lation characteristics congruent with deep le-
arning principles (Entwistle & Peterson,
2004; Liu, 2022). Deep learners connect new
material with prior experiences, fostering ex-
ploration, discussion, and metacognitive re-
flection (Maharani et al., 2024). This appro-
ach positions students as active agents who
autonomously construct meaning rather than
passively receive information. Thus, deep
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learning-based pedagogy creates opportuni-
ties for deeper cognitive engagement in ma-
thematics education. Despite its widely
acknowledged theoretical benefits, the imple-
mentation of deep learning in actual mathe-
matics classrooms remains limited. Teaching
materials and practices often provide insuffi-
cient opportunities for experimentation, dis-
cussion, or self-regulated learning (Orhani,
2024). This creates a disconnect between cur-
riculum aspirations for meaningful understan-
ding and the reality of instruction-centered,
procedural practices.

This misalignment between theoretical
ideals and practical implementation raises the
question of how pedagogical deep learning
principles can be effectively integrated with
mathematical thinking processes. Unfortuna-
tely, literature reviews indicate that existing
research is predominantly quantitative and fo-
cused on technology utilization, such as arti-
ficial intelligence. Conversely, conceptual
studies explicitly linking deep learning to di-
mensions of mathematical thinking, such as
reasoning, generalization, and abstraction re-
main scarce (Suglo, 2024). Yet, such research
is vital for developing a unified theoretical
foundation integrating both frameworks.

Additionally, extant literature reveals
that pedagogical deep learning and mathema-
tical thinking are typically investigated in iso-
lation, with limited explicit examination of
their interrelationship. Deep learning approa-
ches are primarily developed in general con-
texts, such as meaningful pedagogy imple-
mentation in higher education, as explored by
Biggs & Tang (2011), Entwistle & Peterson
(2004), and Marton & Siljo (1976, 1997).
Meanwhile, studies on mathematical thinking
exemplified by Breen & O’Shea (2021) and
Schoenfeld (1992, 2020) largely concentrate
on reasoning and generalization within speci-
fic mathematical contexts. Consequently, no
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conceptual model explicitly connects core
elements of deep learning (e.g., conceptual in-
tegration, reflection, intrinsic motivation)
with advanced mathematical thinking compo-
nents like abstraction and representation.
Meta-analyses also report minimal theoretical
synergy bridging these domains. The absence
of an integrated theoretical framework impe-
des practitioners and researchers in designing
pedagogical strategies or evaluative instru-
ments that simultaneously incorporate charac-
teristics of meaningful learning and complex
mathematical thinking competencies.
Therefore, an urgent need exists to deve-
lop a conceptual model integrating deep lear-
ning perspectives, such as conceptual inter-
connectedness, intrinsic motivation, and me-
tacognitive into  essential
mathematical thinking structures. Such a mo-
del could provide a foundation for developing
pedagogical strategies and assessment tools

awarenecss

capable of evaluating deeper student unders-
tanding (Murayama et al., 2012). Accordin-
gly, this study aims to construct a theoretical
Deep Mathematical Thinking model through
systematic literature synthesis. This model is
expected to: (a) strengthen the conceptual ba-
sis for meaningful mathematics learning, (b)
provide a theoretical framework for curricu-
lum design and future research directions, and
(c) offer evaluative indicators for assessing
critical and reflective thinking in mathematics
education. This research holds significant
scholarly value by proposing an interdiscipli-
nary approach that remains systematically un-
derexplored.

Pedagogical deep learning is a holistic
and reflective educational approach where le-
arners construct understanding through inte-
grating new knowledge with prior experien-
ces, self-awareness, and intrinsic motivation
(Grauerholz, 2001). Marton & Silj6 (1976,
1997) posit that deep learners contextualize
new information within broader frameworks

Mathematical Reasoning Frameworks

and strive to grasp its substantive meaning ra-
ther than merely memorizing facts. Entwistle
& Peterson (2004) emphasize reflection as pi-
votal in developing understanding, as students
critically examine their thinking and learning
strategies to achieve more durable conceptual
comprehension. Furthermore, intrinsic moti-
vation the inherent drive to know and unders-
tand deeply serves as the primary catalyst for
learning, transcending external demands such
as grades or assignments. Biggs & Tang
(2011) framework links constructive elements
like constructive alignment, collaboration,
and reflection as foundational for fostering
meaningful deep learning.

Mathematical thinking encompasses
complex cognitive domains that underpin rea-
soning, meaning-making, and mathematical
problem-solving. A core component is rea-
soning, which involves logical thinking, argu-
ment evaluation, and mathematical proof ca-
pabilities essential for addressing open-ended
problems and ambiguous situations (Mumcu
& Aktiirk, 2017). Robust reasoning frequently
entails discerning deeper patterns and structu-
res, thereby catalyzing processes of generali-
zation and abstraction. According to Breen &
O’Shea (2021) and Mason et al. (2010), gen-
eralization and abstraction denote the ability
to recognize patterns across individual cases
and apply them to broader or theoretical con-
texts, hallmarks of advanced mathematical
thinking.

Additionally, representation plays a criti-
cal role in facilitating mathematical thinking.
The use of symbols, models, and diagrams
functions not merely as visual aids but as me-
dia for constructing and reinforcing concep-
tual structures within mathematical cognition
(Jakovac & Telcs, 2025). These dimensions
are interconnected, forming an integrated
cognitive framework wherein cognitive and
metacognitive processes operate
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synergistically from problem comprehension
and solution strategy design to solution veri-
fication.

2. Method

The development of the theoretical Deep
Mathematical Thinking model in this study
employs a theoretical synthesis approach a
method designed to systematically and criti-
cally summarize, integrate, and reconceptua-
lize existing theories (Baidoo, 2025; Salawu
et al., 2023). This approach comprises three
primary phases: (1) Selection and organiza-

tion of core theoretical frameworks (pedago-
gical deep learning and mathematical thin-
king); (2) In-depth analysis of foundational
assumptions, key concepts, and inter-cons-
truct relationships within each framework at
the macro level; and (3) Reconfiguration into
a cohesive, integrated conceptual model. This
process demands rigorous philosophical re-
flection and logical justification to ensure the-
oretical integration is epistemologically and
functionally valid, not merely rhetorical, fol-
lowing Jaakkola (2020) principles of theory
conceptualization.

From the pedagogical deep learning pers-
pective, key concepts include: conceptual
connectivity (Marton & Siljo, 1976, 1997),
intrinsic motivation (Entwistle & Peterson,
2004), and metacognition (Biggs & Tang,
2011). The mathematical thinking framework
contributes elements such as reasoning, gene-
ralization, representation, and abstraction
(Mason et al., 2010; Mumcu & Aktiirk, 2017;
Schoenfeld, 2020). Concept selection was
guided by their relevance to cognitive depth
(deep learning) and advanced mathematical

thinking structures, with conceptual validity
strengthened through meta-synthesis of mea-
ningful mathematics learning research
(Koskinen & Pitkdniemi, 2022).

The resulting theoretical model maps lo-
gical relationships between elements of both
frameworks through two core mechanisms:
(1) Conditional relationships denoting prere-
quisite-functional linkages between elements,
and (2) inferential pathways explaining how
one element generates another within deep
mathematical thinking contexts. For instance:
conceptual connectivity underpins meaning-
ful representation formation; metacognition
enables reflective abstraction processes; and
intrinsic motivation drives student engage-
ment in reasoning and generalization. This in-
tegrative logic mirrors cross-domain integra-
tion techniques in STEM frameworks
(Roehrigetal., 2021), where elements interact
synergistically within a unified system.

To clarify the model’s structure, a three-
tier hierarchical diagram visualizes compo-
nents: 1) Foundational Level (conceptual con-
nections, intrinsic motivation, metacogni-
tion), 2) Applied Cognitive Level (reasoning,
generalization, representation, abstraction),
and 3) Integrative Level (deep mathematical
thinking processes) (see Figure 1).

This architecture resembles a pulley sys-
tem in STEM 2.0 models (Roehrig et al.,
2021), where components mutually support
systemic equilibrium. The visualization is de-
signed for practical application in curriculum
design, assessment development, and further
empirical research, aligning with blended fra-
mework approaches in instructional design
(Baidoo, 2025).
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Integrative
Level

Deep Mathematical
Thinking Process

Applied Cognitive
Level

(Reasoning) [Generalization) [Representatior) [Abstraction)

Conceptual Connection

Foundational

Intrinsic Motivation

Level

Conceptual Connection

Though conceptual, the model is develo-
ped for empirical testability. Initial evaluation
employs three approaches: 1) Document and
content analysis (Koskinen & Pitkdniemi,
2022); 2) Expert validation by panels of ma-
thematics education and cognition specialists;
and 3) Task-based reflective mathematics in-
terviews/written responses coded according
to model components. Validation procedures
adopt cognitive modeling methodologies Sun
et al. (2023), emphasizing hierarchical attri-
bute mapping with expert input.

3.
a.

Result and Discussion

Theoretical Implications for Instruc-
tional Design

The development of the Deep Mathema-
tical Thinking model carries significant theo-

retical implications for mathematics instructi-
onal design. For decades, mathematics ins-
truction has predominantly
procedural and

speed, often employing superficial (surface-
level) and outcome-oriented approaches
(Marton & Siljo, 1976). Such approaches not
only constrain opportunities for developing
students’ critical thinking but also inhibit

emphasized

accuracy computational

Metacognition

Figure 1. Hierarchical Model of Deep Mathematical Thinking

deep cognitive engagement with mathemati-
cal conceptual structures.

By integrating core principles from edu-
cational deep learning theory conceptual con-
nectivity, intrinsic motivation, and metacog-
nition mathematics pedagogy should be reori-
ented toward creating more reflective,
meaningful, and autonomous learning experi-
ences. Biggs & Tang (2011) emphasize that
deep learning requires environments where
students can connect new knowledge to prior
experiences, internalize meaning through re-
flection, and self-regulate their learning pro-
cesses. Here, the constructive alignment ap-
proach becomes essential ensuring consistent
design coherence among learning objectives,
activities, and assessments to optimize stu-
dents’ cognitive and affective engagement.

This model advocates for learning activi-
ties that transcend procedural exercises to in-
corporate conceptual and reflective dimensi-
ons. For instance, when teaching functions,
students should not merely graph equations or
compute values but also: 1) reflect on real-
world meanings of representations, 2) analyze
functional behavior across parameters, and 3)
connect these to broader mathematical struc-
tures. This aligns with meaning-oriented
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instruction (Entwistle & Peterson, 2004), the-
oretically enhancing students’ reasoning and
generalization capacities.

Furthermore, intrinsic motivation a core
deep learning component implies the need for
personalized, context-rich, and cognitively
challenging tasks. Authentic mathematical ac-
tivities that foster emotional and intellectual
investment can cultivate such motivation. As
Trigwell & Prosser (1991) assert, personal en-
gagement with content stimulates reflective
and creative thinking patterns. Thus, teachers
should design learning scenarios incorpora-
ting open-ended exploration, inquiry-based
questions, and multiple solution pathways
moving beyond routine exercises.

The model’s metacognitive component
underscores the need for explicit strategies
that develop awareness of one’s own thinking
processes. Techniques like think-aloud proto-
cols, self-explanation, and reflective journals
during or after problem-solving activities not
only help students understand their reasoning
but also strengthen executive control in ma-
thematical decision-making (Efklides, 2006).

Toward a Theoretical Model of Deep Mathematical Thinking: Integrating Deep Learning and

ntegrating mathematical thinking with
deep learning also necessitates assessment re-
form. Evaluations must extend beyond solu-
tion accuracy to examine how students cons-
truct representations, formulate generalizati-
ons, and employ reasoning. Consequently,
rubric-based formative assessments accom-
modating mathematical thinking dimensions
become vital instruments for meaning-orien-
ted pedagogy (Schoenfeld, 2011).

Collectively, the Deep Mathematical
Thinking model’s theoretical implications ad-
vance a transformative framework for mathe-
matics education prioritizing integrative, re-
flective, and transfer-oriented design. Instruc-
tion shifts focus from mechanistic skills or
end products toward developing deep thin-
king processes that enable students to com-
prehend mathematical structures and apply
them flexibly across real-world contexts.
Thus, learners evolve beyond skilled pro-
blem-solvers into reflective and adaptive ma-
thematical thinkers.

Tabel 1. Instructional Components and Strategies in the Deep Mathematical Thinking Model

Component Theoretical Implications Instructional Strategy Examples Assessment
Instruments
Conceptual Enables learners to link new — Initiate with a real-world scenario Formative rubric evaluat-
Connectivity mathematical ideas with prior  (e.g., daily temperature changes)  ing depth of conceptual

knowledge, fostering deeper,

and collaboratively build a concept links

more meaningful understand-  map
ing. — Use group concept-mapping ac-
tivities

Intrinsic Moti- Cultivates emotional and intel-
lectual engagement by embed-
ding math tasks in authentic,
challenging contexts.

vation

els

— Assign an open-ended household Observation checklist of
budget planning problem
— Host small-team challenges to de- reflections
sign innovative mathematical mod-

participation & journal

Metacognition Develops awareness of one’s
own thinking processes, im-

tegic problem solving.

— Implement think-aloud protocols
during complex problems

proving self-regulation and stra- — Require reflective journals after
group problem-solving sessions

Self-assessment rubric
measuring quality of
metacognitive reflection
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Assessment
Instruments

Constructive
Alignment

Ensures coherence among
learning objectives, activities,
and assessments to optimize
cognitive and affective engage-
ment.

— Use multi-layered performance
assessments

— Design tasks combining graphical Performance rubric
analysis, reflective meaning-mak-
ing, and conceptual generalization

checking alignment of
objectives, processes,
and outcomes

Meaning-Ori-
ented Instruc-

Promotes deep understanding
and transferability by focusing
tion on underlying structures and
real-world applicability.

fects

— Engage students in a popula-
tion-growth modeling case study
— Facilitate experiments varying
function parameters to observe ef-

Portfolio showcasing ev-
idence of concept trans-
fer across contexts

Based on Table 1, Conceptual Connecti-
vity highlights the importance of linking new
mathematical ideas to students’ prior knowle-
dge. For example, before diving into func-
tions, an instructor might begin with a discus-
sion of daily temperature fluctuations an ex-
perience every student encounters and then
collaboratively build a concept map showing
how those fluctuations correspond to the
shape of a function’s graph. Such activities
strengthen the relational network among
ideas, and a formative rubric can gauge how
deeply learners integrate new concepts with
their existing mental frameworks.

The Intrinsic Motivation component
seeks to foster students’ emotional and intel-
lectual engagement by presenting context-
rich, challenging tasks. As an illustration, le-
arners might tackle an open-ended budgeting
problem for a household requiring them to ap-
ply arithmetic and algebra in a real-world sce-
nario or participate in small-team competi-
tions to design innovative mathematical mo-
dels. Throughout these tasks, the teacher
observes levels of participation and reviews
students’ reflective journal entries to assess
the emergence of genuine, self-driven motiva-
tion.

Metacognition centers on developing stu-
dents’ awareness of their own thinking pro-
cesses. Techniques such as think-aloud proto-
cols during complex problem solving allow

both teacher and peers to hear the student’s
reasoning steps, while reflective journals
written after group discussions encourage le-
arners to document and evaluate the strategies
they employed. A self-assessment rubric then
provides a systematic way to measure the qua-
lity of each student’s metacognitive reflec-
tions, such as their ability to spot logical er-
rors or plan subsequent steps.

With Constructive Alignment, every ele-
ment of the instructional design objectives,
activities, and assessments is deliberately
aligned to optimize both cognitive and affec-
tive engagement. In a lesson on functions, this
means crafting tasks that require graphical
analysis, meaning-making reflections, and
conceptual generalizations, all paired with a
multi-layered performance assessment. Clear
rubrics guide the teacher in verifying that the
learning objectives, the student processes, and
the outcomes are all in sync.

Finally, Meaning-Oriented Instruction
emphasizes deep understanding and the capa-
city to transfer knowledge to new contexts.
For instance, students might work on an inte-
grated case study modeling population
growth, then experiment with different func-
tion parameters to see firsthand how each
change affects the outcome. A portfolio con-
taining evidence of their work across varied
situations serves as an effective assessment
tool, revealing the extent to which learners
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can apply mathematical concepts flexibly in
real-world problems.

b. Implications for Future Research

The Deep Mathematical Thinking model
developed in this study offers not only a
conceptual contribution but also opens
avenues for multidimensional future research
agendas. Implications for subsequent research
include the need for empirical validation,
cross-context exploration,
instrument development, and studies on the
roles of teachers and technology in model

evaluation

implementation. Given the theoretical and
integrative nature of this model, the primary
challenge for research lies in
operationalizing, measuring, and testing its
constituent elements within diverse authentic
mathematics learning contexts.

Without a strong empirical foundation,
this model risks becoming merely a normative

future

theoretical framework that is difficult to ope-
rationalize in real practice. Therefore, testing
in real classroom situations becomes an im-
portant step to ensure that every element in the
model truly reflects the cognitive dynamics of
students during the mathematics learning pro-
cess.

Future research should prioritize empiri-
cal testing of inter-element relationships
within the model. Although constructed from
a conceptual synthesis of deep learning theory
(Entwistle & Peterson, 2004; Marton & Siljo,
1976) and mathematical thinking frameworks
(Lithner, 2008; Schoenfeld, 2011), the inter-
connections among these elements lack empi-
rical verification. Subsequent studies could
examine relationships between conceptual
connectivity, intrinsic motivation, and meta-
cognition relative to students' reasoning, ge-
neralization, and abstraction abilities. This
could be achieved through developing valid
and reliable measurement instruments, such

Toward a Theoretical Model of Deep Mathematical Thinking: Integrating Deep Learning and

as scales, observational protocols, or mathe-
matical thinking process analyses.

Such research may employ design-based
research (DBR) or mixed-methods approa-
ches. DBR provides space to develop learning
interventions based on this model and test
them through iterative classroom cycles
(Wang & Hannafin, 2011), enabling contex-
tual and dynamic refinement rather than static
validation. Meanwhile, mixed methods allow
triangulation between quantitative data (e.g.,
student motivation or metacognition) and
qualitative data (e.g., visual representations or
reasoning strategies employed in problem-
solving).

Further research should also investigate
contextual and cultural dimensions of model
implementation. Cross-cultural or cross-edu-
cational system studies would reveal how this
model functions within distinct learning fra-
meworks. In Indonesia's transitioning curricu-
lum shifting toward differentiated, compe-
tency-based learning opportunities exist to
test deep learning elements amid structural
educational challenges. Kember (2000) rese-
arch demonstrates that cultural learning orien-
tations significantly influence students' ten-
dencies toward deep or surface learning ap-
proaches.

Another critical implication involves de-
veloping novel measurement instruments and
indicators to capture latent dimensions of the
model, such as mental representation cons-
truction or metacognitive strategies. Measu-
ring these dimensions requires methods that
are not merely descriptive but also explora-
tory and interpretative. Relevant approaches
include stimulated recall, verbal protocol
analysis, and cognitive task analysis (Ericsson
& Simon, 1993), which capture thought pro-
cesses not always directly observable. Deve-
loping rubrics, interview protocols, observa-
tion sheets, and learning analytics-based
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digital applications constitutes vital future
methodological directions.

As educational technology evolves, the
integration of learning analytics and adaptive
learning platforms can be an effective means
of tracking the development of mathematical
thinking in real-time, while also providing au-
tomated feedback tailored to each student's
cognitive profile.

Moreover, teacher professional deve-
lopment emerges as an indispensable factor.
While teachers are key actors in implemen-
ting meaningful learning, few studies expli-
citly connect teacher understanding of deep
learning theory and mathematical thinking.
Qualitative phenomenological or case study
research could explore how teachers interpret
and design mathematics instruction based on
this model, aligning with Mellati et al. (2015)
findings that teachers' pedagogical beliefs and
knowledge substantially impact student lear-
ning experiences. Teacher competency stren-
gthening should not only encompass technical
training for model implementation but also in-
volve the reconstruction of perspectives
toward mathematics learning as a dialogical,
reflective, and meaningful process, rather
than merely the transmission of procedures
and rules.

Additionally,
tracking long-term development of deep ma-
thematical thinking are essential. Unlike

longitudinal  studies

117
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procedural skills, reasoning and abstraction
abilities develop gradually through complex
processes. Long-term research would deepen
understanding of how deep thinking processes
form, evolve, or regress across students' aca-
demic trajectories. Such findings are crucial
for informing sustainable curriculum policies
and pedagogical interventions. Long-term re-
search can also provide insights into how deep
mathematical thinking skills correlate with
academic success across subjects, as well as
life skills such as data-driven decision-ma-
king, complex problem-solving, and quantita-
tive literacy.

Finally, this model enables development
of more contextualized and specialized vari-
ants. Researchers could create sub-models for
specific educational levels (e.g., elementary,
middle, high school), mathematical domains
(e.g., algebra, geometry, statistics), or student
groups (e.g., gifted learners or those with le-
arning difficulties). This flexibility positions
the Deep Mathematical Thinking model as an
initial conceptual framework adaptable to di-
verse mathematics education research initiati-
ves. Thus, the model serves not merely as an
endpoint of conceptual synthesis but as a pro-
mising springboard for further academic ex-
ploration in developing meaningful mathema-
tics learning theory, methodology, and prac-
tice.

Tabel 2. Proposed Future Research Agenda for the Deep Mathematical Thinking Model

Research Focus Key Questions

Methods / Instruments

Expected Outcomes

Empirical Valida- — To what extent do the
tion model’s elements reflect stu-
dents’ actual cognitive pro-

— Field testing in real class-
rooms
— Measurement scales & ob-

— Empirical evidence for
model validity
— Mapping of each ele-

cesses? servation protocols ment’s strengths and
—How are the elements interre-  — Statistical analysis of vari- weaknesses
lated? able relationships

Inter-Element Re- — Do conceptual connectivity, —— Reliable measures foreach — Quantitative under-

lationships intrinsic motivation, and meta-
cognition influence reasoning

abilities?

variable verbal
protocols)

— Path analysis

(surveys,

standing of correlations
and causal links among
model elements
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Research Focus

DBR &
Mixed-Methods

Key Questions

— How can the model be re-
fined through iterative class-
room cycles?

— How do quantitative and
qualitative data complement
each other?

Methods / Instruments
— Design-Based Research
(Wang & Hannafin, 2011)
— Surveys, interviews, class-
room observations

Expected Outcomes

— Prototype learning in-
terventions based on the
model

— Continuous improve-
ment recommendations

Contextual &

— How does the model function

— Cross-cultural /

— Adaptation mapping by

Cultural Dimen- across different educational cross-school comparative cultural context

sions systems and cultures? studies — Implementation guide-
— What are the implications — Analysis of cultural learn- lines for varied settings
within Indonesia’s compe- ing orientations (Kember,
tency-based curriculum? 2000)

Novel Measure- — How can we measure mental — Stimulated recall, verbal — Valid and reliable in-

ment Instruments

representations and metacogni-
tive strategies?

— Which tools are truly explor-
atory and interpretative?

protocol, cognitive task
analysis (Ericsson & Simon,
1993)

—  Rubrics,
sheets, LA apps

observation

strument set for in-depth
research

— Sample rubrics and in-
terview/observation pro-
tocols

Technology &
Learning Analyt-
ics

— How can learning analytics
and adaptive platforms track
and provide real-time feed-
back?

— What impact do they have on
development of mathematical
thinking?

— Development of an LA
dashboard

— Experimentation  with
adaptive learning platforms

—  Prototype  cogni-
tive-progress monitoring
system

— Data on feedback effi-
ciency and effectiveness
for students

Teacher Profes- — How do teachers’ under- — Phenomenological / case — CPD training model in-
sional Develop- standings of deep learning the-  studies (Mellati et al., 2015) corporating perspective
ment ory translate into practice? — In-depth interviews and reconstruction
— What role do pedagogical be-  focus groups — Reflective practice
liefs play? training modules
Longitudinal — How do students’ reasoning — Multi-year longitudinal re- — Trajectory charts of
Studies and abstraction skills evolve search deep thinking develop-
over time? — Periodic assessments & ment
— How are these skills linked to  student portfolio tracking — Evidence to inform sus-
academic success and life tainable curriculum and
skills? policy
Contextualized — How can sub-models be — Development and valida- — Detailed framework
Model Variants adapted for specific grades or tion of context-specific variants for each
domains (algebra, geometry, sub-models level/domain

statistics)?
— How to tailor for special stu-
dent groups?

— Pilot tests with targeted
samples

— Adaptation guidelines
for gifted learners and
those with learning diffi-
culties

Based on Table 1, several key directions
emerge for scholars aiming to deepen both
theoretical and practical understanding of the
model. First,

empirical validation and

investigation of inter-element relationships
are foundational. Field testing in real classro-
oms, combined with robust measurement sca-
les, observation protocols, and statistical
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techniques such as path analysis, will esta-
blish whether the model’s components con-
ceptual connectivity, intrinsic motivation, and
metacognition truly reflect students’ cogni-
tive dynamics and how they causally interact
to support reasoning, generalization, and abs-
traction.

Next, methodological innovation is para-
mount. Design-Based Research (DBR) offers
an iterative, context-sensitive approach to re-
fine learning interventions, while mixed-me-
thods designs will triangulate quantitative in-
dicators (e.g., motivation scores, metacogni-
tive self-reports) with qualitative data (e.g.,
verbal protocol analyses, classroom dis-
course) to yield a richer, more nuanced pic-
ture of how deep mathematical thinking un-
folds. Equally important is the development
of novel instruments stimulated recall, cogni-
task analyses, rubrics, and lear-
ning-analytics dashboards that go beyond des-

tive

criptive measures to capture latent dimensions
like mental representation construction and
real-time feedback loops.

Finally, contextual and longitudinal pers-
pectives will ensure the model’s adaptability
and sustainability. Comparative studies
across cultures and educational systems inclu-
ding Indonesia’s evolving competency-based
curriculum will map how local learning orien-
tations shape model implementation. Teacher
professional development, explored through
phenomenological or case-study approaches,
will reveal how educators’ beliefs and peda-
gogical practices mediate student engagement
with deep thinking processes. Longitudinal
research, spanning multiple academic years,
will chart trajectories of reasoning and abs-
traction skills, informing curriculum policies
and revealing connections to broader life-long
competencies. Moreover, creating specialized
sub-models for different grade levels, mathe-
matical domains, and learner populations will
position the Deep Mathematical Thinking

119
Mathematical Reasoning Frameworks

model as a flexible framework ready for di-
verse educational research and practice.

c. Strengths and Limitations of the Mo-

del
1) Strengths of the Model

The Deep Mathematical Thinking model
offers significant theoretical and practical
advantages, positioning it as an innovative
framework for designing meaningful and
profound mathematics learning. Its strengths
lie in its multidisciplinary synthesis,
educational applicability, and flexibility
across diverse learning levels and contexts.
a) Systematic  Integration of Two

Theoretical Disciplines

The model’s primary strength is its
successful integration of major
theoretical approaches that have historically
developed in parallel: deep learning theory in
education (Biggs & Tang, 2011; Entwistle &
Peterson, 2004) and mathematical thinking
theory (Lithner, 2008; Schoenfeld, 2011).
This integration is systematically achieved
through a three-tiered hierarchical structure
for deep mathematical thinking processes: (1)
the foundational level encompassing intrinsic
motivation, metacognition, and conceptual
connectivity; (2) the applied cognitive level

two

involving reasoning, generalization,
representation, and abstraction; and (3) the
integrative level as the pinnacle of deep
thinking. Such an integrative approach is cru-
cial in modern education as it encourages
synergy between general learning theories
and domain-specific needs, resulting in peda-
gogical models that are more contextual and
functional in real classroom practice.

While deep learning theory has primarily
been developed in general higher education
contexts without domain-specific focus,
mathematical thinking research has largely
remained within mathematics education,
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seldom explicitly linked to reflective learning
processes. By unifying these approaches, the
Deep Mathematical Thinking model provides
a comprehensive cross-disciplinary synthesis
that bridges general cognitive theory and
mathematics-specific pedagogy.

b) Practicality: Translates to Curriculum

Design and Observational Instruments

A key advantage is the model’s high
applicability. Its hierarchical structure enables
its use as a framework for designing learning
activities, formative assessments, and
classroom observation tools. For instance, at
the foundational level, teachers can design
activities fostering motivation and self-
reflection, such as learning journals, reflective
discussions, or concept mapping. At the
applied cognitive level, educators can develop
exploratory  tasks  promoting  diverse
representations and generalization abilities.

In classroom research contexts, the
model provides a basis for developing rubrics
or coding systems to identify students’
thinking levels during mathematical problem-
solving. As Panizzon (2003) emphasizes,
explicit conceptual frameworks are essential
for detecting variations in students’ cognitive
levels a need directly addressed by this
model’s structure.
1. Flexibility Across Educational Levels and

Classroom Contexts

The model demonstrates notable
flexibility, being adaptable from primary to
higher education. While thinking complexity
varies across levels, core elements, such as
reasoning, representation, and metacognition
can be identified and developed at all
cognitive stages (Vosniadou, 2001). For
example, conceptual connections and
reasoning in primary education can be
cultivated through concrete visual activities,
while abstract generalization and proof in

Toward a Theoretical Model of Deep Mathematical Thinking: Integrating Deep Learning and

higher education can be facilitated via
symbolic  discourse  and  theoretical
exploration.

Furthermore, the model is pedagogy-
agnostic. It can be implemented across
approaches like Problem-Based Learning
(PBL), Realistic Mathematics Education
(RME), and other constructivist methods.
This allows teachers to integrate the
framework into responsive
instructional designs aligned with student
needs. The model's flexibility also allows for
cross-curricular and cross-cultural adaptation,

contextually

making it highly relevant for implementation
in diverse educational systems, such as in the
context of Indonesia's Merdeka Curriculum,
which emphasizes differentiated and contex-
tual learning.

2) Limitations of the Model

Despite its conceptual and pedagogical
contributions, the
Thinking model has
regarding practical implementation and
theoretical scope. Acknowledging these
constraints is essential for future refinement.

Deep Mathematical
several limitations

a) Conceptual Nature Lacking Empirical

Validation

The primary limitation is the model’s
conceptual status. Although grounded in a
rigorous synthesis of theories and prior
research, it lacks empirical validation in
authentic learning contexts. Thus, its
effectiveness in  enhancing  students’
mathematical thinking and its
implementability by teachers remain
unproven through direct evidence.

Empirical  validation is  critical,
particularly given the model’s complexity,
which demands nuanced measurement tools
and layered research designs. As Akker et al.
(2007) assert, conceptual models only yield
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significant contributions when systematically
operationalized and tested within actual
instructional settings.
b) Underemphasized Affective and Socio-

Cultural Dimensions

The model insufficiently addresses
affective and socio-cultural factors crucial to
mathematics learning. Notably absent is
explicit consideration of mathematics anxiety,
proven to inhibit reflective thinking and
effective metacognitive strategy use (Marsh
& Dolan, 2007). Such affective states
influence students’ representation
reasoning approaches, and
of errors as learning

construction,
interpretation
opportunities.

Additionally, the
explicitly integrate sociocultural perspectives.
Yet social interactions, learner identity, and
mathematical are vital for
constructing deep mathematical meaning. As
Boaler (2002) emphasizes, mathematics
learning practices are shaped by classroom
norms, teacher perceptions, and cultural
values. Thus, expanding the framework to

model does not

language
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incorporate sociocultural perspectives would
enhance its relevance and sensitivity to
complex social contexts.

c) Implementation Complexity in Time-

Constrained Classrooms

The hierarchical structure spanning
cognitive and affective dimensions requires
deep educator understanding and meticulous
lesson planning. Implementation may prove
challenging in time-constrained classrooms
facing and high
administrative burdens. Teachers unfamiliar

curriculum pressures

with reflective approaches or untrained in
meaningful mathematics pedagogy may
struggle to design activities holistically
addressing all model elements.

Furthermore, pressures to meet national
assessment targets often prioritize procedural
mastery and immediate outcomes over deep
thinking processes. As Murray (2013)
pedagogical reform
hinges on teachers’ professional capacity and
systemic support enabling innovation within
rigid educational structures.

explains, successful

Tabel 3. Summary of Strengths and Limitations of the Deep Mathematical Thinking Model

Category | Aspect |

Strength

Description

— Systematic Inte- — Combines deep learning theory in education (Biggs & Tang, 2011; Entwistle

gration of Two
Theoretical Disci-
plines

& Peterson, 2004) with mathematical thinking theory (Lithner, 2008; Schoen-
feld, 2011) into a three-tiered hierarchy (foundational, applied cognitive, inte-
grative), bridging general cognitive theory and math-specific pedagogy.

— Practicality:
Curriculum & Ob-
servational Instru-
ments

— Provides a clear framework for designing learning activities (e.g., journals,
concept maps), formative assessments, and classroom observation tools or ru-
brics, enabling teachers and researchers to identify and foster different levels of
students’ mathematical thinking in real classrooms.

— Flexibility
Across Levels &
Contexts

— Adaptable from primary through higher education and pedagogy-agnostic
(e.g., PBL, RME), supporting concrete visual tasks for young learners up to ab-
stract proof work in university, and capable of cross-cultural and cross-curricular
use (e.g., Indonesia’s Merdeka Curriculum).

Limitation — Conceptual Na-
ture Without Em-

pirical Validation

— Remains a theoretically grounded but untested framework; its real-world ef-
fectiveness, measurement tools, and teacher implementability have not yet been
demonstrated through systematic empirical studies in authentic classroom set-
tings.

Journal of Deep Learning | p-ISSN xxxx-xxxx, e-ISSN xxxx-xxxx
Vol. 1, No. 2, December 2025 (109-126)



122 Toward a Theoretical Model of Deep Mathematical Thinking: Integrating Deep Learning and
=) Mathematical Reasoning Frameworks
Category | Aspect | Description
—Underempha-  — Does not explicitly address mathematics anxiety or other affective factors, nor

sized Affective & sociocultural influences such as learner identity, social interaction, and cultural

Socio-Cultural Di- norms, all of which critically shape how students engage in representation, rea-

mensions

soning, and reflection.

— Implementation — Its multi-layered structure demands deep teacher understanding and detailed

Complexity in

lesson planning, posing challenges under heavy curriculum pressures, limited

Time-Constrained class time, and high-stakes assessments especially where professional support

Classrooms

for reflective, meaningful mathematics pedagogy is lacking.

Based on Table 1, the Deep Mathematical
Thinking model demonstrates three core
strengths and three principal limitations. First,
its systematic integration of deep learning
theory in education with mathematical
thinking theory creates a cohesive, three-
tiered hierarchy that bridges general cognitive
frameworks and domain-specific pedagogy,
enabling more contextualized and functional
classroom practice. Second, the model’s
practicality lies in its clear guidance for
curriculum design and  observational
instruments teachers can draw on its levels to
create motivational activities, reflective
journals, concept maps, and rubrics that
pinpoint students’ thinking during problem
solving. Third, the model offers flexibility: it
applies from primary through higher
education, across pedagogical approaches
such as Problem-Based Learning or Realistic
Mathematics Education, and is adaptable to
various cultural or curricular contexts like
Indonesia’s Merdeka Curriculum.

However, Table 1 also highlights key
limitations. Its conceptual nature means it
remains untested in authentic classrooms;
without empirical validation, its impact on
student learning and the feasibility of teacher
implementation are unknown. The model also
underemphasizes affective and socio-cultural
dimensions, omitting factors such as
mathematics anxiety and the role of social
interaction, identity, and cultural norms that

critically influence how students reason and
reflect.  Finally, its  implementation
complexity can overwhelm teachers working
under tight time constraints,
assessment pressures, and limited
professional support, making comprehensive
adoption challenging  without
training and support.

heavy

systemic

4. Conclusion
This study proposes the conceptual Deep
Mathematical Thinking model as an

integrative framework bridging deep learning
theory in education with mathematical
thinking theory in mathematics. The model
represents a synthesis of three hierarchical
levels: (1) the foundational level (intrinsic
motivation, metacognition, and conceptual
connectivity); (2) the applied cognitive level
(reasoning, generalization, representation,
and abstraction); and (3) the integrative level
as the culmination of profound and reflective

mathematical  thinking.  Through this
structure, the model offers a cross-
disciplinary  contribution that expands

perspectives on  designing meaningful
learning to cultivate advanced mathematical
understanding.

The model's implications encompass ap-
plications in curriculum development, asses-
sment design, instructional planning, and fu-
ture research. Educators and curriculum deve-
lopers may utilize this framework to design
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activities and evaluations that stimulate stu-
dents' conceptual understanding and reflec-
tive thinking. Furthermore, the model creates
avenues for empirical research through struc-
tural validity testing and classroom imple-
mentation studies. Given its high flexibility,
the Deep Mathematical Thinking model holds
potential for adaptation not only within ma-
thematics education but also across discipli-
nary contexts emphasizing the integration of
cognitive reasoning and deep reflection.

This model not only presents a
comprehensive theoretical construct but also
foundation for
transforming mathematics learning from a
procedural into a
reflective,

provides a systematic
nature meaningful,
and learning
experience. In the era of 2lst-century
education, which demands mathematical
literacy, critical thinking, and knowledge
transfer abilities, this model emerges as a

contextual

strategic alternative capable of addressing the
challenges of modern curricula. Thus, Deep
Mathematical Thinking not only serves as a
result of theoretical synthesis but also as a

potential instrument for creating
transformative pedagogical change, oriented
towards developing students' holistic,

adaptive, and visionary competencies.

The Deep Mathematical Thinking model
developed by Santosa et al. (2021) is an
innovative framework that unites a profound
understanding of learning and mathematical
thinking. Although still theoretical, this model
holds great potential for reforming
mathematics learning to be more reflective,
contextual, and meaningful. Further research,
especially classroom-based and with wvalid
instruments, is highly needed to test and
develop this model.
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