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Abstract − Robot Security is a robot that is responsible for security as well as patrolling. When patrol automatically, the
robot requires a navigation system. The robot also needs a mapping system that is used to make a map of the environment
and as information on its location according to the map. The sensors used are wheel odometry and LiDAR. The wheel
odometry system often slips which causes errors in reading the actual position of the robot. To fix this problem, a sensor
fusion between the Inertial Measurement Unit (IMU) and wheel odometry is used. To combine these sensors, namely
using the Extend Kalman Filter (EKF) which runs on the Robot Operating System (ROS) operating system. Mapping and
navigation system testing, carried out using IMU sensors and without IMU, towards the 5 target points that have been made.
In the test without IMU, the error of the robot reaching the target was (x = 45.86%, y = 54.595%, and = 56.63%). After
adding the IMU sensor, the robot error has decreased to (x = 2.02%, y = 1.796%, and = 0.22%). In conclusion, the data
combined from the IMU sensor and wheel odometry could minimize the existing slip errors.
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I. INTRODUCTION

W ITHIN the unprecedented circumstances of
the COVID-19 pandemic, the role of security

robots has become increasingly crucial. In addition to
performing general environmental surveillance func-
tions, robots can also be used for early detection of
individual health conditions by integrating temperature
measuring devices on them [1, 2]. Therefore, robots
can identify potential individuals with body tempera-
tures exceeding normal limits, contributing to efforts to
prevent the spread of the virus.

To perform surveillance or patrol tasks optimally,
reliable navigation capabilities are essential for secu-
rity robots. This navigation system enables the robot
to move autonomously around the environment that
needs to be monitored. The navigation system involves
route recognition, obstacle avoidance calculations, and
adaptation to changing environmental conditions [3].

Determining the robot’s actual position is an inte-
gral element in the navigation system. Lack of knowl-
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edge about the accurate position can hinder the robot’s
operational efficiency. Therefore, the SLAM (Simul-
taneous Localization and Mapping) method approach
becomes important. Through SLAM, robots can simul-
taneously map their surroundings and determine their
actual position on the created map.

Gmapping emerges as one of the SLAM imple-
mentations that can be applied to security robots for
mapping and positioning [4, 5]. This approach relies
on LiDAR (Light Detection and Ranging) sensors ca-
pable of measuring distances accurately and building
three-dimensional maps of the surrounding area. Addi-
tionally, wheel odometry data is used to calculate the
robot’s movement.

Although wheel odometry data provides an
overview of the robot’s movement, wheel slip is a
challenge. Wheel slip, which can occur on slippery
or uneven surfaces, can disrupt the accuracy of move-
ment estimation. To address this issue, a more sophisti-
cated solution in position determination is needed. One
solution is to utilize inertia data from IMU (Inertial
Measurement Unit) sensors. IMU sensors can detect
changes in the robot’s speed and orientation accurately,
even in wheel slip situations. Integrating data from
IMU sensors with wheel odometry data can provide a
more precise and stable position estimate [6].
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Integrating data from IMU sensors and Wheel
Odometry is performed using the Extended Kalman
Filter (EKF) algorithm. EKF is a mathematical algo-
rithm used to combine data from two different sources,
in this case, IMU sensors and Wheel Odometry [7, 8].
EKF estimates the uncertainty level of each data and
produces an optimal estimate of the robot’s position
and orientation.

The navigation system can be implemented within
the Robot Operating System (ROS). ROS has advan-
tages in hardware management, sensor data process-
ing, and communication systems. By using ROS as its
framework, the security robot navigation system can be
implemented more easily and structurally.

A security robot is a robot used to perform envi-
ronmental surveillance to maintain security in a place
[9, 10]. This robot mimics the tasks of a security guard
when performing security duties. To support its per-
formance, the robot is equipped with cameras and a
navigation system. The navigation system can be im-
plemented on the condition that the robot knows its
actual position and has a map of the monitored area.

The navigation system in the robot is a system
that enables the robot to move autonomously, identify
its location, and plan the movement path to a specific
destination [11]. The navigation system is essential to
make the robot autonomous and efficient in carrying
out its tasks. One part of the navigation system is envi-
ronmental mapping. The robot needs to understand the
structure and characteristics of its environment, such
as walls, doors, or other obstacles. Mapping can be
done statically, where the environmental map is made
beforehand, or dynamically, where the robot maps the
environment while moving. Besides mapping, local-
ization is also a main part of the navigation system.
This localization aims to know the robot’s actual po-
sition. This system can be achieved using techniques
like odometry or the global positioning system (GPS).
However, in indoor conditions, GPS does not function
well [12].

Research on robot navigation systems in indoor
environments conducted by several researchers gen-
erally focuses on the development of mapping and
navigation systems using SLAM (Simultaneous Lo-
calization and Mapping) technology. These studies
generally aim to understand how robots can move au-
tomatically, create environmental maps while knowing
their actual position. Some SLAM algorithms such as
Gmapping [13, 14], Hector SLAM [15, 16], and Karto
SLAM [17] are tested and evaluated to understand the
efficiency and accuracy of mapping. These studies are
conducted to select optimal parameters to achieve the
best mapping and localization results. Among these

techniques, Gmapping is often used.
Gmapping is a SLAM algorithm that creates a

map of the robot’s surroundings and updates the map
with sensor information while recording the robot’s
movement path. Gmapping uses a loop closure algo-
rithm and relies on odometry data to build the envi-
ronmental map. The technique used in Gmapping is
loop closure which can update the map when the robot
returns to its original position. Gmapping is known for
its higher efficiency and lower computational power
requirement compared to other techniques, making it
suitable for security situations [18]. The Gmapping
method uses information from lidar sensors and robot
photometric. The localization process in Gmapping
uses Monte Carlo Localization (MCL) also known as
particle filter [19]. When mapping with Gmapping,
the occupancy grid map method is used to create a
two-dimensional (2D) map. The occupancy grid map
represents the grayscale level on a scale of 0 to 255.

The use of sensors such as 2D lasers and Inertial
Measurement Unit (IMU) sensors can help in obtaining
accurate information about the surrounding environ-
ment [20]. However, challenges arise when the robot
has to move outdoors, facing disturbances such as slip
and uneven terrain. Thus, the use of motors and some
sensors need to be optimized to reduce reading errors.
The sensors used to support the performance of Li-
DAR are generally wheel encoders. Wheel encoders
are sensors commonly used in odometry systems to
estimate position changes in robots. Additionally, In-
ertial Measurement Unit (IMU) sensors are often used
to determine the robot’s heading. IMU has advantages
in providing accurate and real-time information, espe-
cially when combined with the Extended Kalman Filter
algorithm.

In this article, the research aims to test the reliabil-
ity of the developed navigation system and contribute
to the application of EKF in security robots. It is ex-
pected that the results of this research can significantly
contribute to the development of more efficient and
reliable security robots in performing surveillance and
monitoring tasks.

II. RESEARCH METHODS

This chapter discusses the planning and creation steps
of the system, which include the planning of hardware
design, robot design, and software design.

i. Mechanical System Design

The Security Robot is built using a 1 cm thick acrylic
frame, assembled in layers. The Security Robot has
dimensions of 500 cm in length, 380 cm in width, and
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570 cm in height. The robot design is illustrated using
3D drawing software, and the actual appearance of the
robot can be seen in Figures 1a and 1b.

To support the odometry system using a rotary en-
coder, the wheel layout in the robot’s geometry needs to
be considered. The robot is constructed using a differ-
ential drive mobile robot mechanism with a wheelbase
(d) of 38 cm. The robot’s base frame is set between the
two driving wheels. The combination of the left wheel
speed (vL) and the right wheel speed (vR) will result in
changes in the robot’s speed (v) and heading direction
(θ ). The kinematics of the mobile robot are shown in
Figure 2.

(a) (b)

Figure 1: Security Robot (a) Design (b) Design realization

To support the odometry system using a rotary
encoder, the wheel layout in the robot’s geometry needs
to be considered. The robot is built using a differential
drive mobile robot mechanism with a wheelbase (d) of
38 cm. The base frame of the robot is set between the
two driving wheels. The combination of the left wheel
speed (vL) and the right wheel speed (vR) will result in
changes in the robot’s speed (v) and heading direction
(θ ). The kinematics of the mobile robot are shown in
Figure 2.

ii. Hardware Design

The hardware design includes the creation of the hard-
ware connection design. This includes connecting the
IMU sensor to the Jetson Nano, connecting the DC mo-
tor to the Arduino microcontroller, and connecting the
LiDAR to the Jetson Nano. Figure 3 explains the de-
sign of the system workflow to be created. Initially, the
power source comes from a Lithium-Polymer (Li-Po)
battery. The Li-Po battery used is a 3-cell battery with
a voltage of 12 volts and a capacity of 2200 mAh. The
battery voltage is used to supply several components,
including the Arduino Mega, Jetson Nano, DC motor
driver, encoder, Inertial Measurement Unit (IMU), and

Figure 2: Kinematics of the Mobile Robot

LiDAR A1.

Figure 3: Hardware Design of the Security Robot

Next, a digital voltmeter display is installed to
display the voltage used, which is 12 V. This display
uses a seven-segment display to show the value and has
3 output cables: 2 cables for positive voltage source
and 1 cable for data. The 2 source cables are parallel to
the battery, and the data cable is parallel to the positive
battery line.

The Arduino Mega is used to control and process
data from several components, including the DC motor
driver, DC motor, and encoder, and serves as the RPM
data reader for the motor. The Arduino Mega is a
microcontroller board based on the Atmega2560. The
operating voltage for this microcontroller is 5V, but it
can be supplied with a maximum voltage of 12V due
to the external power supply circuit. The encoder data
processed by the Arduino is then sent to the Jetson
Nano via serial communication.

The wheel encoder sensor is used to measure the
wheel speed. The encoder operates at 5V and is con-
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nected to the PWM pin of the Arduino Mega. The
microcontroller processes this data to obtain the RPM
value, which is then sent to the Jetson Nano via serial
communication. The Jetson Nano serves as the main
processor for mapping and navigation. It is a System
On Module (SoM) and developer kit from Nvidia Jet-
son, featuring a 128-core Maxwell GPU, quad-core
ARM A57 64-bit CPU, and 4GB LPDDR4 memory. It
has 4 USB 3.0 ports, 1 Ethernet port, 1 display port,
and 1 HDMI port. The operating voltage for the Jetson
Nano is 5V, but it can be supplied with a maximum
voltage of 12V due to the external power supply circuit.
The Jetson Nano processes all inputs received from the
IMU sensor, LiDAR A1, and RPM information.

The Inertial Measurement Unit (IMU) sensor is
used to provide information about the robot’s direction,
including the X, Y, Z axes, and motion information such
as rolling, pitching, and yawing. This directional data is
processed in the ROS system as additional information
for controlling the robot. The LiDAR A1 sensor is used
for scanning the room. It can rotate 360 degrees and
emits a laser to the surroundings, with a receiver on
the LiDAR to receive the reflected laser. The reflected
laser is calculated to provide distance parameters for
the robot’s system.

iii. EKF Design

The Extended Kalman Filter (EKF) is an extension of
the Kalman Filter method used to estimate values. The
Kalman Filter was initially developed to address prob-
lems in discrete control processes that are stochastic
and linear. However, in its implementation in sensor
fusion, measurements from these processes are often
non-linear. The EKF provides updates to the Kalman
Filter method to handle non-linear measurements.

Non-linear value estimation is processed using the
EKF. In the estimation stage, the robot’s position is
predicted based on data obtained from the IMU sensor
and wheel odometry. This stage consists of two steps:
the prediction step and the update step. Estimation is
performed using two models: the state space model and
the observation model.

The state space model is a mathematical equation
that describes the robot’s movement from one time step
to the next. Since the robot moves on a flat plane, the z,
roll, and pitch components are excluded. The state or
system state is defined by the pose equation (position
and orientation) as in Equation (1).

P =

x
y
θ

 (1)

where x and y represent the position on the flat

plane, and θ represents the yawing state in the global
coordinate system. When the robot moves, it creates
a new position and orientation. The state vector is
continuously updated to determine the actual position.
The new position is estimated using Equation (2).xt
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A represents how the system state P[x,y,θ ]
changes from t −1 to t when no control command is
executed. B represents how the system state P changes
from t-1 to t due to the control command, where vt−1
is the robot’s linear velocity in the robot’s reference
frame, and ωt−1 is the angular velocity in the robot’s
reference frame. The observation model is a mathemati-
cal equation that calculates measurements from sensors
to estimate the actual state, including a noise vector at
the end, resulting in Equation (3).
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where t is the current time, n is the number of
observations or measurements at time t. H is the mea-
surement matrix with n rows and 3 columns, with one
column for each state variable. The value of ω is the
sensor noise during the measurement. In mobile robots,
Equation (3) is expanded to Equation (4).
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iv. ROS Framework Design

In the software design for the Security Robot, several
accesses are needed to use and integrate the sensors.
The operating system used is Ubuntu 18.04, and the
ROS version used is ROS Melodic. To monitor the
working ROS Framework, the RQT application pro-
vided by ROS can be used. RQT is a framework from
ROS that implements various working nodes.

In the design created, the robot uses ROS node
configurations for several tasks. The node configura-
tions include running manual mode, mapping mode,
and automatic mode. Manual mode is used to operate
the robot with remote operator commands. Mapping
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mode is used to create and save maps obtained from
LiDAR sensor readings and wheel odometry. In this
mode, the robot is operated manually by the operator us-
ing a remote at a lower speed. Automatic mode is used
to operate the robot’s navigation automatically based
on the operator’s commands. The command given by
the operator is the final pose or target within the map’s
reach.

The operator’s computer (as a remote) publishes
a node called /teleop. The /teleop node publishes
a topic named /cmd_vel. This topic contains mes-
sage information of type .msgs, which is used to send
linear and angular movement direction commands to
the robot. The message on the /cmd_vel topic is
subscribed by the /serial_node. The message sub-
scribed by the /serial_node contains the value infor-
mation used to drive the wheel rotation direction. The /
serial_node publishes topics named /right_ticks
and /left_ticks, which contain the number of

pulses from the rotary encoder. The /right_ticks

topic contains the right wheel pulse count, while the /
left_ticks topic contains the left wheel pulse count.

The /ekf_odom_pub node subscribes to three
topics named /initial_2d, /right_ticks, and /

left_ticks. The /initial_2d node is obtained
when setting the robot’s initial direction in RViz. The
information from these three topics is processed by /

ekf_odom_pub to determine the robot’s direction. The
robot’s direction value after being processed is pub-
lished with a topic named /odom_data_quat.

The /imu/imu_node produces information from
the IMU sensor, containing coordinate direction and
rotation values. These values are published by /

imu/imu_node with the topic /imu_data. The
/robot_pose_ekf node subscribes to two top-
ics: /odom_data_quat and /imu_data. The /

robot_pose_ekf node processes the parameters ob-
tained from these two topics to determine the robot’s
actual direction. The node configuration for manual
mode is shown in Figure 4.

Figure 4: Node Configuration for Manual Mode

The room mapping process is performed using the
/rplidarNode, while the robot is controlled to navi-
gate the room using the /teleop_twist_keyboard

node. The /rplidarNode is obtained from the LiDAR

A1 sensor, which processes the laser scan data. This
data is published with the /scan topic, containing pa-
rameters used to create a map. The /SLAM_gmapping
node subscribes to the /scan topic, containing param-
eters to compose the gmapping map. Once the map is
created, the /SLAM_gmapping node publishes a topic
named /map. The /map topic is used to store the data
created by gmapping. The node configuration during
mapping mode is shown in Figure 5.

Figure 5: Node Configuration for Mapping Mode

The /map_server node is used to access the pre-
viously created map. The node containing the map
information is published with the topic named /map

. This topic is subscribed by the /move_base node,
which is used as a parameter for the robot’s automatic
movement. The /rplidarNode is obtained from the
LiDAR A1 sensor, which processes the laser scan data.
This data is published with the /scan topic, containing
parameters to be subscribed to the /amcl node. The /
initialpose topic contains the global path formation
process when initially setting the robot’s direction in
RViz. These parameters are subscribed by the /amcl
node.

The /amcl node calculates to form the local path
that the robot will traverse during navigation. The /

amcl node always performs localization using laser
data according to the environmental conditions, esti-
mated by the IMU and encoder data. Thus, if the robot
encounters new obstacles, it can recalculate to obtain a
new local path to reach the goal. As a visualization of
obstacles displayed in RViz, the /amcl node publishes
a topic named /particlecloud. The visualization is
displayed as point clouds forming obstacles according
to the actual conditions. The node configuration for
automatic mode is shown in Figure 6.

III. RESULTS AND DISCUSSION

The automatic testing of the robot was conducted in
the robotics lab of ITATS, as shown in Figure 7, with a
total of 60 data collection trials. This testing aimed to
determine the accuracy between the current goal (target
point) on Rviz and the robot’s pose (current state). The
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Figure 6: Node Configuration for Automatic Mode

testing was conducted without using the IMU sensor
and with the IMU sensor.

i. Creating an Occupancy Grid Map

The map creation test was performed to determine if
the robot could effectively map the room. The test-
ing was conducted twice, using high speed and low
speed. Figure 4.13 shows the condition of the ITATS
robotics lab room where the map creation experiment
was conducted.

In Figure 8(left), the map creation at maximum
speed is shown, with a linear speed of 0.5 m/s and an
angular speed of 1 rad/s. The resulting map shows
some areas that do not form accurately, with some parts
exceeding the actual room shape due to the unstable
(non-constant) speed of the robot. In Figure 8(right),
the map creation at low speed is shown, with a lin-
ear speed of 0.10 m/s and an angular speed of 0.11
rad/s. The resulting map closely resembles the actual
room conditions, with the black lines formed accurately
representing the room’s layout. From these two map
creation tests, it is evident that map creation is better
performed at low speed. Figures 8 show that the parts
of the room that should be straight are not detected at
high speed, as indicated by the yellow and red circles.

ii. Automatic Navigation Testing Without EKF

Testing without EKF is a method where the robot op-
erates without sensor fusion between the Inertial Mea-
surement Unit (IMU) and wheel odometry. The IMU
is typically used to measure and track the robot’s orien-
tation, acceleration, and angular velocity. Without the
IMU, the robot relies solely on wheel odometry data
to determine its position and orientation. This testing
involves providing the robot with a target position to
reach. In Figure 9, the target is shown in blue. After
the robot moves towards the target, it does not always
precisely reach it, resulting in a discrepancy between

Figure 7: Robot Testing Room

(a) (b)

Figure 8: Map generation result (a) with low speed (b) with
high speed

the actual position (red) and the target.
The testing results indicate an average error in the

comparison between the target position (current goal)
and the initial pose, with X=45.863%, Y=54.595%,
and Theta=56.63%. This means the robot experiences
significant errors in determining its position and orienta-
tion without using the IMU sensor. The primary cause
of this error is wheel slip due to the uneven path of
the robot. Wheel slip occurs when the robot’s wheels
do not have perfect traction with the surface. If the
robot moves on uneven or slippery surfaces, its wheels
may slip or experience unexpected shifts, leading to
inaccurate odometry information.

When the robot relies solely on wheel odometry
data for movement, the error tends to accumulate over
time. This is because each movement step or wheel
rotation contains a slight error, which accumulates over
time. As a result, the longer or farther the robot moves,
the greater the error becomes.

To address this issue, using an IMU sensor can
be an appropriate solution. With the IMU, the robot
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Figure 9: Target Position Achievement Without EKF

can obtain additional data on orientation and angular
acceleration, allowing it to correct odometry errors and
improve movement and positioning accuracy. This en-
ables the robot to move more efficiently and accurately
even on uneven surfaces.

iii. Automatic Navigation Testing With EKF

To improve the robot’s movement accuracy, the next
test incorporated an IMU sensor. The IMU sensor was
combined with wheel odometry using EKF. The results
of this test can be seen in Figure 10. In Figure 11,
which shows the results of testing with the extended
Kalman filter on the robot, it is evident that the robot’s
movement when reaching the target (current goal) and
its initial position (initial pose) has been thoroughly
tested. The results indicate that the average movement
error of the robot, measured in percentages along three
different axes (X, Y, and Theta), is relatively small, with
values of 2.02% for the X-axis, 1.796% for the Y-axis,
and only 0.22% for the Theta axis. Therefore, it can be
concluded that the extended Kalman filter significantly
reduces the robot’s movement errors, resulting in better
accuracy in reaching the specified target.

The success of the extended Kalman filter in im-
proving the robot’s movement accuracy can also be
attributed to the method used for robot movement. In
this case, the robot moves by comparing data from two
sources: the IMU sensor and wheel odometry. By lever-
aging data from both sensors, the robot can compensate
for errors that may occur from each sensor, resulting in
more precise and accurate movements in reaching the
desired target.

Additionally, the results of the standard devia-
tion analysis are noteworthy. The analysis shows that
the Theta axis has the smallest standard deviation of

Figure 10: Target Position Achievement With EKF

Figure 11: Comparison of Orientation Error With and With-
out EKF

0.08463, indicating that the measurement data for the
Theta axis has lower variation and is closer to the av-
erage error value. As a result, the robot’s movement
along the Theta axis is more consistent and reliable in
reaching its final target.

Besides testing target achievement, the 2D trajec-
tories generated by both methods were also compared.
In Figure 12, it can be seen that the 2D trajectory re-
sulting from the fusion of the encoder and IMU has a
deviation close to the reference, while the wheel en-
coder alone results in a greater deviation.

Overall, the results of this test provide a positive
outlook on the robot’s performance in reaching targets
with the help of the extended Kalman filter. The low
movement errors along the three axes, especially the
Theta axis, indicate that the robot can move more pre-
cisely and accurately. These results offer hope that
using the extended Kalman filter technology and inte-
grating data from the IMU sensor and wheel odometry
can enhance the robot’s overall performance in vari-
ous tasks and applications involving movement and
navigation.

https://journals2.ums.ac.id/index.php/emitor/article/view/3104/version/3114
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Figure 12: 2D Trajectory Comparison Between Wheel En-
coder and Encoder+IMU Fusion

IV. CONCLUSION

The automatic movement test results of the robot show
better performance when combining IMU sensor data
with wheel odometry data compared to relying solely
on wheel odometry data. This experiment was con-
ducted with 60 different trials. Testing with only
wheel odometry data showed significant errors when
the robot reached the target, with errors of (x=45.86%,
y=54.595%, θ=56.63%), indicating that the robot was
far from the desired target position. However, when
testing was conducted by combining IMU sensor data
and wheel odometry data, the results showed much
lower errors, with (x=2.02%, y=1.796%, θ=0.22%).
This indicates that the robot moves closer to the target
position with higher accuracy. From this experiment,
it can be concluded that combining IMU sensor data
with wheel odometry data synergistically reduces er-
rors when the robot reaches the target point. Using
the IMU sensor provides additional information about
orientation and angular acceleration, helping to correct
inaccuracies in wheel odometry data and improving the
robot’s movement accuracy.
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