
Alikhanov et al.  Page 11   

 
 

HTTPS://JOURNALS.UMS.AC.ID/INDEX.PHP/FG/ 
ISSN: 0852-0682 | E-ISSN: 2460-3945 

Research article 

Vegetation Cover Change in Ugam Chatkal National Park, Uzbekistan, in  

Relation to Climate Variables During the Post-Soviet Period (1991-2022) 

Bokhir Alikhanov1,*, Bakhtiyor Pulatov1, Luqmon Samiev1,2 

1 Research Institute of Environment and Nature Conservation Technologies, Ministry of Ecology, Environmental protec-

tion and Climate change, Tashkent 100043, Uzbekistan 
2 Tashkent Institute of Irrigation and Agricultural Mechanisation Engineers" National Research University, Tashkent 
100000., Uzbekistan 

* ) Correspondence: alihanovbahir@gmail.com 

Abstract 

This paper presents a comprehensive study relating to the vegetation cover change in Ugam Chatkal National 

Park (Uzbekistan) and its relation to climate change during the post-Soviet period (1991-2022). The study 

utilises remote sensing technology, specifically the Normalised Difference Vegetation Index (NDVI) and 

the Soil Adjusted Vegetation Index (SAVI), to monitor spatiotemporal changes in vegetation. Landsat satel-

lite imagery and meteorological data, including temperature and precipitation records form the basis of the 

analysis. The research aims to understand the impact of climatic factors, such as air temperature, soil tem-

perature, and precipitation on vegetation cover. Statistical methods, such as Pearson's correlation analysis, 

are employed to determine the strength and direction of relationships between these variables. The study 

reveals that both NDVI and SAVI are strongly correlated with air and soil temperatures, indicating the sig-

nificant influence of these climatic factors on vegetation health and growth. The findings suggest that 

changes in vegetation cover in the Ugam Chatkal National Park are closely tied to climate change, with air 

temperature revealing a substantial correlation with time, indicating a trend toward increasing temperatures. 

The study also forecasts future climatic and vegetation trends, predicting an increase in air temperature, 

precipitation, and vegetation cover over the next four decades. In particular, the research highlights the mag-

nitude of monitoring and understanding the complex interactions between climate change and vegetation 

dynamics, which are crucial for environmental management and regional policy-making. 
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1. Introduction 

Vegetation is part of various terrestrial ecosystems, from African savanna's and Siberian Tundra's 

to tropical rainforests and Central Asian steppes. Therefore, it plays an essential role in the differ-

ent processes and cycles that occur within an ecosystem (Fu et al., 2014). Woody vegetation and 

rangelands are fundamental in regulating local and global climate, energy exchange, carbon cycle, 

and water circulation (Regmi et al., 2020; Sun et al., 2021). The vegetation of a natural ecosystem 

comprises several distinct features. This may include vegetation biomass, greenness, vegetation 

coverage, and phenological metrics variation, which are important and unbalanced factors (Kalisa 

et al., 2019). 

There are two principal reasons a natural ecosystem's vegetation experiences change: anthropo-

genic and climatic. Anthropogenic factors include overgrazing, deforestation due to the felling of 

trees, and urbanization, which results in land use and land cover change and the deterioration of 

vegetation parameters. Precipitation and temperature are the two crucial factors influencing veg-

etation growth, time, health, and type (Adepoju et al., 2019). In addition to precipitation and tem-

perature, other climatic and environmental factors impact the spatiotemporal characteristics of 

vegetation, such as soil moisture, evapotranspiration, and radiation (Zhao et al., 2019). 

Many recent studies indicate that soil moisture is a factor that connects climatic parameters (pre-

cipitation and temperature) with NDVI, and therefore, it must not be disregarded (Wang et al., 

2003). Additional studies have ascertained that soil moisture is the most crucial environmental 

variable that directly impacts vegetation growth (Na et al., 2021). Most of the previous studies 

completed by various researchers investigated the impact of the climatic fluctuations associated 

with vegetation growth and cover, overlooking soil moisture (Hussien et al., 2023). However, 

according to numerous authors, soil moisture plays an essential role in the functioning of all eco-

systems as a major abiotic terrestrial parameter (Feng et al., 2017; Wang et al., 2015). 

Remote sensing is the only available technology today that allows the continuous monitoring and 

detection of spatio-temporal changes over a significant area and for an extended period (Eisfelder 

et al., 2023). NDVI time-series analysis was employed to monitor vegetation cover change in 

different areas, for instance, agriculture (Momm et al., 2020; Tottrup & Rasmussen, 2004) defor-

estation and the risk assessment of forest fires (Gabban et al., 2004; Michael et al., 2021; Walker 
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& Soulard, 2019), as well as desertification and rangeland degradation issues (Helldén & Tottrup, 

2008; Paudel & Andersen, 2010; Zhao et al., 2023). 

According to several authors (Dech et al., 2021; Eisfelder et al., 2023; Lieberherr & Wunderle, 

2018), at least three decades of monitoring is necessary to relate vegetation cover with climate 

variables. The Landsat series of satellites which are frequently used for this sort of research, pro-

vides the highest-resolution satellite images with continuing coverage. Globally, trend analysis – 

an extremely common tool to investigate vegetation change, has been employed (Dong et al., 

2022; Faour et al., 2018; Pouliot et al., 2009; Tian et al., 2015). The studies above examined 

annual trends, nevertheless, the impact of climate change on vegetation cover can be diverse and 

vary over space and time.  

Vegetation cover change, whether it has an anthropogenic or climatic reason, has a profound im-

pact on many environmental factors. A reduction in vegetation biomass changes the albedo of the 

land surface, increases local temperature, and also changes evapotranspiration rates, hydrological 

balance, etc., (Wang et al., 2003). Therefore, monitoring the vegetation of a region is considered 

a key factor in predicting environmental changes.  

The projections regarding how drylands might react to global climate change remain uncertain. 

This is notably true in the Central Asian countries that were once part of the former Soviet Union 

(USSR), where the potential effects of climate change are particularly ambiguous (Lioubimtseva 

& Henebry, 2009). Climate change could significantly affect ecosystems, agriculture, and water 

supplies, besides the health and well-being of people throughout Eurasia. The transitional econo-

mies of the Central Asian republics are especially at risk from ongoing and future environmental 

shifts. This vulnerability results from their geographic characteristics and the various political, 

economic, and institutional transformations they have experienced since 1991. 

Central Asia is exceptionally susceptible to climate and environmental challenges caused by its 

specific geographical features, which include temperate deserts and semi-deserts. This vulnera-

bility is compounded by its historical focus on exporting agricultural monocultures, such as wheat 

and meat in Kazakhstan, cotton in Uzbekistan, Tajikistan and Turkmenistan, and wool in Kyrgyz-

stan, leading to relative underdevelopment. The situation deteriorated after 1991 due to the sig-

nificant economic and institutional disruptions that followed the dissolution of the USSR (Li-

oubimtseva & Henebry, 2009). 

Paleoclimate and archaeological evidence proposes that Central Asia's arid and semi-arid regions 

have endured numerous climate fluctuations, which could be similar to those predicted to occur 

during future climate change. According to reconstructions from the early to mid-Holocene, Cen-

tral Asia's arid areas could become wetter due to global warming. This change is expected to result 

from a southward movement and the possible strengthening of the westerly cyclones (Li-

oubimtseva et al., 2005). Meteorological records dating back to the late 19th century indicate a 

consistent rise in both annual and winter temperatures in this region. The observed rises in average 

annual and seasonal temperatures are probably due to a weakening of the southwestern edge of 

the Siberian high during winter, coupled with stronger summer thermal depressions over Central 

Asia. 

While Central Asia has generally witnessed a decline in precipitation over the last 50 years, con-

trasting trends have been observed around the main oases of Kazakhstan, Uzbekistan, and Turk-

menistan, including areas, such as Urganch, Bokhara, Toshkent, Murgab, Tedjen, and Ashgabat. 

This anomaly is probably related to local climate changes induced by humans, particularly due to 

irrigated lands' expansion (Pielke Sr. et al., 2007). 

Notwithstanding that numerous studies have addressed climate change and its potential impact on 

changes in vegetation cover in Uzbekistan (Chen et al., 2020; Godde et al., 2020; Lioubimtseva 

& Henebry, 2009; Seim et al., 2016; Zong et al., 2020), each one lacked a comprehensive ap-

proach and focused on a sizeable area, either Uzbekistan or the whole of Central Asia. Conse-

quently, this has generally reduced the accuracy for specific ecosystems given that climatic vari-

ables can significantly vary even within one country. Likewise, many of the studies limited cli-

matic factors to precipitation and temperature only, neglecting soil temperature and just using the 

NDVI index, whereas including other indices, such as the Soil Adjusted Vegetation Index (SAVI), 

can also provide valuable insights.  

The principal goal of this research was to analyze vegetation cover change in Ugam Chatkal Na-

tional Park from 1991 to 2022, considering its relationship with precipitation, temperature, and 
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soil temperature. Based on this analysis, the aim was to predict the future climate and vegetation 

within the study area. 

2. Research Methods  

2.1. Study area 

Ugam Chatkal National Park (UCHNP) is located in the northern part of the Tashkent province, 

Uzbekistan, covering approximately 668,350 hectares in the Boʻstonliq and Ohangaron districts 

of the Tashkent Region (Figure 1). This study focuses specifically on the Boʻstonliq District, en-

compassing an area of 4,930 km², used for remote sensing analysis. 

The climate in the region is characterised as temperate continental, featuring hot summers and 

relatively cold winters. The annual average temperature is +15 °C, with an average January tem-

perature of -9 °C and an average July temperature of +21 °C. Extreme temperatures range from a 

minimum of -26 °C to a maximum of +46 °C. The district receives an annual rainfall of 500–600 

mm, with the majority occurring in spring and autumn. The growing season spans 210–215 days 

(Alikhanov et al., 2021). 

 

Figure 1. Study area: Ugam Chatkal National Park. 

The topography of Boʻstonliq District is diverse, primarily consisting of hills and mountains. The 

northern area comprises high mountains, while lowlands are prevalent in the western and southern 

parts. Mountain ranges cover much of the area, including the eastern Tien Shan, the Pskem Moun-

tains, and the Karzhantau, Ugam, and Chatkal ridges. Elevations increase from west to east and 

from south to north. The southern and western regions generally sit at altitudes of 1000 metres 

above sea level, while the remainder, dominated by highlands, ranges from 1200 to 4000 metres 

above sea level. The highest point in the vicinity is the peak of the Adelung Pskem ridge, reaching 
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4301 metres above sea level. Another notable summit, Beshtor, stands at 4299 metres. Numerous 

mountains and peaks, ranging from 1000 to 4000 metres above sea level, are scattered throughout 

the area, with several accessible by car (Alikhanov et al., 2021). 

Boʻstonliq District has a significant role in supplying water and food to the entire Tashkent prov-

ince, particularly Tashkent (the capital), which is dependent on the supply of water and meat from 

Boʻstonliq District. The official population of the capital is more than two million people, with 

unofficial numbers reaching four million (by means of permanent migrants from other regions). 

The government plans to expand the city with 200 km2 of new land to the east. According to 

experts, this might increase the city's population to 5-7 million people, placing significant pressure 

on water and food supplies. Therefore, the environmental sustainability and resilience of the study 

area will be even more crucial in the near future.   

2.2. Google Earth Engine  

According to Mutanga & Kumar (2019), the Google Earth Engine (GEE) is a cloud platform for 

storing and processing geographical datasets in order to assess and generate final results. The 

cloud engine is linked to Google Earth, which has spatial datasets from various sensors saved 

within.  

GEE analyses and processes substantial numbers of spatial data quickly and easily. Developers 

created it to facilitate the work of GIS specialists who occasionally deal with significant areas 

often over lengthy periods. Another advantage associated with GEE is that it does not demand 

that computers have the considerable computational capacity to analyse large data because the 

backend Google computers manage this specific task effectively.  

The SAVI and the NDVI indices were adopted to analyse vegetation cover over the Ugam Chatkal 

National Park. If most of the research employed only the NDVI, testing and comparing other 

accurate indices with the NDVI results is imperative because they might deliver different results 

for a study area. Although the NDVI is the most commonly applied and tested vegetation index, 

it has a few shortcomings, as mentioned in the Introduction. The SAVI index, in contrast, is more 

resilient to atmospheric conditions and canopy cover (Soudani et al., 2006). 

On behalf of remote sensing analysis, three Landsat satellites were chosen: Landsat 5 TM (from 

1991 to 2000), Landsat 7 ETM+ (2001 to 2014) and Landsat 8 OLI (from 2015 to 2022). Con-

cerning the filter parameters, we chose 10% cloud cover for the study area. Consequently, not all 

images from the image collection list were included in the analysis, particularly if they were not 

of sufficient quality. Altogether more than 600 Landsat images covering four quadrats 

(153/31,153/32,154/31, 154/32) were processed using GEE for vegetation cover analysis. Gener-

ally, 115 Landsat 5 TM, 130 Landsat 7 TM and 86 Landsat 8 OLI surface reflectance satellite 

images were processed during the analysis of vegetation cover. 

The most common way to detect the vegetation cover change of an ecosystem with remote sensing 

is by using vegetation indices for a satellite image. The most frequent index that researchers apply 

is the Normalised Difference Vegetation Index (NDVI) (Eisfelder et al., 2023). The principle of 

the NDVI is simple – it calculates the ratio between the difference of near-infrared and red spectral 

bands and their sum, giving the final result that ranges from -1 (no vegetation) to +1 (maximum 

vegetation): 

Most researchers have only tested the NDVI for the long-term spatial analysis of vegetation cover, 

given that it is the most established and highly recommended index, whilst they have neglected 

testing other vegetation indices. Despite its popularity, the NDVI has a variety of disadvantages. 

One is related to the impact of soil background, particularly soil brightness. In certain studies, 

applying the NDVI, darker soil substrates resulted in a higher vegetation index (Huete, 1988). 

Therefore, it was decided to develop a particular index that excludes the impact of soil on the final 

result. The Soil–Adjusted Vegetation Index developed by Huete (1988) includes factor L for the 

equation of NDVI that is supposed to adjust VI to the soil influence. L varies from 0 (in this case 

the SAVI [Equation 1] does not differ from the NDVI [Equation 2]) to 1 (high impact of soil and 

low vegetation cover). 

𝑺𝑨𝑽𝑰 =
(𝑵𝑰𝑹 − 𝑹𝑬𝑫)(𝟏 + 𝑳)

𝑵𝑰𝑹 + 𝑹𝑬𝑫 + 𝑳
 (1) 

The SAVI is repeatedly preferred in situations where accurate vegetation assessment is challeng-

ing due to the presence of bare soil or where soil variations are significant. 
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𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (2) 

2.3. Meteorological data  

The meteorological data was collected from the Hydrometeorological Service Agency under the 

Ministry of Ecology, Environmental Protection and Climate Change of the Republic of Uzbeki-

stan (Uzhydromet) for three decades (1991-2022). We deliberately collected data that might have 

a direct relationship with the vegetation cover and related to climate, specifically total monthly 

precipitation, average monthly temperature and average monthly soil temperature.  

The temperature around a plant determines its rate of growth and development, and each species 

has a defined temperature range that is represented by minimum, maximum and optimal. In terms 

of plant output, extreme occurrences might be the most severely affected in the summer months. 

There is a higher chance that air temperatures may rise over the ideal range for many species in 

the event of increasing climate change. On account of the possibility of ordinary temperatures, 

the growth season for cool-season species will be limited (Hatfield & Prueger, 2015). Therefore, 

temperature values, both extreme and average, are important with respect to monitoring climate 

change and its effect on vegetation.  

Numerous studies also investigated the impact of local precipitation on vegetation cover and bio-

mass. Chang et al. (2011), for instance, analysed the relationships of temperature and precipitation 

on vegetation in forests in Taiwan and discovered that temperature has a greater impact on forest 

biomass than precipitation. In a different study completed in North American monsoon regions, 

authors determined a positive correlation between monthly precipitation and vegetation indices, 

derived from satellite data (Méndez-Barroso et al., 2009).  

The measurement of the Earth's natural warmth is known as soil temperature. It regulates the 

ground's chemistry, life, and atmospheric-ground gas exchange. The phrase "soil surface temper-

ature," which refers to the temperature difference between the top four inches (10 cm) of the 

ground and the surrounding air, may also arise. Variations in radiant energy and energy shifts at 

the surface of the ground may result from daily and seasonal changes in the temperature of the 

land. Soil temperature is a prominent factor influencing the processes governing soil properties 

and those involved in plant growth (Onwuka, 2018). Owing to the absence of soil moisture data 

for the study area concerning the study period, it was decided to analyse the data pertaining to 

average monthly soil temperature and its relationship with other parameters (Onwuka, 2018). 

2.4. Statistical analysis 

The impact of climatic factors on vegetation cover over the years can be analysed via statistical 

analysis, for example, Pearson's correlation analysis. Pearson's correlation coefficient often de-

noted as "R" is a statistical measure that quantifies the strength and direction of a linear relation-

ship between two variables. The coefficient ranges from -1 to 1, where: 

• 1: A perfect positive linear relationship 

• 0: No linear relationship 

• -1: A perfect negative linear relationship 

The correlation coefficient's magnitude indicates the relationship's strength, while its sign indi-

cates the direction (Schober et al., 2018). 

It is important to note that correlation does not imply causation. Even if two variables are strongly 

correlated, it does not necessarily imply that one causes the other to change. Other factors or 

coincidences may be involved. Therefore, more comprehensive regression analysis was con-

ducted between the variables. 

The coefficient of determination, often denoted as R2, is a statistical measure that represents the 

proportion of the variance in the dependent variable that is predictable from the independent var-

iable(s). Essentially, it assesses the goodness of fit of a regression model. In the context of linear 

regression, the coefficient of determination is calculated as the square of the correlation coeffi-

cient (R) between the observed and predicted values of the dependent variable. Nonetheless, it is 

worth noting that R alone does not provide information regarding the appropriateness of the model 

or the validity of its assumptions. 

Monthly time-series data was obtained to correlate climate with vegetation. We analysed mean 

monthly NDVI and SAVI indices for the study area and statistically analysed them together with 
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the sum monthly precipitation, mean monthly soil moisture and mean monthly air temperature, 

measured in situ using local meteorological stations. 

 

Figure 2. Flowchart of the analysis. 

In statistical analysis, the p-value and F-statistic (or F-value) are valuable measures used to assess 

the significance of relationships and effects in regression analysis or analysis of variance 

(ANOVA). The p-value is a measure that determines the statistical significance of an observed 

effect or relationship. It represents the probability of obtaining results as extreme as the observed 

results (or more extreme) under the assumption that the null hypothesis is true. A small p-value 

(typically less than 0.05) implies that there is a significant statistical dependence between two 

variables.  

The F-statistic is used in analysis of variance (ANOVA) and regression analysis to test the overall 

significance of the model. A large F-statistic and a small associated p-value suggest that the over-

all regression model is statistically significant and vice versa. The regression analysis among all 

the variables was performed using Microsoft Excel software 2020 with the assistance of the Anal-

ysis Toolpak to evaluate the data. 
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3. Results and Discussion 

3.1. Vegetation Time-series Analysis 

The results of the time-series vegetation analysis for the post-Soviet period exhibit that vegetation 

cover fluctuates during seasons and years, showing high values in one year and low values in 

other years (Figures 3, 4, and 5). In particular, the NDVI index presents higher values than the 

SAVI for the same date, whereas for low values (during winter time), both the SAVI and the 

NDVI display equal values. During peak vegetation periods (spring and early summer), the mean 

NDVI reaches values ranging from 0.4 to 0.55. Meanwhile, in winter periods, the lowest values 

for the NDVI drop to -0.2 - -0.1 for UCHNP.  

Concerning the SAVI index, maximum values range from 0.25 to 0.3, sometimes falling to 0.25. 

For this study, the minimum values for the SAVI during winter periods area is similar to its sib-

ling, the NDVI index. Overall, both indices exhibit the same trend, ascending and descending, 

with only a few years displaying slightly different results, such as the beginning of years 2004, 

2014 and 2016. 

 

Figure 3. NDVI and SAVI average monthly values for the study area using Landsat 5 TM surface reflec-

tance. 

 

Figure 4. NDVI and SAVI average monthly values for the study area using Landsat 7 ETM surface reflec-

tance. 

Besides monthly mean, minimum, maximum, 25 percentile (p25), median and 75 percentile (p75), 

the NDVI and SAVI values were also calculated for each month. Subsequently, they were 
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summarised into average annual minimum, maximum, median, mean and p75 values (Figures 6 

and 7).  

It is evident from the figures that the mean annual statistical values for both indices fluctuate from 

1991 to 1999. It then stabilises from the beginning of the century and fluctuates again. Of note is 

that, starting in 2015, minimum and maximum values began to increase, attaining their maximum 

and minimum possible values virtually for both the NDVI and SAVI. This might indicate a po-

tential trend towards more extreme seasonal climates, ranging from cold winters to very hot sum-

mers, with noticeable seasonal precipitation variations. Mean, median, p25 and p75 values also 

experienced a slight increase during the last 30 years of the post-Soviet period (Figures 6 and 7). 

 

Figure 5. NDVI and SAVI average monthly values for the study area using Landsat 8 OLI surface reflec-

tance 

 

Figure 6. Annual NDVI minimum, 25% percentile, median, 75% percentile and maximum values. 
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3.2. Climate time-series analysis  

Throughout the study period, climatic parameters, specifically soil temperature, air temperature 

and precipitation were also analysed. Mean monthly air temperature was obtained from Uzhy-

dromet for time-series correlation analysis with the NDVI and the SAVI indices. It should be 

mentioned that the mean monthly air temperature and soil temperature are calculated using the 

mean daily temperatures, which are measured for each hour. 

As Figure 8 shows, mean annual temperature reveals an increasing trend during the course of the 

last thirty years for the study period, with a strong moderate correlation R=0.58 (and R2 = 0.33). 

Mean annual soil temperature also demonstrates an increasing trend all through the study period, 

but with a significantly less correlation R= 0.17 (R2= 0.03) (Figure 9). Sum annual precipitation 

from 1991 to 2022 also exhibits a gradual increasing trend for the UCHNP. Nevertheless, the 

relationship is also weak, with a weak positive correlation R =0.18 (R2 = 0.033). 

Mean annual air temperature shows slight fluctuations throughout the study period, but generally 

presents a gradual increasing trend. Soil temperature inter-annual results also do not significantly 

differ from each other, except for certain years, such as 1994, 2006, 2012 and 2017, when annual 

mean soil temperature displayed either high or low results compared to other years (Figure 9). 

 

Figure 7. Annual SAVI minimum, 25% percentile, median, 75% percentile and maximum values 

However, annual precipitation for the region illustrates dramatic fluctuations, especially at the 

beginning of the period. For example, in 1993 annual precipitation reached 1400 mm, then 

dropped to 430 mm for the year 1995. In 1997, the region again experienced a high level of annual 

precipitation (1300 mm), which then dropped to 700 mm in 2000. The remaining years also re-

veals similar patterns, although to a lesser extent (Figure 10). 

 

Figure 8. Mean annual precipitation trend from 1991 to 2022 
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Figure 9. Mean annual soil temperature trend from 1991 to 2022. 

 

Figure 10. Annual sum precipitation trend from 1991 to 2022. 

3.3. Correlation analysis between vegetation and climate 

Correlation and the coefficient of determination matrices below (Figures 11 and 12) illustrate that 

the highest interdependency among all variables show Air Temperature vs. Soil Temperature, 

NDVI vs. SAVI, reaching almost the maximum value (R =0.98). The relationship between air 

temperature and soil temperature on a larger scale is complex and depends on various factors, 

such as the type of soil, moisture content and local environmental conditions. However, in this 

study area, both parameters were measured at the same location, the Chimgan weather station. In 

colder seasons, a drop in air temperature can lead to a decrease in soil temperature. The soil tends 

to lose heat to the atmosphere during colder periods. Conversely, during warmer seasons, higher 

air temperature can result in an increase in soil temperature as the soil absorbs heat from the air. 

We have a very strong linear dependency (R =0.98, R2 = 0.96) (Figures 11 and 12).  

Another very strong linear correlation displays both the NDVI and the SAVI indices, which is not 

surprising, for the reason that these indices have similar formulas and employ the same technique 

to detect vegetation (R =0.98, R2= 0.96). The only difference between the NDVI and the SAVI 

is the L factor, which is used to minimise the soil background factor on the reflectance. 

The NDVI and the SAVI also have a high positive correlation with air temperature and soil tem-

perature. The SAVI has slightly stronger relationship with both air temperature and soil 
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temperature (Rair=0.86 and Rsoil = 0.86), as opposed to the NDVI (Rair=0.83 and Rsoil = 0.84). 

These values are considered as strong and positive, meaning that both air temperature and soil 

directly impact the growth and health of vegetation. The determination coefficients are also high: 

R2air=0.69 and R2soil = 0.71 for the NDVI and R2air=0.69 and R2soil = 0.71 for the SAVI 

(Figure 11 and 12). 

 

Figure 11. Correlation matrix (R). 

 
Figure 12. Coefficient of determination matrix(R2). 
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Also strong moderate relationship has air temperature with year (which denotes that in the future, 

temperatures in the region will continue to rise) with R = 0.57 (R2 =0.33). Similarly, moderate 

negative relationships exist between air and soil temperature on precipitation (Rair=-0.48 and 

Rsoil= -0.47). However, precipitation (as an independent variable) has a weak moderate negative 

impact on the SAVI and the NDVI (-0.4 and -0.39). Besides precipitation, vegetation in the study 

area can take water from groundwater resources and melting glaciers in the mountains.  

The NDVI and the SAVI also have a high positive correlation with air temperature and soil tem-

perature. The SAVI has a slightly stronger relationship with both air temperature and soil temper-

ature (Rair=0.86 and Rsoil = 0.86), as opposed to the NDVI (Rair=0.83 and Rsoil = 0.84). These 

values are considered strong and positive, signifying that both air temperature and soil directly 

impact vegetation growth and health. The determination coefficients are also high: R2air=0.69 

and R2soil = 0.71 for the NDVI R2air=0.69 and R2soil = 0.71 for the SAVI (Tables 1 and 2). 

Table 1. p-value of relationship among variables. 

 NDVI Air Temperature Soil Temperature Precipitation 

NDVI - 1.30E-78 5.96E-82 3.38E-12 

SAVI 1.45E-285 1.169E-87 3.029E-91 9.13E-13 

Air Tempera-

ture 
 - 1.19E-141 1.54E-23 

Soil Tempera-

ture 
  - 7.19E-23 

According to Table 3, the SAVI, NDVI, precipitation and soil temperature tend to increase with 

time, although the relationship is weak. This can be said with some degree of certainty. It is worth 

mentioning that the p-values for all relationships were calculated to be less than 0.05, which means 

that there is statistical evidence to reject the null hypothesis, indicating that at least one predictor 

variable is significantly related to the response variable. In spite of this, the p-value alone does 

not measure the strength of the relationship (Table 2). 

A high F-statistic in the context of regression analysis specifies that the model (with predictors) 

fits the data significantly better than a model without predictors. This is frequently associated with 

the overall significance of the regression model. In our models, the high F-statistic indicates that 

the model as a whole provides a better fit than a model with no predictors. 

Table 2. F-statistics of relationship among variables. 

 NDVI Air Temperature 
Soil Tempera-

ture 
Precipitation 

NDVI - 674.24 725.56 52.68 

SAVI 23520.98 821.78 885.53 55.75 

Air Temperature  - 15105.60 114.44 

Soil Temperature   - 110.49 

It is vital to consider the practical significance of the results. A statistically significant relationship 

does not necessarily signify a practically meaningful one. Additionally, other factors, such as ef-

fect size, domain knowledge, and the context of the study should be considered when interpreting 

the results. 

In brief, the interpretation should be cautious, acknowledging that while there may be a statisti-

cally significant relationship, the practical significance or strength of the relationship may be lim-

ited based on the low correlation and R-squared. 

3.4. Forecast 

Forecast was undertaken using the Forecast Microsoft Excel function based on monthly data de-

rived from Google Earth Engine (for the vegetation) and the Chimgan meteorological station (for 

the climate data). It was subsequently summed up as average annual to enable the data to be 

presented conveniently. 
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Figure 13. Mean annual soil temperature forecast until 2065. 

According to the data obtained from the Uzhydromet for the last thirty years, annual precipitation 

will increase. In 2040, the annual precipitation will reach 1100 mm, gradually rising to 1150 mm 

in 2050 and 1200 mm in 2065. 

 

Figure 14. Mean annual precipitation forecast until 2065. 

As can be determined from Figures 13, 14, and 15, each of the climatic parameters will increase 

within the next four decades (until 2065). However, it should be noted that only air temperature 

demonstrated a sufficient correlation with year to consider the trend as reliable. The other two 

indicators have too weak a correlation to predict with certainty that they will also increase, in 

particular precipitation, which does not depend on air temperature. Similarly, as the green line 
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shows, all parameters fluctuate significantly from year to year. Therefore, the red forecast line is 

just an assumption of the general trend for upcoming decades.  

Mean annual soil temperature is expected to reach 8.7 С° in 2030, gradually continuing to rise to 

9 С° in 2040, reaching 9.3 С° in 2060 (Figure 13). In sum, within 40 years, mean annual soil 

temperature will increase by 0.6 С°. Soil temperature affects microbial activity and nutrient cy-

cling. Changes in soil temperature can influence decomposition rates and the availability of nu-

trients, impacting ecosystem processes. Moreover, temperature changes can influence water avail-

ability in soil. Warmer temperatures may increase evaporation rates, potentially causing drier soil 

conditions. 

Likewise, warmer soil temperatures can accelerate plant growth and extend growing seasons in 

certain cases. Conversely, negative impacts can offset these benefits, such as increased evapora-

tion rates, which can lead to soil moisture stress. This moisture stress can reduce plant productiv-

ity, alter species composition and potentially decrease biodiversity. In some instances, increased 

temperatures can also exacerbate the spread of invasive species, which can further disrupt the 

native vegetation. 

Air temperature has the highest correlation with time among all climatic parameters; as a result, 

its forecast for the future should be seriously considered. According to the trend, during the next 

40 years, the average annual air temperature will increase to 11.2 С° (for 1.6 С°) (Figure 15). 

Altered temperature patterns may result in changes in the distribution of plant species. Several 

species may be more resilient to higher temperatures, while others may struggle to adapt. Altered 

temperatures may affect the habitat and migration patterns of wildlife species, with particular 

species needing to adapt or migrate to more suitable environments. Moreover, higher temperatures 

may contribute to increased drought risk in certain regions. Prolonged drought conditions can 

have severe consequences for both vegetation and animal populations. 

 

Figure 15. Mean annual air temperature forecast until 2065. 

The vegetation cover is expected to increase due to the projected increase in air temperature and 

precipitation (Figures 16 and 17). In specific cases, increased precipitation and temperature can 

enhance vegetation growth. Warmer temperatures may extend the growing season, whilst higher 

precipitation levels can provide more water for plants. This could potentially produce increased 

vegetation cover and biomass. Certain species may become more prevalent, while others may 

decline, impacting overall vegetation structure. 

Changes in vegetation cover and biomass can affect wildlife habitat and grazing resources. In-

creased biomass may provide more food for herbivores, although this also depends on the specific 

response of plant species and the potential for overgrazing. Different plant species have varying 

tolerances to changes in temperature and precipitation. As a result, some species may benefit from 

warmer conditions, while others may be negatively affected. The overall response will depend on 

the composition of the existing vegetation. 
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While increased precipitation can be beneficial for vegetation, it is essential to consider how water 

availability interacts with other factors. If temperatures rise substantially, increased evaporation 

may counterbalance the positive effects of higher precipitation. 

 

Figure 16. Mean annual NDVI forecast until 2065. 

Changes in vegetation cover and biomass can have consequences for wildlife habitat and grazing 

resources. Increased biomass may provide more food for herbivores; nevertheless, this is also 

dependent on the specific response of plant species and the potential for overgrazing. While par-

ticular regions may experience a boost in vegetation cover, others might experience changes in 

the types of dominant plant species. Certain species may become more prevalent, while others 

may decline, impacting overall vegetation structure. 

 

Figure 17. Mean annual SAVI forecast until 2065. 

If the NDVI increases from the annual average of 0.21 (in 2022) to 0.35 (in 2060), the SAVI index 

reveals that the region will encounter less dramatic biomass growth - will increase from 0.13 (in 

2022) to 0.22 (in 2060). 
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4. Conclusion 

Comprehensive monthly and annual time-series analysis for the Ugam Chatkal National park for 

the post-Soviet period was conducted in this research, using remote sensing images (Landsat sat-

ellite) and climate data, taken from the Uzhydromet (Chimgan meteorological station). We ana-

lysed the impact of climate during the last thirty years as regards vegetation cover in the study 

region and both climatic and vegetation trends for the past, so as to predict future possible devel-

opment.  

To recap, the results of our research are: (1) all climatic parameters, namely soil temperature, air 

temperature and precipitation, significantly fluctuated from 1991 to 2022, with an increasing 

trend, in general; (2) vegetation cover, measured using the NDVI and SAVI indices also fluctu-

ated, especially at the beginning of the study period, including a minimal increase in trend over 

time; (3) commencing from 2014, vegetation minimum and maximum values start to differ more; 

(4) only air temperature has a sufficient correlation with time (R = 0.57) to seriously consider 

local temperature rise during the post-Soviet period and the continuation of this process in the 

future; (5) among the climatic parameters, only air and soil temperatures exhibit a very strong 

relationship with each other (R = 0.98), whereas precipitation reveals a less significant relation-

ship (Rair =-0.48 and Rsoil= -0.47); (6) both indices have a strong dependence relative to air 

(Rsavi= 0.86, Rndvi =0.83) and soil temperature (Rsavi= 0.85, Rndvi =0.84), and a negative re-

lationship with precipitation (Rsavi= -0.40, Rndvi =-0.39); (7) the SAVI demonstrated a better 

statistical relationship with climatic parameters in comparison to the NDVI, but the difference is 

small; (8) annual air temperature is predicted to increase for 1.6 С° across the following four 

decades; (9) precipitation and soil temperature are also projected to increase. However, the relia-

bility of this finding is small enough compared to air temperature. Hence, further studies are nec-

essary to verify these findings; (10) vegetation biomass will also increase, although other alterca-

tions in vegetation biomass is complicated. 

The study emphasises the significance of monitoring these environmental management and pol-

icy-making trends. It highlights the complex relationship between climate change and vegetation 

dynamics, which is essential to preserve ecological integrity. Besides constant monitoring of cli-

mate dynamics in the region, it is also beneficial to analyse the anthropogenic impact, such as 

overgrazing and urbanisation, in relation to the local vegetation. 
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