Physiotherapy Interventions in Diseases Idiopathic Pulmonary Fibrosis: Literature Review

Ni Kadek Dian Arisanti^{1*}, I Made Surya Widi Antara², Arsya Hayyu Prasetyo³, Rani Nafisa Dewi⁴, I Gede Eka Juli Prasana⁵, Ariezta Jeviana⁶

1.2.3.4Program Studi Profesi Fisioterapi, Fakultas Kedokteran, Universitas Udayana, Indonesia
 Departemen Fisioterapi, Fakultas Kedokteran, Universitas Udayana, Indonesia
 Poliklinik Fisioterapi, Rumah Sakit Universitas Udayana, Indonesia
 Email: dianarisanti2909@gmail.com

Submition: 2025-03-31; Accepted: 2025-05-31; Published: 2025-06-01

ABSTRACT

Introduction: Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease that causes lung tissue to stiffen and progressively decreases respiratory function. Patients often experience shortness of breath, fatigue, and decreased capacity for daily activities, which impacts their quality of life. While there is no cure for IPF, physiotherapy plays an important role in helping to manage symptoms and maintain lung function. Various interventions such as physical exercise, breathing techniques and pulmonary rehabilitation have been shown to improve patients' condition. Therefore, this study is needed to understand the effectiveness of physiotherapy interventions in supporting more optimal management of IPF. To assess the effectiveness of physiotherapy interventions such as physical exercise and breathing techniques in improving lung function and quality of life of IPF patients. Methods: Literature review was conducted by searching articles through Google Scholar, PEDro, PubMed, and Scopus databases using keywords related to IPF and physiotherapy interventions. Selection was done using inclusion-exclusion criteria with the help of PRISMA diagram. **Results:** Interventions such as aerobic exercise, strength training, breathing techniques (including *pursed*lip breathing and diaphragmatic breathing), and pulmonary rehabilitation were shown to be effective in increasing functional capacity, reducing dyspnea, and improving the quality of life of IPF patients. Conclusion: Physiotherapy interventions effectively improve functional capacity, reduce symptoms, and enhance quality of life in idiopathic pulmonary fibrosis patients.

Keywords: Idiopathic Pulmonary Fibrosis, Physiotherapy, Pulmonary Rehabilitation.

ISSN 2722 - 9610 E -ISSN 2722 - 9629

INTRODUCTION

Idiopathic Pulmonary Fibrosis (IPF) is a chronic interstitial lung disease characterized by progressive fibrosis of the lung tissue, leading to irreversible decline in lung function. It is difficult to determine the disease spread pattern of IPF due to several reasons, one of which is that cases often go undiagnosed until the advanced stage. In addition, IPF cases are rare, making it difficult to analyze the distribution of the disease by time and region (Sauleda et al., 2018) . Although Pulmonary Fibrosis (IPF) Idiopathic categorized as a rare disease - with an incidence of less than 5 cases per 10,000 people per year the impact of the disease remains significant. In the European region, there are an estimated 40,000 new cases of IPF diagnosed each year (Navaratnam *et al.*, 2011). The main symptoms of IPF include exertional dyspnea, dry cough, and decreased exercise capacity, which significantly reduce the patient's quality of life. Although the exact cause of IPF is unknown, the disease commonly occurs in individuals over the age of 50 and more frequently in men (Nicholson *et al.*, 2025)

Current treatments for IPF focus on slowing down disease progression and managing symptoms. In this context, physiotherapy, particularly through pulmonary rehabilitation programs, plays an important role. Interventions such as aerobic exercise and breathing exercises have been shown to increase exercise capacity,

reduce dyspnea, and improve the quality of life of patients with IPF. A systematic review showed that chest physiotherapy can improve ventilation capacity, gas exchange, and exercise capacity in patients with IPF (Martín-Núñez et al., 2023)

In addition, whole-body exercise-based pulmonary rehabilitation programs have shown improvements in exercise capacity and quality of life in IPF patients. However, the effectiveness of pulmonary rehabilitation in IPF is still the subject of further research. Several systematic reviews show variations in the quality and outcomes of studies regarding the role of pulmonary rehabilitation in IPF (Zamparelli *et al.*, 2024).

Nonetheless, existing evidence supports that pulmonary rehabilitation can provide significant benefits to IPF patients. A well-designed rehabilitation program can help improve functional capacity, reduce symptoms, and improve overall quality of life. Therefore, a deeper understanding of effective physiotherapy interventions is needed to optimize the management of patients with IPF.

METHODS

This research was conducted by the author using the literature review method. There were ten articles that were appropriate to the case raised. Evidence was searched in various databases that can be accessed online through Google Scholar, Pedro, PubMed, and Scopus databases. The data processing process used PRISMA flow diagram with inclusion and exclusion criteria. Inclusion criteria include articles in full text, cohort research design, randomized controlled trial, quasi-experimental, and cross sectional, with the year published in the last 5 years with Scimago indexed Q1-Q3. Exclusion criteria in this study, articles are not full text, research designs that do not meet the inclusion and exclusion criteria, and the year of publication exceeds the last 5 years

RESULTS

Based on previous research through several journals used from the last 5 years, it is explained that there are several physiotherapy interventions that are effective in treating idiopathic pulmonary fibrosis conditions, as follows:

Table 1. Literature review

Title	
New pulmonary rehabilitation	Research
exercise for pulmonary fibrosis to	Randomiz
improve the pulmonary function	Sample (
and quality of life of patients with	There we
idiopathic pulmonary fibrosis: a	two group
randomized control trial	Variable
(Shen et al., 2021)	Independe
	Depender
	- Lung
	Resp
	- Qual
	Resp
	Intervent
	Erromoino

h Methods

zed Controlled Trial

Ouantity

ere 82 subjects who were randomized into ps, group and control.

Methods

S

lent: Simple Breathing Exercise

- g function is measured using Vibration ponse Imaging (V R I).
- lity of Life measured using St. George's piratory Questionnaire

tion

Exercise dosage:

- Frequency: 3x a day
- Duration: 4-6 minutes per session
- Rest: 1 minute after 1 set

Implementation Method

The intervention given is breathing exercise which consists of 3 kinds of movements, namely:

Deep breath of the whole lung

Objective: Improve overall lung capacity. How to do:

- Stand straight with feet shoulder-width apart.
- Place both hands next to your thighs.
- Raise both arms to the sides slowly while taking a deep breath until the hands meet above the head.
- Slowly lower both arms while exhaling deeply.
- Repeat this movement 4-6 times a minute. Deep breath of unilateral lower lung

Results

Lung Function

FVC and FEV1 values were significantly increased in the exercise group compared to the control group (p = 0.001 and p = 0.017, respectively).

Results

Diffusing Capacity of the Lungs for Carbon Monoxide (DLCO) was significantly increased in the exercise group (p < 0.001), indicating improved oxygen exchange efficiency in the lungs.

- Physical Capacity (6MWT)

Patients in the exercise group walked farther after the exercise compared to the control group (p = 0.041), indicating improved physical capacity and endurance. Quality of Life

Patients in the exercise group reported a significant improvement in quality of life compared to the control group (p = 0.003).

- Risk of Exacerbation and Mortality

Patients in the exercise group had fewer exacerbations compared to the control group. Only 7.69% of patients in the exercise group had an exacerbation within one year, compared to 20.9% in the control group. Moreover, the one-year mortality rate was lower in the exercise group (2.56%) than in the non-exercise control group. The mortality rate in the exercise group was lower, although the statistical p value = 0.090 indicated that this result was not significant.

Exercise Safety

In terms of safety, the exercise has been shown not to cause any serious side effects. Electrocardiogram (ECG) examinations showed that the exercise had no

Title Methods Results Objective: Maximize ventilation of the lower lung. negative impact on heart function, and blood oxygen How to do: levels (SpO2) remained stable throughout the exercise. Stand straight with feet shoulder-width apart. Conclusion Place both hands next to your thighs. Overall, the results of this study prove that LHP's RRPF breathing exercise is an effective, simple and safe Raise the right hand slowly, while bending the body to the left by about 30-60° while taking pulmonary rehabilitation method for Idiopathic Pulmonary Fibrosis (IPF) patients. It improves lung a deep breath. Return to an upright position, then lower your function, physical endurance, and quality of life, while right hand while exhaling. helping to reduce the risk of exacerbations and Repeat this movement with your left hand and mortality, although the difference in mortality is not bend your body to the right. significant. It is therefore recommended as an Do each side 4-6 times a minute Deep breath adjunctive therapy in pulmonary rehabilitation for IPF patients to support more optimal management of their of the upper lung Objective: Focusing ventilation to the upper lung disease. to improve oxygen exchange. Mechanism How to do: The physiological mechanisms include opening of collapsed alveoli, reduction of airway resistance, and Stand straight with feet shoulder-width apart. increased lung expansion through deep breathing and Place both hands behind the neck in a crossed segmental breathing techniques. It also improves lung position. perfusion, as evidenced by an increase in Diffusing Bow your head and neck forward, while Capacity of the Lungs for Carbon Monoxide (DLCO). exhaling deeply. Take a deep breath while raising your head In addition, it optimizes respiratory muscle and moving your arms back slowly. coordination, reduces accessory muscle work, and helps patients control breathing patterns, thereby reducing Repeat this movement 4-6 times a minute. breathlessness and improving quality of life. Research Methods The Efficacy of Pulmonary **Results** Rehabilitation in Patients with Randomized Control Trial **Exercise Capacity** 6MWD significantly increased in the PR group Idiopathic Pulmonary Fibrosis Sample Quantity (Choi et al. ., 2023) There were a total of 25 patients in this study (p=0.002), while the non-PR group experienced a slight consisting of: 13 patients in the pulmonary decrease. rehabilitation group (PR Group) and 12 patients in VO₂max increased significantly in the PR group the non-pulmonary rehabilitation group (Non-PR (p=0.013), indicating an improvement in the patients'

Group).

aerobic capacity.

Title Methods Results

Variables

Independent variable

- PR group: Underwent an 8-week pulmonary rehabilitation program.
- Non-PR group: Did not undergo a pulmonary rehabilitation program and only received standard medical care.

Dependent Variable

- Exercise capacity: 6-Minute Walk Distance (6MWD): Measures the distance a patient can walk in 6 minutes.

VO₂max (maximum oxygen consumption): Measures the patient's aerobic capacity.

VE/VCO₂ slope → Assess lung ventilation efficiency.

- Pulmonary function:

Forced Vital Capacity (FVC) → Measures the vital capacity of the lungs.

Forced Expiratory Volume in 1 Second (FEV1) → Measures the forced expiratory volume in one second.

Diffusing Capacity of the Lungs for Carbon Monoxide (DLCO) → Measures gas exchange efficiency.

Quality of life: Saint George's Respiratory Questionnaire (SGRQ) \rightarrow Measures the impact of lung disease on patients' quality of life.

Intervention

Each pulmonary rehabilitation session consists of:

- Breathing Exercise and Chest Expansion (10 minutes)
- Aerobic Exercise (47 minutes)

 VE/VCO_2 slope decreased, but was not significantly different between PR and non-PR groups (p = 0.067).

Lung Function

There were no significant changes in FVC, FEV1, or DLCO in either group (p > 0.05). This suggests that pulmonary rehabilitation does not directly improve lung function within eight weeks.

Quality of Life

There was no significant change in patients' quality of life in either the PR group or the non-PR group (p > 0.05). This suggests that despite increased exercise capacity, patients did not experience any noticeable improvement in daily life.

- Safety and Side Effects

No serious side effects were reported in the PR group. There were no cardiovascular or musculoskeletal disorders associated with the PR program. Patients in the PR group were able to complete the exercise without complications.

Conclusion

Eight weeks of pulmonary rehabilitation can improve the exercise capacity of patients with Idiopathic Pulmonary Fibrosis (IPF), as evidenced by significant improvements in 6-Minute Walk Distance (6MWD) and VO₂max. However, pulmonary rehabilitation did not result in significant changes in pulmonary function or quality of life, as measured by FVC, FEV1, DLCO, and SGRQ scores.

The program was also shown to be safe, with no serious side effects during its implementation. Nonetheless, as there was no significant improvement in pulmonary function or quality of life, further studies with a longer duration of rehabilitation and a larger sample size are

Title	Methods	Results
	Exercises were performed using the interval training method using a treadmill. - Muscle Endurance Training (10 minutes): Upper and lower extremity muscle strengthening exercises after aerobic exercise. Patients are given resistance exercises that can be repeated at home. PR (Pulmonary Rehabilitation) Group: Followed the pulmonary rehabilitation program for 8 weeks (3 sessions per week). Exercise was adjusted based on the results of the cardiopulmonary exercise test (CPET). Non-PR Group: Only received one initial training session, and then were given recommendations to exercise independently. Patients in this group still underwent evaluation before and after 8 weeks, but did not receive	needed to evaluate the long-term benefits of pulmonary rehabilitation in patients with IPF. Mechanism: Pulmonary rehabilitation improves the exercise capacity of patients with IPF through cardiopulmonary adaptation, improved ventilation efficiency, as well as respiratory muscle strengthening. In addition, the anti-inflammatory and anti-fibrotic mechanisms associated with aerobic exercise may help slow the progression of pulmonary fibrosis. Although there is no significant change in lung function, pulmonary rehabilitation still provides physiological benefits that support patient well-being and quality of life.
	supervision during exercise.	
55	Methods	Results
Comprehensive Pulmonary Rehabilitation and its Maintenance in Patients with Idiopathic Pulmonary Fibrosis: A Randomized Controlled Trial (Jarosch et al, 2020)	Randomized Controlled Trial Variables Independent Variable PR group: Underwent a 3-week comprehensive pulmonary rehabilitation program on an inpatient basis. Usual Care (UC) group: Did not receive the PR intervention and only received standard medical	The results showed that the pulmonary rehabilitation group (PR Group) had a significant improvement in exercise capacity compared to the Usual Care group (UC Group). 6MWD increased significantly in the PR group (p=0.006), while the increase in the control group was not significant. VO ₂ max increased significantly, indicating an increase
	care. Dependent Variable - Exercise Capacity: 6-Minute Walk Distance (6MWD) → Assess the distance a patient can walk in 6 minutes.	in aerobic capacity of patients after participating in the rehabilitation program - Lung Function Despite improved exercise capacity, the patients' pulmonary function did not significantly change after three weeks of PR. There were no significant

ISSN 2722 - 9610 E-ISSN 2722-9629 Title Methods Results

 VO_2 max (maximum oxygen consumption) \rightarrow Assess the patient's aerobic capacity.

VE/VCO₂ slope → Assessing ventilatory efficiency and metabolic response to exercise

- Lung Function:

Forced Vital Capacity (FVC, % predicted) \rightarrow Measures lung vital capacity.

Diffusing Capacity of the Lungs for Carbon Monoxide (DLCO, % predicted) → Assess the efficiency of gas exchange in the lungs

- Quality of Life:

Chronic Respiratory Disease Questionnaire (CRQ) → Assess the impact of lung disease on patients' quality of life.

Hospital Anxiety and Depression Scale (HADS) → Assess patients' level of anxiety and depression. Short-Form 36 Health Survey (SF-36) → Measures the physical and mental well-being of patients

Intervention

- Aerobic Training (Endurance Training)
 It is performed on a stationary bike (cycle training). Exercise intensity is determined based on 60% to 100% of the patient's maximal work capacity, which is calculated through an initial cardiopulmonary exercise test (CPET Cardiopulmonary Exercise Testing). The duration of exercise is gradual, starting at 15 minutes per session and increasing to 30 minutes if the patient can tolerate it.
- Resistance Training
 Exercises involve both upper and lower extremities, using resistance machines or body

differences in FVC and DLCO after pulmonary rehabilitation, suggesting that PR has no direct impact on lung function.

Quality of Life

Patients in the PR group experienced significant improvements in quality of life, especially in the CRQ and HADS, suggesting that pulmonary rehabilitation helps reduce patients' anxiety and depression.

- Safety and Side Effects

No serious side effects were reported during pulmonary rehabilitation. Patients in the PR group were able to complete the exercise without complications. Oxygen saturation was monitored and remained within safe limits throughout the PR program

Conclusion

This study showed that three weeks of pulmonary rehabilitation significantly improved the exercise capacity and quality of life of patients with IPF, but did not provide significant changes in pulmonary function. As improved exercise capacity has a potential impact on long-term survival, further studies with longer PR duration and larger sample size are needed to evaluate the benefits of pulmonary rehabilitation in IPF patients.

Mechanism

Pulmonary rehabilitation in Idiopathic Pulmonary Fibrosis (IPF) patients works by improving aerobic capacity, ventilation efficiency and respiratory muscle strength, although it does not directly improve lung function. Aerobic exercise increases VO₂max, reflecting improved oxygen transport in the body, while a decrease in VE/VCO₂ slope indicates better ventilation efficiency. Muscular resistance training helps reduce reliance on respiratory accessory muscles,

223

Title Methods Results weight. Performed in 3 sets per exercise, aiming thereby optimizing breathing patterns and reducing for 15-20 reps per set. Exercise load is adjusted breathlessness. In addition, pulmonary rehabilitation gradually to increase endurance without causing has potential anti-fibrotic and anti-inflammatory effects. excessive fatigue. where physical exercise can suppress Transforming Respiratory Therapy and Patient Education Growth Factor-β (TGF-β), which plays a role in Subjects were given breathing exercises as well as pulmonary fibrosis. With a combination of education on disease and activity management, cardiopulmonary, neuromuscular, and psychological strategies for coping with shortness of breath, and adaptations, pulmonary rehabilitation improves the recommended diet and hydration. exercise capacity and quality of life of IPF patients, although it does not directly affect lung function. *Long-term effect of pulmonary* **Methods** Results rehabilitation in idiopathic Randomized Controlled Trial (RCT), open-label 6MWD: Rehabilitation group dropped 33m, pulmonary fibrosis: a (non-blinded) design. Conducted at 19 institutions control group dropped 53m (not significant, randomized controlled trial in Japan. Study duration was 52 weeks (1 year) p=0.38). **Number of samples** Endurance time: Rehabilitation group increased by (Kataoka *et al.*, 2023) There were a total of 88 patients with IPF divided 64 seconds, control group decreased by 123 into two groups randomly into a Pulmonary seconds (significant, p = 0.019). Rehabilitation (PR) group of 45 patients and a Pulmonary function, quality of life, and level of Control Group (without PR) of 43 patients. breathlessness: There was no significant difference **Variables** between the two groups. Dependent Variable Compliance: Patients with high compliance Changes in exercise capacity and lung experienced a slower decline in exercise capacity. function Conclusion Independent Variable The combination of nintedanib and pulmonary rehabilitation did not significantly improve 6MWD, but Pulmonary Rehabilitation (PR) Program did improve endurance time. There was no significant Intervention The intervention group was given exercises such change in lung function, quality of life, or as static cycling for 30 minutes, walking exercises, breathlessness. Exercise adherence had a large effect, so and muscle endurance exercises. After that, a more effective long-term rehabilitation strategy is

independent rehabilitation was continued in the

form of squatting, standing calf raises, and walking

exercises. Meanwhile, the control group did not

receive pulmonary rehabilitation exercises and

needed.

Mechanism

Providing pulmonary rehabilitation interventions in

patients with idiopathic pulmonary fibrosis works by

77341	M d 1	DOI. https://10.23717/11sionid.voi2.764
Title	Methods	Results
	only received standard therapy with the drug nintedanib.	improving endurance, respiratory efficiency, and muscle strength, although it does not directly improve lung function. Exercises such as stationary cycling, walking exercises, and muscle resistance training help optimize oxygen use, reduce fatigue, and improve breathing patterns.
Feasibility of a telehealth	Methods	Results
breathing intervention for patients with idiopathic pulmonary fibrosis (Bussa-Carlson et al., 2024)	Experimental with Single-group pre-post intervention study. The study was conducted in the United States with a duration of 4 weeks. Number of samples There were 30 patients, but 1 patient dropped out before the study was conducted so the total sample was 29. Variables Dependent Variable - Level of dyspnea, quality of life, anxiety, and depression. Independent Variable - Breathing exercise intervention via telehealth. Intervention Breathing exercises through telehealth with types of breathing exercises, namely Pursed-lip breathing and Diaphragmatic breathing which are carried out 1x per week for 4 weeks with a duration of 10 minutes per day at home.	The results showed that Dyspnea (Shortness of Breath) with a mean score decreased after the intervention, but was not statistically significant (p = 0.07). Quality of Life (QOL) improved slightly, but also not significantly (p = 0.20) and anxiety and depression with a mean score reduced after the intervention, but these changes were not statistically significant (p > 0.05). Nonetheless, these results suggest that telehealth may be a useful method in improving patient access to respiratory technique education. Conclusion These data suggest that a telehealth breathing exercise intervention is a viable option to increase access to symptom management strategies through breathing techniques, to address perceived breathlessness and positively influence symptoms experienced by patients with Idiopathic Pulmonary Fibrosis (IPF). Mechanism The pursed-lip breathing technique helps slow the breath rate and reduce airway pressure, while diaphragmatic breathing optimizes the use of the diaphragm to increase oxygen exchange. It also strengthens the respiratory muscles, reduces fatigue, and allows patients to better control their breathing

FISIO MU: Physiotherapy Evidences

while on the move.

Title Methods Results

Muscle stimulation in advanced idiopathic pulmonary fibrosis: a randomized placebo-controlled feasibility study (Nolan et al., 2021)

Methods

Randomized, parallel, two-group, participant and assessor-blinded, placebo-controlled feasibility trial. The study was conducted in the Outpatient department, Royal Brompton and Harefield Hospitals, UK for 6 weeks.

Number of samples

There were a total of 22 samples divided into 11 in the intervention group given active NMES and 11 in the control group given placebo NMES.

Variables

Dependent Variable

- Study eligibility includes recruitment, retention, adherence to intervention.
- Side effects of intervention such as redness, burning sensation on the skin
- Changes in thigh muscle strength, namely with quadriceps strength
- Change in functional capacity with 6-Minute Walk Test
- Patient quality of life with King's Brief Interstitial Lung Disease questionnaire

Independent Variable

- Neuromuscular Electrical Stimulation (NMES) on the thigh muscle (quadriceps).

Intervention

The Intervention Group was given active Neuromuscular Electrical Stimulation (NMES) on the thigh muscle (quadriceps) for 30 minutes per day for 6 weeks. While the Control Group was given a fake NMES (placebo) which only provides a mild sensation without causing real muscle contractions.

Results

The results showed that out of 364 people screened, 23 participants were recruited, with 11 participants in each group, while 1 participant dropped out before randomization. There was no significant improvement in exercise capacity (6MWT) or thigh muscle strength (QMVC) in the NMES group over controls. Some patients in the NMES group actively experienced mild side effects such as redness and burning sensation, but continued with the intervention anyway. This study also faced challenges in participant recruitment, so further research with larger samples is needed.

Conclusion

The conclusion of this study shows that Neuromuscular Electrical Stimulation (NMES) is feasible in Idiopathic Pulmonary Fibrosis (IPF) patients, but does not provide significant benefits in improving exercise capacity or quality of life compared to the control group.

Mechanism

Neuromuscular Electrical Stimulation (NMES) intervention works by sending electrical impulses to the thigh muscles to stimulate contraction without physical activity. This helps to strengthen muscles, maintain muscle mass, and reduce the impact of immobilization in IPF patients who are limited in movement. NMES also allows muscle exercise without overloading the respiratory system

226

Title Methods Results

Ambulatory oxygen therapy in lung transplant candidates with idiopathic pulmonary fibrosis for pulmonary rehabilitation (Miozzo et al., 2023)

Methods

Research type: Quasi-experimental study

Study design: Data analysis of functional capacity and quality of life of idiopathic pulmonary fibrosis (IPF) patients on the lung transplant waiting list and undergoing pulmonary rehabilitation (PR).

Number of samples

There were 45 patients with Idiopathic Pulmonary Fibrosis (IPF) undergoing PR and awaiting lung transplantation, and were divided into 3 groups based on oxygen flow rate:

- 0 L/min (Control group)
- 1-3 L/min
- 4-5 L/min

Variables

Independent variable: use of ambulatory oxygen therapy during pulmonary rehabilitation.

Dependent variable:

- Functional capacity (measured by 6-minute walk test / 6MWT)
- Quality of life (HRQoL, measured by SF-36)

Intervention

All patients underwent 36 pet rehabilitation sessions, which included:

- Aerobic exercise (walking on a treadmill)
- Psychosocial support (psychiatric evaluation, nutritional counseling)

The oxygen therapy group received customized oxygen flow during exercise to maintain O2 saturation greater than or equal to 92%.

Results

The results of this study showed functional improvement in all groups:

- 0 L/min group: + 61 meters (p < 0.001)
- Group 1-3 L/min: +58 meters (p = 0.014)
- Group 4-5 L/min: +35 meters (p = 0.031)

The improvement in quality of life (HRQoL) was greater in the group receiving oxygen:

- Physical function scores improved in all groups.
- The group with oxygen experienced greater improvements in general health, social functioning, and mental health.

Conclusion

The conclusion of this research is:

- Oxygen therapy during pulmonary rehabilitation can improve the functional capacity and quality of life of idiopathic pulmonary fibrosis (IPF) patients awaiting lung transplantation.
- Although functional capacity improvement increased in all groups, patients receiving oxygen showed better exercise tolerance and improvement in mental and social health aspects.

Mechanism

The mechanics of this research include:

Data were collected before and after pulmonary rehabilitation through:

- 6MWT
- SF-36 questionnaire to assess quality of life
- oxygen saturation (SpO2) monitoring during exercise.

Statistical analysis was performed using paired t-test, Mann-Whitney test, and Wilcoxon test to compare before intervention and after intervention.

Title	Methods	Results
Pulmonary Daoyin as a	Methods	Results
traditional Chinese medicine	Randomized Control Trial (RCT). The study was	The results of this study showed that 6MWD increased
rehabilitation program for	conducted in China at three clinics for a duration	more significantly in the PD group than the physical
patients with IPF: A randomized	of 6 months.	exercise group and the control group.
controlled trial	Number of samples	Conclusion
(Zhou et al, 2021)	There were 96 participants who had been	The conclusion of this study is that the pulmonary
	diagnosed with idiopathic pulmonary fibrosis	daoyin (PD) program is proven to be safe and effective
	(IPF) randomly divided into three groups	in increasing exercise tolerance in idiopathic pulmonary
	Variables	fibrosis (IPF) patients. Where for the results are
	Independent variable:	comparable or better than conventional rehabilitation
	- Change in walking distance for 6 minutes	exercises, and make a viable alternative for
	(6MWD)	rehabilitation of pulmonary conditions in idiopathic
	- Health-related quality of life (HRQoL, as	puLmonary fibrosis (IPF) patients.
	measured by the SGRQ-I)	Mechanism
	Dependent variable:	The study was conducted by comparing changes in
	- Forced Vital Capacity (FVC)	pulmonary functional capacity and exercise tolerance
	- Diffusing capacity of the lung for carbon	through the measurement of 6-minute walking distance
	monoxide (DLco) - Modified British Medical Research Council	and various indicators of pulmonary function. The
	(mMRC)	results showed that the traditional method (Pulmonary Daoyin) can improve the exercise capacity of patients in
	Intervention	an effective way.
	The Pulmonary Daoyin (PD) group performed the	an enecuve way.
	Pulmonary Daoyin exercise program 2 times a day,	
	5 days a week for 2 months.	
	The Physical Exercise Group performed exercises	
	using a stationary bicycle ergometer for 30 minutes	
	per day, 5 days a week for 2 months.	
	The Control Group did not receive any specific	
	intervention and just went about their daily	
	activities.	
Effects of home-based	Methods	Results
telerehabilitation-assisted	Single-centre, randomized controlled trial.	The results showed that the group receiving the
inspiratory muscle training in	Number of samples	intervention had significant improvements in functional

Title Methods Results

patients with idiopathic pulmonary fibrosis: A randomized controlled trial (Aktan et al., 2024)

A total of 28 patients in this study were divided into 14 subjects each into two different groups: intervention group (receiving IMT) and control group (receiving placebo IMT).

Variables

Independent variable:

Inspiratory muscle training with the help of telerehabilitation

Dependent variable:

- Changes in functional capacity
- Inspiratory muscle strength
- Patient quality of life

Intervention

Patients in the exercise group received an intervention of inspiratory breathing muscle training using Philips Threshold Inspiratory Muscle Training (IMT) with an exercise load of 50% of the initial maximal inspiratory pressure (MIP). The training load is then increased based on the modified Borg scale (kept at level 4-6) to ensure patients are training at the highest level of respiratory effort that can still be tolerated. The control group received placebo exercise with no inspiratory load using the same device.

Tele-Rehabilitation Program in Idiopathic Pulmonary Fibrosis-A Single-Center Randomized Trial (Cerdán-De-las-heras et al. ., 2021)

FISIO MU: Physiotherapy Evidences

Methods

Single-centre, randomized clinical trial. Exercises were performed independently with the help of telerehabilitation for 12 weeks at home.

Number of samples

29 patients with *Idiopathic Pulmonary Fibrosis* (IPF), with 15 patients in the intervention group

capacity and inspiratory muscle strength compared to the control group.

Conclusion

This study concluded that home telerehabilitationassisted inspiratory muscle training is effective in improving functional capacity, inspiratory muscle strength, and quality of life in patients with idiopathic pulmonary fibrosis.

Mechanism

This study evaluated the effectiveness of inspiratory muscle exercises performed at home with the aid of telerehabilitation in patients with idiopathic pulmonary fibrosis. Patients in the intervention group underwent inspiratory muscle exercises using a specialized device, with intensity adjusted based on a modified Borg scale, while the control group performed sham exercises without inspiratory load. The exercises were performed twice daily for eight weeks, with weekly sessions supervised via video call by a physiotherapist. As a result, the intervention group showed significant improvements in functional capacity and inspiratory muscle strength compared to the control group. It can be concluded that telerehabilitation-based inspiratory muscle training at home is effective in improving respiratory function and quality of life of patients with idiopathic pulmonary fibrosis.

Results

This study found that exercise capacity was better at the 3- and 6-month evaluations compared to the control group. However, there was no difference in the number of daily steps and quality of life and the patient compliance rate was more than 63%, and patient satisfaction was high. So it can be said that

@ 0 6

Title Methods Results

(tele-rehabilitation) and 14 patients in the control group.

Variables

Independent variable:

Tele-rehabilitation program with Virtual Autonomous Physiotherapist Agent (VAPA). Dependent variable:

- Exercise capacity (6-Minute Walk Test Distance / 6MWTD)
- Number of steps in 7 days (7-day pedometry)
- Patient quality of life (St. George's Respiratory Questionnaire and King's Brief Interstitial Lung Disease Questionnaire)
- Anxiety level (General Anxiety Disorder-7 Questionnaire)
- Lung function (Forced Vital Capacity / FVC and Diffusion Capacity for Carbon Monoxide / DLCO)

Intervention

The intervention group received a telerehabilitation program using the Virtual Autonomous Physiotherapist Agent (VAPA) including several interventions such as video consultations, e-learning, chat sessions with physiotherapists, and physical exercises with VAPA for 12 weeks of intervention. The control group did not receive the rehabilitation program but continued to receive standard care for IPF such as regular check-ups and monitoring. telerehabilitation with VAPA is beneficial for patients with IPF.

Conclusion

Tele-rehabilitation with VAPA was shown to be beneficial for IPF patients, as it was able to maintain exercise capacity up to 3 and 6 months, while the control group experienced a decline. The program has a high compliance rate and good patient satisfaction and safety. Therefore, tele-rehabilitation with VAPA could be an alternative for rehabilitation of IPF patients and help them lead a more physically active lifestyle.

Mechanism

This study compared the intervention group who received a telerehabilitation program with VAPA and the control group who received standard care for 12 weeks. As a result, patients who participated in telerehabilitation were able to maintain their exercise capacity up to 3 and 6 months, while the control group experienced a decrease in exercise capacity.

*Fisiomu.*2025,*Vol* 6(2):217-234 DOI: https://10.23917/fisiomu.v6i2.9841

DISCUSSION

Idiopathic pulmonary fibrosis (FPI) is the most common type of idiopathic interstitial pneumonia (PII) and is also associated with the highest mortality rate; the disease is characterized by progressive parenchymal fibrosis of unknown etiology (Brokowski C, 2019) . The condition leads to decreased lung elasticity, difficulty breathing, as well as reduced oxygen exchange capacity, which can worsen over time. The main symptoms of FPI include progressive shortness of breath, chronic dry cough, fatigue, and decreased tolerance to physical activity.

As the disease progresses, increased dyspnea and skeletal muscle dysfunction contribute to decreased exercise capacity, impaired activities of daily living (ADL) and health-related quality of life (HRQL). Physiotherapy plays an important role in the rehabilitation of patients with FPI to help reduce symptoms and improve quality of life. There are several physiotherapy rehabilitations that can be used as interventions for idiopathic pulmonary fibrosis cases.

Breathing Exercise

Breathing exercise in cases of idiopathic pulmonary fibrosis is a series of breathing techniques that aim to improve lung ventilation efficiency, reduce shortness of breath, and help patients breathe more comfortably. In a study conducted by Shen Li regarding pulmonary rehabilitation techniques in idiopathic pulmonary fibrosis patients, significant results were obtained (p < 0.05) in the group given breathing exercise techniques as an intervention, compared to the control group who did not get breathing exercises. Giving breathing exercise is proven to improve lung function (FEV1 and FVC). In patients with IPF, scar tissue formation (fibrosis) occurs in the lungs which causes the lungs to become stiff, reducing lung elasticity and inhibiting lung expansion during inspiration, so this condition causes a decrease in FEV1 and FVC values. Breathing techniques such as deep breathing can reduce lung wall resistance and help maintain lung tissue flexibility. Slow and sustained movements can increase the strength and efficiency of the respiratory muscles so that the lungs can expand better. Combining deep breathing with simple movements 3 times can train respiratory muscles, maintain lung elasticity, slow lung volume reduction, and increase exercise endurance, and improve quality of life (Shen et al. . . 2021)

Aerobic Exercise

Aerobic exercise for idiopathic pulmonary fibrosis patients is a form of physical activity designed to improve cardiorespiratory capacity, optimize oxygen utilization and reduce breathlessness. It includes activities of mild to moderate intensity performed over a period of time, such as walking, stationary cycling or using a treadmill. Physical capacity is known to be a major factor influencing physical activity levels in idiopathic pulmonary fibrosis patients, including those awaiting lung transplantation.

There was a meta-analysis of aerobic exercise combined with breathing exercises by Hanada et al 2020 Aerobic exercise, whether performed alone or combined with Inspiratory Muscle Training (IMT) or breathing exercises, can improve exercise capacity (Hanada et al. . , 2020)

An RCT study was conducted in 2016 and found that IMT with aerobic exercise in patients with IPF for 8 weeks can increase exercise capacity and decrease dyspnea symptoms compared to the control group. The combination of aerobic exercise and Inspiratory Muscle Training (IMT) can provide benefits because increasing inspiratory muscle strength helps improve the efficiency of respiratory muscles that play a role in ventilation. In addition, increased endurance during exercise can strengthen aerobic capacity, thereby reducing the workload of the respiratory system during physical activity.

Strengthening Exercise

Patients with IPF are usually characterized by progressive polmonary restriction, ventilatory ineffectiveness, shortness of breath, impaired gas exchange, and low oxygen levels in the blood (hypoxemia). These conditions cause IPF patients to experience shortness of breath more easily and tend to be less physically active to avoid these symptoms. These conditions certainly have a negative impact on the functional ability and quality of life of IPF patients (Directors and Committie, 2000).

Several recent studies on the provision of short-term exercise training in pulmonary rehabilitation programs are safe and effective

methods to improve exercise ability, reduce shortness of breath, and improve the quality of life of IPF patients. One of them is by giving strengthening exercise. In a study conducted by Choi et al. (2023) the addition of strengtening exercises on the upper and lower extremities in the pulmonary rehabilitation program for patients with idiopathic pulmonary fibrosis gave significant results on maximal oxygen uptake (VO2max) (p=0.006) and six minute walking distance (6MWD) during the six minute walk test (p=0.013). Giving strengthening (6MWT) exercise can increase the strength and endurance of skeletal muscles, so that muscles become more efficient in using oxygen. By increasing the efficiency of oxygen use in the muscles, the workload of the heart and lungs is reduced, so that aerobic capacity increases. In addition, this exercise also contributes to increased muscle capillarization, which improves oxygen distribution to tissues and optimizes oxygen transport in the blood. Increased muscle strength also reduces fatigue during physical activity, which results in increased tolerance to exercise, allowing patients to walk longer distances without experiencing excessive shortness of breath (Choi et al. ., 2023)

Similar results were also obtained in a study conducted by Cerdán-de-las-Heras et al. (2021) where the addition of strengthening Tele-Rehabilitation-based a rehabilitation program in patients with IPF showed significant results (p = 0.03) in the sixminute walk test distance (6MWTD) after administering the intervention for 3 months. Increased muscle strength especially in the lower extremities directly contributes to the patient's ability to walk further, due to reduced muscle fatigue during repetitive activities. In this study, although the rehabilitation was based on Tele-Rehabilitation, it had a relatively high compliance rate and high patient satisfaction and safety. All exercises can be done at home under the supervision of a physiotherapist. Patients perform exercises for 10-20 minutes 3-5 times a week and can use exercise aids such as elastic bands, weights, and fitness- steps to achieve the highest exercise intensity (Cerdán-De-las-heras et al. ., 2021)

Neuromuscular Electrical Stimulation

Neuromuscular Electrical Stimulation (NMES) is a therapeutic technique that uses stimulate electrical impulses to muscle Neuromuscular Electrical contractions. Stimulation (NMES) can help with muscle weakness that often occurs due to progressive diseases. This method uses a lightweight stimulator device and electrodes placed on the skin to induce muscle contractions in a controlled and comfortable manner (Jones et al., 2016)

NMES is potentially a therapeutic option to address muscle weakness in advanced progressive disease and may be considered as a suitable intervention for home use, particularly for individuals with muscle weakness who have difficulty in accessing available pulmonary rehabilitation services (Nolan *et al.*, 2021)

NMES utilizes a small, battery-powered stimulator that, through surface electrodes placed on the front of the thigh, stimulates muscle contraction and relaxation in a controlled manner. A meta-analysis conducted by revealed that compared to placebo, NMES significantly improved quadriceps muscle strength, muscle mass, as well as exercise capacity.

Pulmonary Douyin

Pulmonary Daoyin (PD) is a skill-based traditional Chinese medicine (TCM) pulmonary rehabilitation technology. Pulmonary Daoyin (PD), derived from the traditional Chinese daoyin technique, is a rehabilitation method that integrates special movements of the arms and body with controlled breathing exercises, aiming to improve the physiological and psychological conditions of patients with chronic respiratory diseases (Zhang *et al.*, 2017)

There is research conducted by *Zhou et al*, 2020 which discusses Pulmonary daoyin against idiopathic pulmonary fibrosis with the results of research showing that there is an increase in exercise tolerance in idiopathic pulmonary fibrosis patients. This study concluded that the Pulmonary Daoyin (PD) program was proven safe and effective in increasing exercise tolerance in idiopathic pulmonary fibrosis (IPF) patients. The results showed equivalent or better effectiveness compared to conventional rehabilitation exercises, so PD can be a feasible alternative for

pulmonary rehabilitation in patients with IPF (Zhou *et al.*, 2014), 2021)

Inspiratory Muscle Training

In a study conducted by Aktan et al. (2024) on the provision of inspiratory muscle training in patients with idiopathic pulmonary fibrosis obtained significant changes in inspiratory muscle strength, functional exercise capacity, and decreased tightness. When the patient inspires, the device in the form of a threshold will provide resistance, this forces the respiratory muscles, especially the diaphragm and intercostal muscles, to work harder to overcome the inspiratory load given (Chung *et al.*., 2021)

If this exercise is done repeatedly, of course, adaptation will occur which in the long term will increase the strength and endurance of the respiratory muscles so as to reduce muscle fatigue when breathing which results in increased ventilation efficiency. Increased inspiratory muscle strength also has an impact on increasing functional exercise capacity as seen in improved performance on the 6-Minute Walk Test (6MWT) and VO₂max. With increased respiratory efficiency, the body can reduce energy consumption during physical activity, allowing patients to perform longer activities before experiencing fatigue (Charususin *et al.*., 2016)

CONCLUSION

Physiotherapy interventions have important role in the management of idiopathic pulmonary fibrosis (FPI) with the aim of increasing functional capacity, reducing symptoms, and improving patients' quality of life. Interventions include breathing exercises, which help improve breathing efficiency and reduce shortness of breath, and strengthening exercises, which aim to strengthen the respiratory muscles and extremities to improve endurance. In aerobic exercises addition. contribute improving cardiorespiratory capacity and oxygen utilization efficiency, while Neuromuscular Electrical Stimulation (NMES) is used to prevent muscle weakness due to mobility limitations by providing electrical stimulation that stimulates muscle contraction. As an additional method, Pulmonary Daoyin has been shown to be safe and effective in improving exercise tolerance and can be an equal or even better alternative to conventional rehabilitation. By combining these various interventions, FPI patients can maintain pulmonary functional capacity, improve tolerance to physical activity, and reduce the progressive impact of the disease. Therefore, a structured and continuous physiotherapy program is an important part of the rehabilitation strategy for patients with FPI.

REFERENCES

- Aktan, R. *et al.* (2024) 'Effects of home-based telerehabilitation-assisted inspiratory muscle training in patients with idiopathic pulmonary fibrosis: A randomized controlled trial', *Respirology*, (July), pp. 1077–1084. doi:10.1111/resp.14810.
- Brokowski C, A.M. (2019) 'HHS Public Access', *Physiology & behavior*, 176(5), pp. 139– 148.doi:10.1016/j.rmed.2014.03.008.Idiop athic.
- Bussa-Carlson, A. *et al.* (2024) 'Feasibility of a telehealth breathing intervention for patients with idiopathic pulmonary fibrosis', *Applied Nursing Research*, 79(July), p. 151827. doi:10.1016/j.apnr.2024.151827.
- Cerdán-De-las-heras, J. et al. (2021) 'Tele-rehabilitation program in idiopathic pulmonary fibrosis—A single-center randomized trial', International Journal of Environmental Research and Public Health, 18(19). doi:10.3390/ijerph181910016.
- Charususin, N. *et al.* (2016) 'Inspiratory muscle training improves breathing pattern during exercise in COPD patients', *European Respiratory Journal*, 47(4), pp. 1261–1264. doi:10.1183/13993003.01574-2015.
- Choi, H.E. *et al.* (2023) 'The Efficacy of Pulmonary Rehabilitation in Patients with Idiopathic Pulmonary Fibrosis', *Life*, 13(2). doi:10.3390/life13020403.
- Chung, Y. et al. (2021) '12-week inspiratory muscle training improves respiratory muscle strength in adult patients with stable asthma: A randomized controlled trial', International Journal of Environmental Research and Public Health, 18(6), pp. 1–17. doi:10.3390/ijerph18063267.
- Directors, A.B. of and Committie, E.E. (2000) 'American Thoracic Society Idiopathic

- Pulmonary Fibrosis: Diagnosis and Treatment', *American journal of respiratory and critical care medicine*, 161, pp. 646–664. doi:10.1164/ajrccm.161.2.ats3-00.
- Hanada, M. *et al.* (2020) 'Aerobic and breathing exercises improve dyspnea, exercise capacity and quality of life in idiopathic pulmonary fibrosis patients: Systematic review and meta-analysis', *Journal of Thoracic Disease*, 12(3), pp. 1041–1055. doi:10.21037/jtd.2019.12.27.
- Jarosch, I. et al. (2020) 'Short-term effects of comprehensive pulmonary rehabilitation and its maintenance in patients with idiopathic pulmonary fibrosis: A randomized controlled trial', *Journal of Clinical Medicine*, 9(5), pp. 1–12. doi:10.3390/jcm9051567.
- Jones, S. et al. (2016) 'with advanced disease (Review)', (10). doi:10.1002/14651858.CD009419.pub3.w ww.cochranelibrary.com.
- Kataoka, K. *et al.* (2023) 'Long-term effect of pulmonary rehabilitation in idiopathic pulmonary fibrosis: a randomised controlled trial', *Thorax*, 78(8), pp. 784–791. doi:10.1136/thorax-2022-219792.
- Martín-Núñez, J. et al. (2023) 'Effect of Chest Physiotherapy on Quality of Life, Exercise Capacity and Pulmonary Function in Patients with Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis', Healthcare (Switzerland), 11(22). doi:10.3390/healthcare11222925.
- Miozzo, A.P. *et al.* (2023) 'Ambulatory oxygen therapy in lung transplantation candidates with idiopathic pulmonary fibrosis referred for pulmonary rehabilitation', *Jornal Brasileiro de Pneumologia*, 49(2), pp. 2–7. doi:10.36416/1806-3756/e20220280.
- Navaratnam, V. *et al.* (2011) 'The rising incidence of idiopathic pulmonary fibrosis in the UK', *Thorax*, 66(6), pp. 462–467. doi:10.1136/thx.2010.148031.

- Nicholson, J.M. *et al.* (2025) 'Exploring the effects of pulmonary rehabilitation and its determinants in lung transplant candidates with cystic fibrosis', *Respiratory Medicine*, 239(October 2024), p. 107982. doi:10.1016/j.rmed.2025.107982.
- Nolan, C.M. *et al.* (2021) 'Muscle stimulation in advanced idiopathic pulmonary fibrosis: A randomised placebo-controlled feasibility study', *BMJ Open*, 11(6), pp. 1–11. doi:10.1136/bmjopen-2021-048808.
- Sauleda, J. et al. (2018) 'Idiopathic Pulmonary Fibrosis: Epidemiology, Natural History, Phenotypes', Medical sciences (Basel, Switzerland), 6(4), pp. 1–14. doi:10.3390/medsci6040110.
- Shen, L. et al. (2021) 'New pulmonary rehabilitation exercise for pulmonary fibrosis to improve the pulmonary function and quality of life of patients with idiopathic pulmonary fibrosis: A randomized control trial', *Annals of Palliative Medicine*, 10(7), pp. 7289–7297. doi:10.21037/apm-21-71.
- Zamparelli, S.S. *et al.* (2024) 'The Beneficial Impact of Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis: A Review of the Current Literature', *Journal of Clinical Medicine*, 13(7), pp. 1–16. doi:10.3390/jcm13072026.
- Zhang, H.L. et al. (2017) 'An evaluation of activity tolerance. patient-reported outcomes and satisfaction with the effectiveness of pulmonary daoyin on chronic obstructive patients with pulmonary disease', International Journal COPD. 2333-2342. 12, doi:10.2147/COPD.S117461.
- Zhou, M. *et al.* (2021) 'Pulmonary Daoyin as a traditional Chinese medicine rehabilitation programme for patients with IPF: A randomized controlled trial', *Respirology*, 26(4), pp. 360–369. doi:10.1111/resp.13972