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Abstract 
This comprehensive study investigates land use and land cover (LULC) changes in Ugam Chatkal National 

Park, Uzbekistan, over a 30-year period from 1993 to 2022 with Landsat satellite images. Utilizing advanced 

CA-Markov and Random Forest machine learning algorithms, it meticulously analyzes historical data to 

understand past trends and projects future LULC changes. According to remote sensing analysis of the past, 

our findings show the sharp decline of glacier land cover from 2105 km2 to 1334 km2 in the Ugam Chatkal 

National Park, replaced by tree cover (from 327 km2 in 1993 to 450 km2 in 2022), rangelands (1259 km2 in 

1993 to 1355 km2 in 2020), and rocks (from 834 km2 in 1993 to 1390 km2 in 2022). Agriculture, water, and 

bare land witnessed some fluctuations but did not change significantly. At the same time, the region expe-

rienced some urbanization, raising the urban area from 50 km2 in 1993 to 90 km2 after 29 years. The article 

suggests three possible scenarios for the future of the region: “hard,” “soft” and “bad” scenarios. Land cover 

change predictions are made in TerrSet software with the CA-Markov model for four decades: 2035, 

2045,2055, and 2065. Hard and soft scenarios predict similar patterns for the future: a decline in glacier 

cover and a rise of tree cover, rock, and rangelands, with a slight increase in agriculture and urban classes. 

Whereas “bad” scenario, which incorporates rapid urbanization and agricultural expansion for the study area, 

forecasts a climb of the urban area until 415 km2 (8% of the territory) until 2065, and 286 km2 for agriculture. 
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1. Introduction 

In the 21st century, many problems threaten our planet, and over the coming decades, the scale of 

the changes foreseeably will continue to grow. Land-use and land-cover (LULC) altercation is 

arguably one of the most prominent of many environmental issues the planet is currently expe-

riencing (ESCOBAR, A., 2012; Gómez et al., 2016; Mustard et al., 2012). Numerous ecosystem 

processes and services (biodiversity, hydrology, temperature, carbon cycle, soil fertility) are im-

pacted by the process of land use and the change in land cover. Earth system modelling, planning 

for sustainable development, and understanding how LULC affects surface radiation balance, 

temperature, ecology, water flow, and water permeability are all crucial for maintaining sustai-

nable growth and stability of human civilization (Avila et al., 2012; Chang et al., 2018; Ebenezer 

et al., 2023; Mahmood et al., 2014). Although LULC uses a variety of words, land use relates to 

the physical characteristics of the land, while land cover refers to how people use the land for 

economic and social purposes (Alikhanov et al., 2020; Kesaulija et al., 2023; Secretariat of the 

World Meteorological Organization, 2003). The phrase "land cover classification" is defined by 

the United Nations System of Environmental-Economic Accounting (UN-SEEA) as "observed 

physical and biological land cover of the Earth's surface and included natural vegetation and abio-

tic (non-living) surfaces" (UN, 2019). LULC and the climate are interdependent, and each can 

have an effect on the other as a result of climate change (Gogoi et al., 2019; Kayet et al., 2016). 

Numerous studies indicate that almost half of the ice-free land area has been modified by humans 

(Barnosky et al., 2014). Multiple forecasts predict the rise of human population by 2050 to 10 

billion people, and therefore, the pressure on the environment and ecosystems will continue to 

increase (UN, 2019). 

Central Asia is one of the regions that is most vulnerable to climate change, according to multiple 

publications and studies. Its unique landscape, characterized by its temperate deserts and semi-

deserts, makes it particularly prone to environmental challenges. The region is predicted to suffer 

even more from the effects of climate change, worsening the status of natural resources as a result 

of a projected rise in annual average temperature together with precipitation fluctuations (Alikha-

nov et al., 2021; IPCC, 2022). Land resources and land cover will be notably affected negatively 

by climate change and economic pressure due to population growth. The Central and Southern 

Asia area experienced land degradation at a rate of 28% between 2000 and 2015, which is the 
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second-highest pace globally after Oceania, according to a recent study (Keshri et al., 2009). This 

report states that desertification, deforestation, improper land use, and other anthropogenic factors 

were mostly to blame for the observed net decrease in the world's natural and semi-natural land 

cover classifications. Historically, the region's reliance on exporting single agricultural products 

- such as Kazakhstan's wheat and meat, Uzbekistan's, Tajikistan's, and Turkmenistan's cotton, and 

Kyrgyzstan's wool - has contributed to its relative lack of development. These vulnerabilities were 

exacerbated after 1991, following the collapse of the Soviet Union, which led to major economic 

and institutional upheavals (Lioubimtseva & Henebry, 2009). 

Uzbekistan, being a landlocked country located in the center of Central Asia, plays a crucial role 

in the region's political, economic, and ecological stability. The country's population is 35.6 mil-

lion people according to the last update (The World Bank, 2022) and will reach approximately 40 

million by 2030 (https://kun.uz), putting great pressure on the environment, water resources, and 

food security. Taking into account that 60 % of the country's territory is covered with deserts and 

desert zones (FAO, 2011), this pressure puts the country at a very high risk of socio-economic 

and political vulnerability.  

Even though many sources claim the significant LULC change in Uzbekistan, no comprehensive 

study using remote sensing has been done so far for the whole country. According to Juliev et al. 

(2023), during the last twenty years, only 70 papers were published for the whole Central Asian 

regions with the keyword “land degradation”, most of them covering the cropland area change. 

Food and Agriculture Organization of the United Nations annual statistical data on LULC from 

1992 to 2017 portrayed an increasingly growing trend in the terrestrial barren land in Uzbekistan 

during the post-Soviet period (UN, 2019). Karimov et al. (2023) analysed land use and land cover 

change dynamics of the country using remote sensing, literature review, and governmental data 

from 1990 to 2020. However, the exact methodology of the paper is unclear, and the results do 

not inspire confidence. (Juliev et al., 2019) analysed the LULC change of the Bostonliq district 

from 1987 to 2017 with Landsat 5 and 8 satellites. The results of the research show a shift in land 

cover by increasing the forest area and urban expansion and decreasing bare soil. However, the 

research uses only two satellite images for the large study period (30 years) and combines soil 

and rock land classes into one, which limits its robustness. Alikhanov et al. (2020) used a similar 

methodology to detect the LULC change in the Tashkent province from 1992-2018 using four 

satellite images. The study also discovered significant LULC altercations in the regions. However, 

it has several limitations: a) the image tiles that were mosaicked for the large area (15K km2) were 

obtained for different months (April, May, June) with visible land cover change (vegetation and 

glaciers); b) authors combined anthropogenic land cover (agriculture) with natural (grasslands, 

meadows). 

Even though the number of research about the LULC change using remote sensing for the country 

and region is gradually growing, there is still a lack of focus on this crucial topic for Uzbekistan. 

Aside from that, the existing research analyses past changes without making specific predictions 

for the future. Remote sensing, combined with machine learning algorithms, can provide not only 

accurate past examinations but also forecast future land cover shifts based on existing data. There-

fore, our research attempts to create a benchmark for future LULC studies for the country by using 

machine learning tools for both satellite image classification as well as future land cover predic-

tion. LULC detection research without future prediction has limited practical help for the govern-

ment that manages land policy. On the other hand, accurate depiction of plausible scenarios might 

help the country avoid the worst and pave the path to the best.  

The main goal of this research is to detect and analyze land use and land cover change in Ugam 

Chatkal National Park, Tashkent province, Uzbekistan, during the post – soviet period of time 

(1992-2022) using random forest machine learning classification tool and predict plausible land 

cover changes in the future with CA-Markov machine learning algorithm. The article is divided 

into four major parts: Introduction (includes the background, literature review, and importance of 

the study), Research Methods (include the description of the study area, remote sensing and ran-

dom forest classification description, and CA-Markov model theory with elaborate explanation of 

three used future scenarios), Results and Discussions (past land cover classification and future 

three scenarios for the study area, ended with comparison with other studies and limitations of the 

research) and Conclusion parts.  

2. Research Methods  

2.1. Study area 

Ugam Chatkal National Park is located in the northern part of the Tashkent province, Uzbekistan 

(Figure 1). The total territory of the park is approximately 668,350 hectares and covers the 
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territory of the Bostanliq and Ohangaron districts of the Tashkent Region. For this research, only 

the part of the park that covers the Bostanliq district, with a territory of 4,900 km2, was taken for 

remote sensing analysis.  

The climate of the region is temperate continental, with hot summers and fairly cold winters. The 

average annual temperature is +15° C. The average January temperature is -9° C, and the average 

July temperature is +21° C. The absolute minimum temperature was –26° C, and the absolute 

temperature maximum was +46° C. On average, 500–600 mm of rainfall per year falls on the 

territory of the district (most of the precipitation falls in spring and autumn). The growing season 

lasts 210–215 days (Alikhanov et al., 2021).   

 

Figure 1. Bo’stonliq district covers 90% of Ugam Chatkal National Park. 

The Bostanliq district's terrain is somewhat monotonous and consists primarily of hills, moun-

tains, and high mountains. Except for the northern section, where there are only high mountains, 

lowlands are common across the western and southern parts of the area. Mountain ranges cover 

almost the whole area where they are found, including the eastern Tien Shan, the Karzhantau 

Ridge, the Pskem Mountains, the Ugam Ridge, and the Chatkal Ridge. In accordance, the district's 

heights rise from west to east and from south to north. The region's southern and western regions 

are typically 1000 meters above sea level. The remainder of the area, where highlands predomi-

nate, is situated somewhere between 1,200 and 4,000 meters above sea level. The Adelung Pskem 

ridge's top, which reaches 4301 meters above sea level, is the highest point in the vicinity. The 

mountain's second-highest summit, Beshtor, measures 4299 meters and is another peak of the 

Pskem ridge. Several high mountains and peaks in the area are between 1,000 and 4,000 meters 

above sea level, in addition to the peaks and mountains mentioned above. Car routes traverse 

numerous moderately tall mountains (Petrov et al., 2017).  

2.2. Remote sensing 

For the temporal LULC classification of Ugam Chatkal National Park, we used atmospherically 

corrected low-cloud cover Landsat 5 TM and Landsat 8 OLI satellite images from the Google 

Earth Engine platform. Years for image classification for the study (1993, 2003,2013, and 2022) 

were selected based on quality, decade, and availability in the GEE image collections. For correct 

and accurate classification, it was decided to choose May for all classification years. During this 

period, UCHNP witnessed the peak of its vegetation period, but significant glacier cover remains. 

In general, more than 600 samples were collected for four images (approximately 150 samples) 

for the image classification. Some classes required a higher number of samples for correct detec-

tion, such as the urban land class, because of its similarity with rocks and bare land. Other land 
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cover classes, like water, required much less samples. Meanwhile, the agriculture land cover class 

was delineated manually using Google Earth software because this class has a similar spectral 

signature either with bare land (if the field is harvested), with rangeland (at the beginning of the 

vegetation stage) or with tree cover (at the peak of the biomass).  

 

 

 

 

Figure 2. Images represent examples of each class of the study area: a) tree cover; b) rocks; c) water ; d) 

bare land ; e) urban ; f) agriculture ; g) glaciers; h) rangeland. 
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In the outcome, we divided the images into eight classes: agriculture, water, glaciers, rangelands, 

tree cover, bare land, urban, and rocks (Figure 2). If the classification results were poor (with lots 

of incorrect pixel classes), additional samples were added to the collection feature until sufficient 

classification accuracy was reached. Since the images were already atmospherically corrected, 

high classification accuracy was attained for all images (Table 1).  

Random Forests are collections of classifiers that resemble trees, and they employ bagging's en-

hanced form of bootstrapping. In other words, they can be seen as an advancement above bagging. 

In terms of accuracy, it has been demonstrated that Random Forests are equivalent to boosting 

but without boosting's disadvantages (Sales et al., 2022). Additionally, the Random Forests use 

significantly less processing power than boosting (Belgiu & Drăguţ, 2016). Multiple decision 

trees are built using various randomly selected subsets of the data and features in a random forest 

classification. In deciding how to categorize the data, each decision tree acts as an expert (Belgiu 

& Drăguţ, 2016; Breiman, 2001). 

The Random Forests algorithm was used by (Ham et al., 2005) to classify hyperspectral remote 

sensing data. Their strategy is put into practice within a multiclassifier system set up in a binary 

hierarchy. For a hyperspectral data collection with little training data, the experimental findings 

in the research are decent. Jamali et al. (2023) used random forest classification to determine the 

urban sprawl and land use changes in Iran. The result showed that the combination of systematic 

points and random forest classification gives high-accuracy results.  

In our study, to classify accurately each year and each class, many samples were collected for the 

study area (Table 1). Collecting samples, classification, and accuracy assessment of the classifi-

cation was performed in the Google Earth Engine platform. Map presentation and legend-making 

were finished using ESRI ArcGIS 10.8 software.  

Kappa index is utilized to gauge the accuracy and agreement between the classification map de-

rived from remote sensing and the reference data. This index is determined by looking at the major 

diagonals for direct agreement and considering the row and column totals to assess chance agree-

ment. The classification accuracy of each class for each year is shown in Table 1. 

Table 1. Land cover classification accuracy.  

Class  1993 (%) 2002 (%) 2013 (%) 2022(%) 

The overall ac-

curacy of the 

class 

Water 93 92 93 91 92 

Glaciers 84 84 85 86 85 

Urban 86 84 85 87 85 

Agriculture 87 86 88 89 87 

Bare land 85 85 85 86 85 

Forests 84 84 86 88  85 

Rangelands 84 85 85 86 85 

Rocks 82 84  85 86 84 

The overall accuracy of the 

year 

86 86 87 88  

2.3. Spatial data  

Besides Landsat images, which were used for LULC classification for the past 30 years, we used 

elevation, slope, and road data as indicators that contribute to future land development (Figure 3).  

Road data was downloaded from the Open Street Map free source dataset. Only major roads were 

taken into account. Distance to roads was generated using the Euclidean distance tool in ArcMap 

10.8. The maximum distance made up 47 km, mostly located in the northern mountainous part of 

the region (Figure 4).  

A digital elevation model map was downloaded from NASA’s earthdata.nasa.gov ASTER satel-

lite library with a 30-meter pixel resolution. The slope map was derived from the elevation map 

in the ArcMap software tool. The maximum slope of the region equals 82 degrees.  
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Figure 3. Flow chart of the study. 

  

Figure 4. Thematic maps that were used for future LULC prediction. 
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2.4. CA-Markov model  

Various methodologies have been adopted for modelling land-use changes. These include linear 

and static mathematical models, systems models focusing on stocks and flows, statistical models 

like regression, cellular models such as Cellular Automata (CA) and Markov Chains, evolutionary 

models including neural networks, and agent-based models. Often, these different approaches are 

integrated to develop a hybrid model, leveraging the strengths of each method (Subedi et al., 

2013).  

The CA-Markov model is an advanced tool that integrates cellular automata, Markov chain ana-

lysis, and multi-criteria and multi-objective land allocation techniques to forecast land cover 

changes over time. This model enhances the traditional Markov model by incorporating spatial 

contiguity and potential spatial transitions within a specific area over a given period. In the TerrSet 

2020 software, the CA-Markov module is utilized to create matrices for transition probability and 

transition area. A transition probability matrix is generated through the cross-tabulation of two 

land-use images from different times, determining the likelihood of each pixel's transition from 

one land-use class to another within that timeframe (Subedi et al., 2013). When integrated with 

additional modelling approaches, the CA-Markov model significantly enhances the simulation of 

complex land use systems, offering both increased accuracy and more effective simulation capa-

bilities (Zhang et al., 2023). The Cellular Automata (CA) model is distinct for its spatial discre-

teness and the specific states of land use, enabling the analysis of spatial distribution and interac-

tions among neighbouring areas. As a discrete mathematical system, the CA model fundamentally 

comprises five elements: a uniform, regular lattice, a cell, a state assigned to each cell, neighbou-

ring cells, and the set of rules governing the transitions of these states. 

The Markov model, in the context of land-use change modelling, is effective because it considers 

historical states to forecast how a specific variable evolves over time. Its strength lies in its capa-

bility to measure not just the different transitions between types of land use but also the pace at 

which these changes occur. This makes the Markov model a valuable tool for understanding and 

predicting land-use dynamics (Sang et al., 2011). The combined use of the Cellular Automata 

(CA) and Markov model is effective for simulating land-use dynamics. The CA model is adept at 

depicting spatial position changes, while the Markov transformation matrix is utilized to simulate 

temporal variations in land use (Zhang et al., 2023). The future LULC was simulated using the 

following Markov model (Equation 1) 

𝑆(𝑡 + 1) = 𝑃𝑖𝑗 × 𝑆(𝑡) 
(1) 

where S(t) and S(t + 1) are the system status at time t and t + 1, respectively, and Pij is the transi-

tion probability matrix in a state, which is calculated as Equation 2.  

Pij = [𝑃11 ⋯  𝑃1𝑛 ⋮ ⋱ ⋮  𝑃𝑛1 ⋯  𝑃𝑛𝑛 ] 

(0 ≤ 𝑃𝑖𝑗 < ∑ =

𝑁

𝑗

1 𝑃𝑖𝑗 = 1, (𝑖, 𝑗 = 1,2, … … 𝑛)) 
(2) 

The CA model has been utilized to describe the overall complex, self-organizing system, focusing 

on the behaviours of individual cells and their interactions with neighbouring cells. In simulating 

land-use changes, it operates under the assumption that areas are more likely to transform into a 

certain type of land use when similar land use is present in the vicinity. This reflects the model's 

emphasis on the influence of local conditions and neighbouring influences on land-use dynamics 

(Fu et al., 2018; Wang et al., 2022). 

The model is formulated as Equation 3. 

𝑆𝑡+1 = 𝑓(𝑆𝑖 𝑗 
𝑡 𝛺𝑖𝑗𝑡, 𝑉) 

(3) 

In this model, the states of a cell at row i and column j during the start (t) and end (t + 1) of the 

simulation are denoted as Sti,j and St+1i,j, respectively. The model factors in the neighbouring 

cells' states (Ωti,j) at time t, a set of suitability factors (V), and applies a transition law (f) to 

determine the state changes (Wolfram, 1984).  

The first step was to identify transition potentials between land use maps with a machine-learning 

algorithm. We used maps from 2002 to 2013 to identify the patterns of land use and land cover 

change during this decade. TerrSet allows to incorporation of a maximum of nine classes of tran-

sition sub-models, therefore the most important sub-models were taken into the learning: water to 

bare land, glaciers to rangelands, glaciers to rocks, rangelands to forests, rangelands to bare land, 
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bare land to forests, rocks to forests. For the transition sub-model structure, we included five 

important layers that impact and help to identify land cover transition, namely elevation (static), 

and slope (static). Distance to roads (static), rangelands to all (LULC for 2002 and 2013 were 

analyzed, and rangeland transition to all other land classes was analyzed as being the most impor-

tant ecosystem in the study area), and change maps were included.  

For machine learning, we used 10000 iterations with 800 pixels for each class (50 % for training 

and 50 % for testing). After the learning process, the accuracy rate of the CA-Markov model made 

up 78 %. The learned data was applied to create the 2022 LULC map and validated with the 

classified 2022 map. The overall accuracy of the predicted map made up 83 %, making the 

smallest accuracy prediction for glaciers (75 %) and urban (56 %) land cover classes. The same 

model was applied to predict LULC maps for 2035, 2045, 2055, and 2065 (hard, bad, and soft 

predictions).  

In TerrSet, land cover prediction can be approached in two primary ways: hard and soft classifi-

cation. Hard classification, also known as crisp classification, assigns each pixel in a satellite 

image to one and only one land cover class. It operates on the principle of maximum likelihood, 

where each pixel's spectral signature is compared with the spectral signature of known classes, 

and the pixel is assigned to the class with which it has the highest probability of association. The 

output is a categorical map with distinct boundaries between land cover types without any ambi-

guity or overlap. This method does not account for mixed pixels, which are pixels that contain 

more than one land cover type within the area that the pixel represents. Hard classification is often 

used when a clear, definitive categorization is needed, and the spatial resolution of the imagery is 

high enough to minimize the presence of mixed pixels (Eastman & He, 2020). Soft classification, 

also known as fuzzy classification, recognizes that pixels can represent mixed ground cover types, 

especially in coarse-resolution images where a single pixel can cover large areas on the ground. 

Instead of assigning a single class to a pixel, soft classification assigns probabilities or mem-

bership values to each class. So a pixel might be 70% forest, 20% grassland, and 10% urban, for 

example. This approach is particularly useful in complex landscapes where land cover types are 

not clearly separable or when dealing with images with mixed pixels. The output is usually a set 

of probability maps, one for each land cover class, indicating the likelihood of each pixel belon-

ging to each of the possible classes. Soft classification is more nuanced and can be more accurate 

in terms of representing reality on the ground, but it is also more complex to interpret and use in 

further analyses (Bradley et al., 2017). 

Besides the aforementioned scenarios, that are embedded into the TerrSet software, users are able 

to create their own scenarios manually changing the probability transition matrix in the change 

prediction. Initially, the matrix values are computed by the software using CA-Markov machine 

learning algorithm during the learning of transition potentials for the previous years (in our case 

2002 and 2013). However, the transition potentials show the probability values for one decade, 

whereas in the future the land cover change might witness significant changes due to external 

impact. There are two major factors that impact LULC: anthropogenic (deforestation due to tree 

cutting, overgrazing due to excessive grazing, intensive agricultural activity, and rapid urbaniza-

tion) and climatic factors (temperature rise, glaciers melting, and precipitation decline). In our 

“bad scenario,” we mainly used anthropogenic impact to anticipate land cover change in the re-

gion in the future. The main reason behind this was the government's active policy to involve 

investors for the Bostonliq region, raise agricultural activity to maintain the growing population 

of Tashkent city (that is supplied with meat and other products from the study area), and a growing 

number of cattle to graze on the UCHNP rangelands. Therefore, we increased the probability 

values for urban and agricultural in the transition matrix.  

3. Results and Discussion 

As we can see from Table 2 and Figure 5, the LULC of the study region fluctuated during the 

post-soviet period. The biggest change we can observe is the glaciers' land class, which had a 

dramatic decline in the area during the last twenty years (from 2125 km2 to 1330 km2). Many 

researchers have noticed that mountain glaciers in the Bo’stanliq district are melting year by year.  

The area under water class sees a significant decline from 1993 to 2002, after which it stabilizes. 

There is a slight increase in 2022, suggesting a minor recovery or expansion of water bodies. The 

same pattern can be observed for the rangelands. The area of rangelands decreases marginally 

from 1993 to 2013. However, there is an upward trend in 2022, suggesting an increase or recovery 

in rangeland areas in recent years. 

Initially, there was a sharp decline in tree cover from 1993 to 2002. However, from 2002 onwards, 

there was a substantial increase, with the area in 2022 surpassing all previous years. This condition 
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indicates significant afforestation or natural tree growth in recent years. This afforestation can be 

explained by the melting of glaciers in high-altitude areas, which were covered with deciduous 

trees (at a lower altitude) and rocks.  

The area covered by agriculture remains stable throughout the study period, slightly decreasing 

to 65 km2 in 2013, which may be related to either low agricultural activity during that period or 

some inaccuracy in land cover classification. The total territory of the urban land cover class made 

up 50 km2 in 1993. In 2002, the area declined by 13 km2 (which may be due to the deconstruction 

of urban areas or some inaccuracy in land classification). Afterwards, it started to rise to 53 km2 

in 2013 and experienced a dramatic increase in 2022 (90 km2), which shows the urbanization 

trend for the study region (Table 2, Figure 5). 

 

Figure 5. Land use and land cover change of Bostonliq district (Ugam Chatkal National Park) during the 

post-soviet period. 

Table 2. LULC change during the post-soviet period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 1993 2002 2013 2022 

Agriculture 77 76 65 73 

Water 78 52 52 55 

Glaciers 2105 2125 1813 1334 

Rangelands 1259 1174 1148 1333 

Tree cover 327 164 414 450 

Bare land  248 207 343 249 

Urban 50 37 53 90 

Rocks 834 1139 1093 1390 
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Figure 6. LULC in UCHNP during the post-soviet period (1993-2022). 

Rocks land class experienced a gradual increase during the study period, starting from 834 km2 

in 1993, increasing to 1139 km2 after a decade (300 km2), slightly declining after a decade, and 

then rising again in 2022 until 1394 km2. In general, during the post-soviet period of time rocks 

land class increased by 167%, which might be due to glaciers melting.  

 

Figure 7. Future land use and land cover change in the region (soft prediction).  

Agriculture: Predicted to slightly decrease from 62 km² in 2035 to 60 km² in 2065, suggesting a 

marginal reduction in agricultural land. A steady decline is observed in water bodies, going from 

51 km² in 2035 to 48 km² in 2065. This could indicate the impact of climate change on water 

resources or increased water utilization in the future. At the same time, a significant reduction in 

glacier areas is projected, from 1323 km² in 2035 to 1055 km² in 2065. This trend is likely a direct 

consequence of global warming and the rise in regional average temperature. 
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When it comes to rangelands, there is an expected increase from 897 km² in 2035 to 1136 km² in 

2065. This can be due to several reasons: former water bodies will turn into grazing lands, some 

areas of former glaciers will become mixed pastures and trees, or some bare land areas will wit-

ness the growth of sparse vegetation.  

Forested areas are set to grow gradually from 835 km² in 2035 to 903 km² in 2065, indicating 

positive outcomes from reforestation initiatives or natural forest regeneration. However, the major 

reason behind this will be the melting of glaciers at lower altitudes due to rising temperatures that 

make it possible for evergreen or deciduous trees to grow. Meanwhile, a slight decrease in bare 

land areas is anticipated, from 443 km² in 2035 to 432 km² in 2065, possibly due to land develop-

ment or natural transformations. 

Urban: An increase in urban areas is forecasted, from 55.0 km² in 2035 to 60.0 km² in 2065, 

suggesting urban expansion. Last but not least, a minor decline is projected in rocky areas, from 

1312 km² in 2035 to 1290 km² in 2065, potentially due to erosion or land use changes. 

Table 3. Future scope of LULC for the next thirty years in the region according to soft prediction (in km2). 

 

 

 

 

 

 

 

 

 

Figure 8. Bar chart of LULC for the past and soft-prediction future with CA-Markov model.  

Figures 9 and 10 and Table 4 show the LULC prediction for the study area according to “hard 

prediction”. Agriculture shows a slight decrease in area, suggesting marginal changes in agricul-

tural practices. Water bodies and glaciers across both types of prediction indicate a general trend 

of reduction, likely a direct consequence of climate change and its impacts on natural resources. 

Interestingly, glaciers in hard prediction exhibit fluctuating measurements, potentially reflecting 

variable climatic influences over the years. 
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Class 2035 2045 2055 2065 

Agriculture 62 62 61 60 

Water 51 50 49 48 

Glaciers 1323 1208 1122 1055 

Rangelands 897 986 1067 1136 

Tree cover 835 874 893 903 

Bare land  443 437 434 432 

Urban 55 57 59 60 

Rocks 1312 1306 1296 1290 
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Figure 9. Future land use and land cover change in the region (hard prediction).  

In contrast, both tree cover and urban areas are consistently projected to increase, indicating on-

going urban expansion alongside positive reforestation efforts or natural forest growth. Range-

lands and bare land exhibit varying trends, with rangelands initially declining before increasing, 

possibly due to changing land use or conservation policies. The gradual decrease in rocky areas 

suggests potential land development or natural transformations. Collectively, these predictions 

underscore the dynamic interplay between human activities and natural processes, highlighting 

the need for sustainable land management and environmental conservation strategies in the face 

of evolving global and regional challenges. 

Table 4. The future scope of LULC for the next thirty years in the region is according to hard prediction (in 

km2). 

To highlight the major differences between the "soft" type predictions and the "hard" type predic-

tions, we can analyze how each type approaches the projection of future changes in various land 

Class 2035 2045 2055 2065 

Agriculture 61 61 61 60 

Water 51 50 49 48 

Glaciers 1320 1205 1212 1165 

Rangelands 1320 1027 1102 1171 

Tree cover 834 872 887 895 

Bare land  442 436 430 427 

Urban 53 54 55 56 

Rocks 1309 1302 1286 1276 
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cover classes. The "soft" predictions might represent more conservative or gradual changes, while 

"hard" predictions could indicate more drastic or immediate changes.  

 

Figure 10. Bar chart of LULC for the past and hard prediction future with CA-Markov model 

The "soft" predictions and the "hard" predictions provide distinct outlooks on the future state of 

various land cover classes, each encapsulating different degrees of change over time. In the case 

of agriculture, "soft" predictions suggest a stable trend with a minor decrease towards the end, 

whereas "hard" predictions indicate a more pronounced and earlier reduction in agricultural areas. 

For water bodies, both prediction types show a decline, but it is slightly more accelerated in the 

"hard" type, hinting at a faster depletion of water resources under more drastic scenarios. Glaciers, 

interestingly, display more variability in "hard" prediction, with an interim increase before a de-

cline, suggesting that the "hard" predictions account for more fluctuating climatic impacts on 

glaciers. 

In terms of rangelands, urban areas, and tree cover, "soft" predicts a consistent expansion, in con-

trast to "hard" where rangelands initially decrease then increase, reflecting a more dynamic inter-

play of adverse effects and subsequent recovery in the "hard" scenario. Urban expansion and for-

est growth are also more aggressive in "hard", indicating rapid changes in land use patterns. Bare 

land and rocks show a more pronounced decrease in "hard", alluding to faster land development 

and natural transformations. Overall, the "hard" predictions depict a landscape of more immediate 

and dynamic changes, suggesting a scenario where environmental and human factors induce 

quicker transformations in land use and land cover. 

The last scenario that is considered in this research is “a bad scenario”, which incorporates rapid 

urbanization and the rise of agricultural activity in the region (Figures 11 and 12 and Table 5). 

The area covered with agriculture will cover 63 km2 of the study area, which is not significantly 

different from the previous two scenarios. However, during the next three decades, the class starts 

to soar, reaching 222 and 286 km2 in 2055 and 2065 respectively. The new areas conquered by 

agricultural expansion, according to Figure 11, will be lowlands, rangelands, bare lands, and areas 

along the river streams.  

Another class that will witness rapid expansion due to human activity is urban areas. According 

to the “bad” scenario prediction, in 2035, the total area covered by the class will reach 85 km2, 

which is much higher than “hard” and “soft” prediction scenarios. In 2045, the urban area is pre-

dicted to cover 120 km2 already, almost doubling within a decade to 217 km2 and reaching 415 

km2 in 2065 (Table 5). The main areas of urban expansion will be lowland areas, previously co-

vered with rangelands, trees, and bare land, as well as the area across the Charvak water reservoir 

(Figure 11).  

Among land cover classes that will experience a significant decline in the area are glaciers (from 

1383 km2 in 2035 to 1172 km2), as well as rangeland ecosystems (from 995 km2 in 2035 to 635 

km2 in 2065). Meanwhile, the tree cover land class will witness fluctuations, rising to 250 km2 in 

2045, then falling to 151 km2 again after ten years, continuing with rising to 248 km2 in 2065. 
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This instability might be connected to the dynamic interplay among other land cover classes that 

have dramatic altercations. 

 

Figure 11. Future land use and land cover change according to the “bad” prediction scenario.  

 

Figure 12. Bar chart of LULC for the past and bad prediction future with the CA-Markov model. 
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Table 5. The future scope of LULC for the next thirty years in the region is according to a “bad” prediction 

(in km2). 

Our findings have similarities with Juliev et al. (2019), who also classified the land cover of the 

Bostanliq district for the years 1987 and 2017. According to their research, the study area expe-

rienced afforestation (from 1500 km2 to 1805 km2). However, their article does not include the 

rangeland land class. Probably, some areas of meadows and pastures with small levels of tree 

cover were classified by them as “forests”, whereas we included these areas into rangeland land 

cover because they are used for grazing. Another significant difference between our results and 

Julievs’ findings is the total agricultural area. If, in our case, the cropland area for the study region 

was found to be close to 70 km2 for the whole post-Soviet period, Juliev’s cropland area was 655 

km2 for both years. This huge area for the agricultural land cover class seems impossible because 

Bostonliq district is not famous for its agricultural production due to several reasons: a) the district 

is considered a national park; b) the district territory (especially in the north) are mountains and 

hills; c) the park is mostly used as grazing land. Such a large area assigned to the agriculture land 

class by Juliev et al. (2023) might be because the class is mixed with rangelands with low or 

moderate biomass. One of the main challenges the remote sensing specialists face during the clas-

sification is discerning between the dense tree cover, pastures, and agricultural lands. At the be-

ginning of the vegetation period, agriculture has a similar spectral signature as rangelands (pas-

tures, meadows, scrublands), whereas at the peak of the vegetation, they can be classified as fo-

rests (with high biomass). The results are the same whether specialists use NDVI or classification. 

Therefore, in our study, we deliberately delineated agricultural plots beforehand with Google 

Earth for each study year, converted them into pixels, and then merged with LULC images. Hence, 

our results are more robust than Juluev’s findings.  

Nevertheless, our research has its own limitations. The major limitation is the region's future land 

use and land cover prediction. LULC change is a very complex process that involves both human 

activity and climate change. Human activity mainly incorporates population growth and govern-

mental policy. The population growth can be due to both natural growth and immigration. Accor-

ding to the last census (2021), the total population of the Bostonliq district is only 171000 people, 

but this might be an underestimation because, during the grazing period, many pastoralists live in 

rangelands and herd their livestock. Moreover, many people from the capital have country houses 

where they live during summer time. In addition, the region has witnessed large construction ob-

jects during the last five years, both real estate and recreation. The government’s policy is to 

involve investors in the region, which might lead to population growth. Likewise, the govern-

ment’s policy depends on the protection of trees and natural ecosystems, as well as setting quotas 

on grazing periods and livestock numbers for pastoralists. Therefore, it is very hard to predict 

LULC change in the future for our study area. Besides that, the future of the regional and global 

climate is unpredictable and will depend on global CO2 emissions. For these reasons, all three 

future scenarios must be considered as among many other plausible ones the region might face in 

the next 40 years.  

4. Conclusion 

In conclusion, this study on land use and land cover (LULC) changes in Ugam Chatkal National 

Park, Uzbekistan, utilizing CA-Markov and Random Forest machine learning algorithms, pro-

vides significant insights into the environmental changes over a 30-year period from 1993 to 2022. 

The analysis reveals the impact of climate change and human activities on the park's ecosystem. 

The research highlights the effectiveness of integrating remote sensing data with advanced ma-

chine learning techniques for accurate LULC classification and future predictions. This approach 

not only allows for a detailed understanding of past changes but also aids in making both 

Class 2035 2045 2055 2065 

Agriculture 63 81 222 286 

Water 52 52 52 52 

Glaciers 1383 1293 1281 1172 

Rangelands 995 1170 625 635 

Tree cover 150 250 151 248 

Bare land  774 477 913 570 

Urban 85 120 217 415 

Rocks 1472 1535 1505 1591 
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probabilistic ('soft') and definitive ('hard') forecasts for future LULC scenarios, as well as (‘bad’) 

prediction based on user’s manually assigned parameters for transition probabilities. 

These findings are crucial for policymakers and environmental managers, offering a foundation 

for developing informed conservation strategies. The study emphasizes the need for sustainable 

development practices to mitigate adverse impacts on these valuable natural resources. The pre-

dictive models used in this research can serve as a template for similar studies in other regions, 

enhancing our capability to manage and protect natural landscapes amid growing environmental 

concerns. 

The research underscores the dynamic interplay between natural and anthropogenic factors in 

shaping land cover, stressing the importance of continuous monitoring and adaptive management 

in conservation efforts. The detailed analysis of LULC changes in Ugam Chatkal National Park 

serves as a vital resource for understanding the broader implications of environmental change in 

Central Asia, and it provides a model for addressing similar challenges globally. 

Nevertheless, the findings of the research, especially the future predictions should be considered 

with caution due to the impossibility of validation and verification. For future articles, the future 

land use and land cover scenarios must be matched with the universally acknowledged type of 

scenarios (Business-as-usual, Sustainability Scenario, Socioeconomic Development Scenario, 

Climate Change Scenario and Technological Advancements Scenario) used by international or-

ganizations, such as FAO, The Nature Conservancy and World Resources Institute.  
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