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Development of Automated Physical Defect Inspection Systems in 
Greige Tarpaulin Fabric Based on Machine Learning Algorithms  

Muhammad Ario ilham Firmandito1a, Sri Raharno1b 

Abstract.  The textile industries in Indonesia have challenges, one of which is improving the efficiency of processes. 
PT NTX is a weaving industry company that produces gray tarpaulin textile products. In this industry, the inspection 
process for gray cloth resulting from the weaving process is generally carried out conventionally, using a cloth 
inspection machine and visually with the human eye. Traditional inspection methods cannot be applied to greige 
tarpaulin textile products since the characteristics of the greige tarpaulin textile are very prone to shifting or slipping 
of the woven thread construction if it is pulled, touched, or rewound. The process of detecting defects and quality 
control of greige tarpaulin textile products is carried out by the operator on the loom during the weaving process. 
This process, of course, will result in the need for inspection operators with high skills, and the consistency of 
inspection results is very dependent on the condition of the inspection operator. This research has used image 
processing techniques based on machine learning algorithms to overcome this problem by examining the product 
directly on the machine. This research has used the Mean Pixel Value method combined with the Logistic Regression 
Model and the Local Binary Pattern method combined with the Support Vector Machine as image process 
techniques. Based on the research results, the Mean Pixel Value method combined with the Logistic Regression 
Model had an accuracy rate of 61% on greige tarpaulin images, and the Local Binary Pattern method with the 
Support Vector Machine had an accuracy rate of 68%. 
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I. INTRODUCTION1 
The textile and textile product sector 

significantly impacts the national economy, 
constituting 18.79% of the manufacturing sector's 
workforce. In recent years, the nation's textile 
sector has evolved into a major global exporter 
(Prihandono & Religi, 2019), prompting a 
transition to Industry 4.0 to retain its competitive 
edge. Industry 4.0 fosters the integration of 
traditional manufacturing with information 
technology, creating interlinked, efficient systems 
(Harja et al., 2019). At PT NTX, located in 
Karawang, West Java, the inspection of fabrics 
woven pre-dominantly uses conventional 
methods. The assessment process is visual, 
augmented by specialized lighting, relying on 
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operators' keen eyesight to uphold set quality 
benchmarks. However, quality control presents 
unique challenges for the greige tarpaulin textile. 
These textiles are sensitive to manual handling, 
and given their considerable size, conventional 
inspection could be more practical. 

Advancements in image processing 
technology offer innovative solutions. 
Researchers have extensively explored various 
methods in this area; the first research 
accentuates the significance of industrial vision 
units that employ basic image processing for 
fabric inspection. Anagnostopoulos et al. 
(Anagnostopoulos et al., 2001) propose an 
algorithm that amalgamates statistical 
measurements with thresholding and 
morphological operations to improve accuracy 
and speed. Deep learning, specifically 
Convolutional Neural Networks (CNN), has been 
introduced, and it is adapted to discern and learn 
from image features across varying scales 
automatically. Jing et al. (Jing et al., 2020) have 
modified the adaptation of the CNN model 
YOLOv3, the framework's augmentation, using 
the k-means algorithm. In the continuous effort 
to improve the precision and efficiency of fabric 
defect detection, new methods are emerging, 
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each with distinct advantages and challenges. Li P 
(Li et al., 2014), explored in recent research, is 
centered on the Local Binary Pattern (LBP) for 
defect detection. LBP serves primarily as a tool to 
extract feature values from fabric images. 

This paper introduces an automatic textile 
defect detection system designed to identify 
prevalent faults in textile production, precisely the 
damaged edge defect. Utilizing computer vision 
methodologies, the proposed system merges 
image processing and machine learning 
techniques, which have gained traction in the 
textile research domain. Such technologies, 
leveraging computer vision and image 
processing, effectively detect textile defects 
during active production (Iqbal et al., 2020)). The 
innovation of this research lies in the utilization 
and combination of image processing and 
machine learning algorithm models, which are the 
Mean Pixel Value-Logistic Regression Model and 
Local Binary Pattern-Support Vector Machine. 
Before being applied to actual fabrics, these 
algorithms were initially tested on an artificial 
fabric dataset. Then, we subsequently adapted 
these algorithms for defect detection on the 
Greige Tarpaulin fabric dataset. This research's 
primary goal is to evaluate the accuracy of both 
algorithms. Furthermore, these results will be 
used to design an automatic visual inspection 
system that harnesses machine learning 
algorithms to classify defects, incorporating visual 
image processing techniques for a more efficient 
and precise defect detection mechanism. 

II. RESEARCH METHOD 
The research used methodology based on 

the problem formulation and research objectives. 
Based on the study, the system design is 
separated into two parts. First are the methods 
and overview of the system depicted in Figure 1 
and Figure 2, while the second part focuses on 
processing the images to detect defects, as 
shown in Figure 5. The proposed system can be a 
model for recognizing textile defects in the real 
world. 

Figure 2 offers a more granular 
understanding of the system's workflow. The 

system initiates with a continuous image-
capturing phase. Within this phase, a camera is 
designed to consistently record images of the 
desired object or area for one hour. All images 
captured within this time frame are temporarily 
stored for impending preprocessing. Following 
the cessation of each hour-long interval, these 
images are subjected to a preprocessing regimen. 
This phase is predominantly characterized by a 
defect detection process hinging on a dedicated 
machine learning model. 

 

Figure 1. Research Method. 

 

Figure 2. Overview of the system 
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Each preprocessed image is rendered to this 
model, which proffers a prediction indicating the 
potential presence of defects. After the 
projections, images recognized to harbor defects 
are systematically ushered to permanent storage, 
furnishing an avenue for in-depth scrutiny or 
future consultation. All processed images within 
the temporary repository are purged after their 
respective treatments to economize on storage 
and sustain operational efficiency. In parallel to 
the defect detection of images from a preceding 
hour, the system remains assiduously engaged in 
capturing images for the next cycle, ensuring an 
uninterrupted operational continuum. This 
system, by design, allows for both manual 
cessation by an operator and automated 
termination under pre-defined conditions. The 
overarching objective is to harness this system as 
an efficient tool for defect detection in textiles in 
real-world applications.  

III. RESULT AND DISCUSSION  
Experiments 

Our fabric defect detection research pivots 
around two primary datasets, representing a 
confluence of artificial and real-world fabric 
scenarios. The first, the Artificial Fabric Dataset, 
finds its origins in the notable work of Bergmann 
(Bergmann et al., 2019). Comprising images of 
fabrics, this dataset presents an apparent 
dichotomy of fabrics, namely those with defects 
and those without. Initially, this dataset underpins 
the development of our primary binary 
classification algorithm. Still, as our study 
advances, it morphs into a pivotal reference, a 
touchstone for validating real-world fabric 
samples. It is the foundation upon which the 
primary defect detection algorithm is constructed. 
Subsequently, its role transforms, becoming a 
reference or master key, a standard against which 
real-world data can be juxtaposed and validated. 

On the other side of the spectrum is the 
Greige Tarpaulin Dataset. This dataset is a 
manifestation of rigorous experimental data 
acquisition. Much like its artificial counterpart, it 
encapsulates images of greige tarpaulin fabric 
and distinguishes them based on the presence or 

absence of defects. We are transitioning to the 
intricacies of image acquisition. The Greige 
Tarpaulin Dataset was defined by its rigorous 
acquisition protocol. Utilizing an imaging camera 
device, there was a dedicated endeavor to ensure 
optimal resolution and accurate lighting 
conditions, thereby capturing the fabric in its 
most genuine state. Beyond mere acquisition, the 
task of data annotation was foundational. A 
systematic procedure was administered across 
both datasets, classifying each image as 'defect' 
or 'non-defect'—the precision inherent in this 
labeling, especially within the context of the 
Greige Tarpaulin Dataset. 

This binary-centric approach furnishes our 
research with clarity, precision, and robustness, 
ensuring unequivocal outcomes in our 
algorithmic pursuits. Figure 3 shows the artificial 
fabric dataset and greige tarpaulin fabric dataset 
image of the nondefect class. Figure 4 illustrates 
the artificial fabric dataset and greige tarpaulin 
fabric dataset image of the defect class. 

 

 

 

Figure 3. Artificial fabric dataset (left) and Greige 
Tarpaulin fabric dataset (right) for “non-defect” class 

 

Figure 4. Artificial fabric dataset (left) and Greige 
Tarpaulin fabric dataset (right) for “defect” class 

 



Firmandito & Raharno/ Development of Automated Physical Defect Inspection …JITI, Vol.23(1), Jun 2024, 143-150 

146 
 

Data Preparation 
Two primary datasets served as the pillars for 

this research, each containing 868 images. The 
Artificial Fabric Dataset, derived from Bergmann 
et al., and the Greige Tarpaulin Dataset, sourced 
from experimental acquisitions, are of particular 
mention. Figure 5 shown a notable aspect of 
these datasets is their balanced composition: 50% 
of the images in each dataset depict defects, 
while the remaining half showcase fabrics devoid 
of any defects. Such an even distribution ensures 
that the machine learning models are not biased 
and can learn to distinguish between the two 
classes effectively. The image labeling was 
anchored in a binary system: '0' for images with 
defects and '1' for those without. This categorical 
distinction facilitated the machine learning 
algorithms, particularly the Logistic Regression 
Model and the Support Vector Machine, in 
discerning and classifying the images based on 
their inherent characteristics. 

Prior to diving into training, the datasets 
were judiciously divided. In line with standard 
practices, 80% of the images (approximately 694 
images from each dataset) were allocated for 
training, while the balance of 20% (approximately 
174 images from each dataset). 

 
Mean Pixel Value-Logistic Regression Model 

This method combined image processing 
principles and machine learning to arrive at 
insightful conclusions. Central to the image 
processing component was the Mean Pixel Value 
method. This method calculates the average pixel 
value of the entire image or a defined region. In 
greigescale images, pixel values span from 0 

(black) to 255 (white). For color images, each of 
the three channels - red, green, and blue - adhere 
to this range. The Mean Pixel Value is determined 
by summing all the pixel values and dividing by 
the total pixel count. It was observed that regions 
with defects often exhibited a Mean Pixel Value 
that deviated significantly from the rest of the 
image, indicating potential anomalies. A 
significant feature of this model is its ability to 
understand the relationship between 
independent variables and a binary dependent 
variable, offering a probabilistic perspective 
(Perreault et al., 2017). 

Logistic regression models are advantageous 
when the dependent variable is categorical, and 
the relationship between the independent 
variable and the outcome is not linear. In logistic 
regression, the dependent variable is usually 
binary, representing two possible outcomes: 
defect or non-. The logistic regression model 
estimates the probability that a dependent 
variable falls into a specific category based on the 
values of the independent variables (Kost et al., 
2019). 

From Figure 6, it can be seen that one of the 
image samples with the “non-defect” class has a 
lower average pixel value compared to the image 
with the “defect” class because the defects that 
appear can cause sudden changes in pixel values, 
for example, scratches on a smooth surface can 
cause dark lines or sudden brightness in the 
image, contrasting with the surrounding pixel 
values. 

We utilized random sampling during this 
segmentation to fortify our data preparation 
against potential biases. Additionally, to further 

 

 

Figure 5. Dataset notation for training and testing, For 
defect class, (1) for non-defect class 

Figure 6. Mean pixel value of non-defect image (left) 
and defect image (right. 
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enhance the robustness of our model evaluation, 
we implemented k-fold cross-validation on the 
training set. This iterative method exposes the 
model to various subsets of the training data, 
aiming to optimize its generalized performance. 

Figure 7 shows the results of our cross-
validation, which delineate accuracy and 
variability across folds, are illustrated in Figure 6. 
The accuracy values for K-1, K-2, K-3, K-4, and K-5 
are 0.57, 0.59, 0.60, 0.59, and 0.58, respectively, 
yielding a mean accuracy of 0.59. This method, 
widely acknowledged in machine learning studies, 
comprehensively evaluates model performance 
through diverse training and validation 
combinations. Despite the inherent randomness 
in our sampling approach, we meticulously 
ensured a balanced representation across classes 
to maintain the authenticity and reliability of our 
analysis, particularly in light of the challenges 
posed by imbalanced datasets. 

After completing cross-validation, which 
provided valuable insights into our model's 
robustness, we transitioned to evaluating its 
performance on the independent 20% test 
dataset. This phase is pivotal in assessing how 
well our model generalizes to unseen data, 
offering crucial insights into its real-world 
applicability. To delve into the nuances of the 
model's classification performance, we employed 
the Confusion Matrix. The resulting Confusion 
Matrix shown in Figure 7 presents a detailed 
breakdown of the model's performance across 
different classes. For instance, the matrix 

showcases the accurate classification of cases 
belonging to class 0 with 89 true positives, 
underlining the model's proficiency in handling 
the specific characteristics of this category. The 
precision rate of 65% further emphasizes the 
effectiveness of the algorithm in correctly 
identifying instances of class 0. On the other 
hand, the representation of class 1 in the 
Confusion Matrix paints a more complex picture. 
While 72 instances were accurately classified, 
contributing to an overall value of 61%, the 47 
misidentifications—instances of class 0 marked as 
class 1—point to potential overlaps or 
ambiguities in the feature space between the 
classes. Additionally, the 56 cases where genuine 
class 1 items were mistakenly classified as class 0 
highlight the challenges in differentiation. 

The Confusion Matrix provides a 
comprehensive snapshot of our model's 
performance post-cross-validation, offering 
insights into its strengths and improvement areas 
(see Figure 8). This analysis sets the stage for a 
broader evaluation of our model's accuracy, 
precision, recall, and F1 score, which we detail in 
the subsequent sections of this paper. 

 
Local Binary Pattern-Support Vector Machine 

To solidify our experiment, the study 
initiated the deployment of the Local Binary 
Pattern (LBP) method for a focused texture 
analysis of digital images. LBP's prowess lies in its 
intricate ability to discern detailed texture 
features, relying on a meticulous study of pixel 

 

Figure 7.  Cross validation of Greige Tarpaulin dataset 

 

 

Figure 8. Confusion matrix of Greige Tarpaulin with 
Logistic Regression algorithm 
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intensity variations. It involves contrasting the 
value of a central pixel with its adjacent 
counterparts, thereby capturing the subtleties and 
intricacies of textural patterns (Li et al., 2014). The 
LBP method offers flexibility through parameters 
P and r, where P stipulates the number of 
surrounding pixels, and r, or the radius, 
demarcates the circular distance between these 
surrounding pixels and the central one. Having 
extracted features through LBP, the study 
seamlessly transitioned to machine learning, 
specifically leveraging the capabilities of the 
Support Vector Machine (SVM) capabilities. The 
introduction of SVM by Cortes and Vapnik in 
1995 heralded a powerful tool adept at 
classification and regression. Its core functionality 
is discerning the optimal hyperplane in an 
expanded feature space, achievable through 
linear or non-linear mappings. This hyperplane 
then stands as a critical classifier, distinctly 
categorizing data. The intricate texture data 
sourced from LBP primed the SVM for nuanced 
classifications (Cortes et al., 1995; Wang et al., 
2017). 

 

To operationalize this procedure, the image 
underwent initial processing via the LBP method, 
effectively translating the image's texture into 
extractable features for consumption by the SVM. 
The study's meticulousness is evident in its 
rigorous testing of the LBP's P and r parameters 

to ascertain optimal texture detection. Three 
distinct (P, r) combinations were evaluated: (4,4), 
(4,8), and (4,10). Visual representations of the LBP 
processing for both 'non-defect' and 'defect' class 
images can be referenced in Figures 9 and 10. 

Following applying the LBP process to the 
images, a transformation into histograms was 
undertaken to provide a visual representation of 
the pixel intensity distributions. Figure 11 
presents a histogram derived from a non-defect 
class image post-LBP processing. We will use the 
(P, r) parameters of P=4 and r=8 for further 
experiments. 

 
These individual histograms highlight the 

inherent pixel intensity distributions of each class. 
Figure 12 offers a comparative histogram 
juxtaposing the results from the 'good' and 
'defect' class images to accentuate the differences 
further. This comparative visualization 
underscores distinct patterns and variations, 
providing crucial insights for the following 
machine-learning phase. After extracting 
numerical information and Local Binary Pattern 
(LBP) image histograms from each class, these 

Figure 11. Histogram of a non-defect' class image 
after LBP processing 

Figure 12. Comparative histogram showcasing the 
distinctions between the non-defect and defect'class 

images 

 

Figure 9. The non-defect class image process using 
LBP method with various parameters (P, r) 

 

Figure 10. The ndefect class image process using LBP 
method with various parameters (P, r) 
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features were prepared for input into the Support 
Vector Machine (SVM) algorithm. An essential 
preliminary step involved segmenting the dataset 
and opting for an 80:20 split— allocating 80% for 
training and reserving the remaining 20% for 
testing purposes. Cross-validation was employed 
to fortify the robustness of the model evaluation. 
This approach systematically rotated through 
different subsets of the data for training and 
testing, diligently preventing overfitting and 
mitigating potential biases from class 
overrepresentation. A visual representation of the 
cross-validation results, elucidating performance 
metrics across various folds, is presented in Figure 
13.   

 
Figure 13 shows our cross-validation results, 

which delineate accuracy and variability across 
folds, as shown in Figure 6. The accuracy values 
for K-1, K-2, K-3, K-4, and K-5 are 0.80, 0.71, 0.78, 
0.82, and 0.76, respectively, yielding a mean 
accuracy of 0.77.  

After finalizing our model and incorporating 
insights from cross-validation, we evaluated its 
performance on the 20% test dataset. This phase 
is crucial for understanding the model's 
effectiveness on unseen data, offering insights 
into its real-world applicability. To 
comprehensively dissect the model's efficacy, we 
adopted the Confusion Matrix shown in Figure 14, 
an essential tool in classification tasks. This matrix 
provides a clear visualization of true positives, 
false positives, and false negatives, facilitating a 
nuanced understanding of the model's strengths 
and areas that require improvement. 

 
Insights from the confusion matrix from 

Figure 14 showcase a marked improvement in the 
actual positive rate for class 0: 110 instances were 
accurately identified, highlighting the model's 
enhanced ability to discern patterns specific to 
this class. However, challenges persist. While 
showing improvement from the previous model, 
the 29 misclassifications of class 0 as class 1 
signal an area needing attention. For class 1, the 
model's proficiency is evident with 80 accurate 
detections. Nevertheless, the 59 false negatives 
indicate an enduring challenge in consistently 
recognizing this class. Overall, this model 
demonstrates significant advancements in its 
performance, particularly when contrasted with its 
predecessor. Despite these improvements, 
misclassifications suggest potential areas for 
iterative refinements — a testament to the ever-
evolving nature of machine learning endeavors. 
Further quantitative evaluation provides a 
detailed lens to this assessment. Our model 
achieved an accuracy of 68%, These metrics and 
insights from the confusion matrix offer a 
comprehensive perspective on the model's 
capabilities. They highlight the model's strengths 
and pinpoint potential areas for enhancement.  

IV. CONCLUSION 
In this study, we explored the integration of 

image processing techniques with machine 
learning algorithms to achieve efficient 
classification. Two primary methodologies were 
assessed: one leveraged the Mean Pixel Value 

 

Figure 14. Confusion matrix of Grey Tarpaulin with 
Support Vector Machine algorithm 

 

Figure 13. Cross validation of Grey Tarpaulin dataset 
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method paired with Logistic Regression, and the 
other utilized the Local Binary Pattern with the 
Support Vector Machine. 

After completing cross-validation, which 
provided valuable insights into our model's 
robustness, we transitioned to evaluating its 
performance on the independent 20% test 
dataset. This phase is pivotal in assessing how 
well our model generalizes to unseen data, 
offering crucial insights into its real-world 
applicability. The cross-validation results 
demonstrated a mean accuracy, reflecting the 
model's overall performance across different 
folds. This metric serves as a measure of the 
model's stability and generalization capability, 
providing a solid foundation for further 
evaluation. 

To understand our model classification 
abilities better we used a Confusion Matrix. This 
matrix provided a detailed breakdown of the 
model's performance across different classes, 
highlighting both its strengths and areas for 
improvement. 

These results provide a comprehensive 
perspective on the model's capabilities, 
highlighting its strengths and pinpointing 
potential areas for enhancement. Moving forward, 
future research endeavors could focus on 
addressing the underlying reasons for 
misclassifications, refining feature engineering 
techniques, or exploring alternative model 
architectures to further improve accuracy and 
overall efficacy in classification tasks. 

In conclusion, the fusion of image processing 
with machine learning algorithms holds 
promising potential for robust classification tasks. 
By leveraging insights from experimental results 
and embracing ongoing advancements in AI and 
machine learning, we can develop more accurate 
and effective models in similar applications. 
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