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Abstract-The topic of solving Timetabling Problems is an interesting area of study. These problems are commonly 
encountered in many institutions, particularly in the educational sector, including universities. One of the challenges 
faced by universities is the Course Timetabling Problem, which needs to be addressed regularly in every semester, taking 
into consideration the available resources. Solving this problem requires a significant amount of time and resources to 
create the optimal schedule that adheres to the predefined constraints, including both hard and soft constraints. As 
a problem of computational complexity, University Course Timetabling is NP-hard, meaning that there are no exact 
conventional algorithms that can solve it in polynomial time. Several methods and algorithms have been proposed 
to optimize course timetabling in order to achieve the optimal results. In this study, a new hybrid algorithm based 
on Hyper-Heuristics is developed to solve the course timetabling problem using the Socha Dataset. This algorithm 
combines the strengths of Simulated Annealing and Tabu Search to balance the exploitation and exploration phases 
and streamline the search process. The results show that the developed algorithm is competitive, ranking second out 
of ten previous algorithms, and finding the best solution in six datasets.
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1.  Introduction

The Timetabling problem is a problem to efficiently 
allocate time and resources towards meetings with the aim 
of minimizing constraint violations [1], [2]. This issue 
is widespread across multiple fields, however, it receives 
particular attention in the area of course timetabling. This 
specific challenge involves scheduling academic courses 
for lecturers, time slots, and classrooms in a manner 
that enhances the quality of education [3]. Despite its 
importance, manually resolving the timetabling problem 
is time-consuming and often yields suboptimal results. 
As a result, current research efforts have shifted towards 
automating the solution to this problem, particularly in 
the context of large-scale case studies [4].

The Timetabling problem is regarded as NP-
hard, making it difficult for exact algorithms to solve it 
in polynomial time [5]. As a result, non-deterministic 
algorithms, such as metaheuristic and hyper-heuristic 
algorithms, have been developed to generate solutions 
that are close to the global optimum in polynomial 

time [6]. In response to this problem, the present study 
has proposed a new hybrid hyper-heuristic algorithm. 
This hybrid approach combines the benefits of two 
algorithms, and the use of a hyper-heuristic is motivated 
by the generalization advantage it provides, eliminating 
the need for parameter tuning for each dataset [7].

The hybridization was developed through the 
integration of two algorithms: Simulated Annealing 
and Tabu Search.  The Simulated Annealing algorithm, 
a metaheuristic that simulates the cooling process of 
heated steel, has the advantage of escaping local optima 
through its diversification process and accepting worst 
solutions [8]–[11]. On the other hand, Tabu Search is 
a meta-heuristic algorithm that uses memory objects 
to achieve both economic exploitation and exploration 
in the search space. The tabu list is used to prevent the 
search from revisiting previously visited solutions by 
adding the recently visited solutions to the list [12]. 
The main advantage of the Tabu Search algorithm is its 
implementation of the tabu list, which helps the search 
move away from previously visited areas and perform 
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more extensive exploration in the search space [13]. By 
combining these two hybridized algorithms, it is expected 
that an optimal solution for the automated course 
timetabling problem can be obtained. The hybridization 
was performed due to several previous studies that 
showed that hybrid algorithms produce more optimum 
solutions.

The Socha dataset was utilized as the test dataset in 
this study. It is a popular dataset among researchers and 
has become a benchmark for evaluating the performance 
of developed algorithms [14]–[16]. This dataset 
encompasses a range of course timetabling problems, 
from small to large in size.

The structure of this paper is as follows: Section 
2 provides an overview of the related literature and 
research that supports the study. Section 3 explains the 
implementation process of the Tabu-Simulated Annealing 
Hyper-Heuristics Algorithm for the Socha dataset. The 
results and analysis of the implementation of the Tabu-
Simulated Annealing based Hyper-Heuristics Algorithm 
are presented in Section 4. Section 5 compares the results 
obtained from the Tabu-Simulated Annealing Hyper-
Heuristics Algorithm with the benchmark solution from 
previous studies. In the final section, 6, the conclusion 
and future prospects of this research are discussed.

2.  Related Works

a.  Timetabling
The Timetabling problem is a combinatorial 

optimization problem that involves scheduling a set 
of events with specific characteristics onto limited 
resources while satisfying predefined constraints [17]. 
This problem is prevalent in various domains, such as 
transportation, sports, health and education [3]. Due to 
its computational complexity, the Timetabling problem 
is considered to be NP-hard, meaning that conventional 
algorithms cannot solve the problem in polynomial time 
[4], [5], [18].

b.  Socha Dataset
Socha dataset is a dataset that introduced by 

Kryzysztof Socha and developed by Ben Paechter 
[19]. Socha dataset consists of 11 instances, which are 
divided into 5 small instances, 5 medium instances, 
and 1 large instance. Table 1 show detail socha dataset. 
Each instance has various time limits. The time limit 
for the small instance is 90 seconds. Meanwhile, for the 
medium instance has a time limit of 900 seconds and for 
large instance is 9000 seconds. This time limit has been 
determined by Socha’s research [20]. 

The available timeslot for Socha dataset is 45 
timeslots with 9 timeslots in 5 days per week. The number 
of events is the sum of all available course. The number of 
features is a facility used for each scheduled course. The 
number of students is the sum of student in a semester. 
Meanwhile, the number of rooms is the available rooms 
in a semester [20].

Table 1. Statistic of Socha Dataset

Characteristic Small Medium Large

Event 100 400 400

Rooms 5 10 10

Features 5 5 10

Student 80 200 400

Approx. features per rooms 3 3 5

Percent feature use 70 80 90

Max events per student 20 20 20

Max student per event 20 50 100

c.  Constraint of Socha Dataset
The hard constraints of Socha dataset are [16]:

1)  No Student can be assigned more than one course 
at the same time.

2)  The rooms must satisfy the features required by 
course, including enough for all student taking 
course in that room.

2)  No more than course is allowed at a timeslot in each 
room.

4)  Only one course is allowed in each room at a time.

The soft constraints of Socha dataset are [16]:
1)  Student should not have a single course on a day.
2)  Student should not have more than two courses in 

a row on a day.
3)  Student should not have a course scheduled in the 

last timeslot of a day.

d.  Hyper-Heuristics
Hyper-heuristics is an approach to develop more 

general non-deterministic algorithms. This approach 
has four types: (1) exploration of heuristics combination 
for solution perturbation, (2) exploration of heuristics 
combination for solution construction, (3) generating 
heuristics for solution perturbation, and (4) generating 
heuristics for solution construction [21]. Structurally, 
hyper-heuristics are divided into three main components: 
(1) move acceptance to decide whether the new solution 
result is used in the next iteration or not, (2) heuristic 
selection to choose some heuristics used to modify the 
solution, and (3) a set of heuristics [22].

3.  Methods

a.  Generate Initial Solution
Initial Solution is a solution that is used as an initial 

schedule in optimization. This initial solution contains 
the initial timeslot and rooms before the optimization 
is run. Greedy Algorithm is used to form the initial 
solution, where the first order in a list of subjects is placed 
in the first available slot, so that all courses are scheduled.
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b.  Implementation of Tabu-Simulated Annealing 
Algorithm
Tabu-Simulated Annealing based Hyper-heuristics 

algorithm is implemented after the initial solution is 
generated. The first step of implementation is making 
low level heuristics. This research uses two types of low-
level heuristics, there are “swap” and “move”. “Swap” is 
the low-level heuristic that exchanging timeslot for two 
or more selected timeslot. While the “move” is moving 
the one or more selected timeslot to the random timeslot.
The implementation of the algorithm starts with the 
implementation of the Simulated Annealing algorithm. 
Simulated Annealing algorithm will be implemented on 
local search by using acceptance criteria, if the iteration 
produces a better solution than the previous solution, the 
new solution will be accepted as the current solution, so 
that the initial solution changes with a better solution. If 
the result of the iteration produces worse solution than 
the previous solution, the annealing process is calculated. 
Annealing process is conducted by Boltzmann equation. 
Figure 1 show detail Simulated Annealing algorithm. 

Figure 1. Simulated Annealing Algorithm

Tabu Search algorithm is implemented when the 
random value does not pass in the Boltzmann equation. 
Tabu Search will be implemented to check whether the 
solution is in the tabu list or not. If the solution is not 
in the tabu list, the new solution will be accepted as a 
current solution and entered that solution structure 
into tabu list. The solution cannot be accepted in next 
iteration until the solution exit from tabu list. Figure 2 
show detail Tabu Search algorithm.

In this research, Simulated Annealing and Tabu 
Search algorithm are hybridized making the new 
approach, Tabu-Simulated Annealing Algorithm. The 
hybridization of algorithms is shown in Figure 3.

Figure 2. Tabu Search Algorithm

Figure 3. Tabu - Simulated Annealing Algorithm

c.  Developing of Tabu-Simulated Annealing 
Algorithm

1)  Reheating
  Reheating is the process of increasing the 

temperature of each iteration. The increasing 
temperature is carried out when the temperature 
of iteration reached at the determined temperature. 
If the number of iterations has reached a multiple 
of reheating iterations, the temperature will be 
increased by the temperature of the reheating.

2)  Tabu Low-Level Heuristics
  The concept of tabu low level heuristics is like 

tabu list of Tabu Search algorithm concept. If low 
level heuristics does not give the better result than 
current solution, the low-level heuristics that have 
been choose will enter the tabu low level heuristics. 
Low level heuristics that have entered the tabu 
low level heuristics cannot be used until low level 
heuristics exit from tabu low level heuristics list.

3)  Roulette Wheel
  The roulette wheel is performed on low level 

heuristics. If a low-level heuristic produces a better 
solution, this low-level heuristic score will be added, 
for example +10. Otherwise, if a low-level heuristic 
produces a value that is no better, the score of the 
low-level heuristics will be reduced, for example -5. 
The score of all low-level heuristics will be counted 
in probability. So, the probability of selected low-
level heuristics always changes depend on the low-
level heuristics’ performance.

d.  Experiment of the Parameters
Tabu-Simulated Annealing algorithm has many 

parameters that influence the algorithm performance and 
the penalty result. This research use 10 parameters as that 
is used to experiment to get the optimum solution. The 
list of parameters is explained on Table 2.
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Table 2.  List of Parameters

Parameters Meaning

LLH The number of  low-level heuristics that used

T0 Initial temperature of  Simulated Annealing algorithm

T1 Final temperature of  Simulated Annealing algorithm

Alpha Decreasing temperature coefficient of  Simulated 
Annealing

N Alpha The number of  iterations for each decreasing 
temperature

Beta Increasing temperature coefficient of  reheating 
process

N Beta The number of  iterations for each increasing 
temperature

TL The length of  tabu list of  Tabu Search algorithm

TLLH The length of  tabu list of  Tabu Search algorithm

RW The method of  selecting low level heuristics based on 
roulette wheel process

Parameters Meaning

LLH The number of  low-level heuristics that used

T0 Initial temperature of  Simulated Annealing algorithm

T1 Final temperature of  Simulated Annealing algorithm

Alpha Decreasing temperature coefficient of  Simulated 
Annealing

4.  Results

The optimization results are determined through 
several experiments by changing the parameter values. 
Each experiment is conducted to determine a set of 
parameters that produced the smallest penalty score 
for optimization, called optimum solution. In this 
research, researchers found two sets of parameters that 
produced optimum solution. The set of parameters that 
produce the optimum solution is explained in Table 
3. The comparison of the experiment results is shown 
by the boxplot diagram in Figure 4, 5, and 6. Based on 
the Boxplot diagram, the best optimum solution is 
Experiment-N.

Table 3. List of Parameters

Parameters Experiment-K Experiment-N

LLH 2 2

T0 95 95

T1 0 0

Alpha 0,999 0,999

N Alpha 50 50

Beta 0,5 0,5

N Beta 25000 25000

TL 3 3

Parameters Experiment-K Experiment-N

TLLH 0 0

RW - Random Probability

Parameters Experiment-K Experiment-N

Figure 4. Boxplot Diagram for Small Instance

Figure 5. Boxplot Diagram for Medium Instance

Figure 6. Boxplot Diagram for Large Instance

The automated optimization program using 
Experiment-N parameters runs 11 times for each both 
experiment and instance. For each run, the experiment 
uses the time limit according to the rules of Socha dataset. 
The time limit for each small instance is 90 seconds, 900 
seconds for each medium instance, and 9000 seconds 
for the large instance. shows the penalty score results in 
optimum parameter. Table 4 describes the performance of 
Tabu-Simulated Annealing Hyper-Heuristics algorithm.
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Table 4. The Performance of Tabu-Simulated Annealing 
Hyper-Heuristics

Instance Average Initial Best Worst

small1 315,3 0 2

small2 327,7 0 3

small3 297,6 0 7

small4 164,5 0 8

small5 454,6 0 1

medium1 1028,6 198 256

medium2 1045,8 195 268

medium3 1071,2 208 299

medium4 1169,6 181 242

medium5 1169,5 116 209

Large 1960 936 1169

5.  Discussion

The results of this research were compared with 
previous studies, as demonstrated in Table 5.

Table 5. List of Benchmark Solution

Code Algorithm

MBO Migrating Bird Optimization [23]

Code Algorithm

FMH Fuzzy Multiple Heuristics [24] 

MA Memetic Algorithm [25]

RII Randomised Iterative Improvement [26]

TVNS Tabu - Variable Neighbourhood Search [27]

GC Graph Coloring [28]

TS Tabu Search [29]

MSLS MultiSwap Algorithm with Local Search [30]

MMAS Max-Min Ant Systems [19]

The results of this research were compared to 
previous studies and are presented in Table 6. The 
Tabu-Simulated Annealing Hyper-Heuristics algorithm 
performed best for the small instance, with a penalty 
score of 0. For medium1, the algorithm was ranked 4th 
out of 10 compared algorithms. In the case of medium2, 
the algorithm was ranked 6th, while for medium3, it was 
ranked 2nd, only behind the MultiSwap Algorithm with 
Local Search. The algorithm was ranked 5th for medium4 
and produced the best solution for medium5 compared 
to other benchmark solutions. The produced the best 
value of 936 and the algorithm was ranked 5th out of 10 
compared algorithms. Overall, the developed algorithm 
was ranked 2nd among the 10 algorithms compared.

Table 6. The Comparison of the Penalty Score Result

Instance
TSA MBO FMH MA RII TVNS GC TS MSLS

MMAS
Best Average Best Best Best Best Best Best Best Average

small1 0 0.9 25 10 0 0 0 6 1 2 1

small2 0 1.5 22 9 0 0 0 7 2 4 3

small3 0 1.8 19 7 0 0 0 3 0 2 1

small4 0 2.2 14 17 0 0 0 3 1 2 1

small5 0 0.1 17 7 0 0 0 4 0 0 0

medium1 198 230.9 394 243 221 242 317 372 146 174 195

medium2 195 235.5 378 325 147 161 313 419 173 184 184

medium3 208 271.3 305 249 246 265 357 359 267 188 248

medium4 181 219.7 282 285 165 181 247 348 169 180 164,5

medium5 116 151.2 276 132 130 151 292 171 303 132 219,5

large 936 1048 1015 1138 529 757 932 1068 1166 994 851,5

6.  Conclusion

The research aimed at developing a hybrid 
algorithm to tackle the course timetabling problem. The 
algorithm was created by combining the strengths of both 
simulated annealing and tabu search algorithms. The 
results showed that the developed hybrid algorithm had 
a promising performance. It ranked second among the 10 
algorithms developed in previous studies and produced 

the best results for 6 out of the 11 datasets tested. The 
study had limitations, particularly in the utilization of 
low-level heuristics, therefore future research could focus 
on enhancing the exploration of low-level heuristics.
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