

The Effect of *Stretching* and *Strengthening* Exercises on Reducing Pain and Functional Disorders in *Subacromial Pain Syndrome: A Literature Review*

Wahyuni^{1*}, Meybi Randa²

^{1,2}Physiotherapy Study Program, Faculty of Health Sciences, Universitas Muhammadiyah Surakarta, Indonesia Email: wahyuni@ums.ac.id

Submition: 2023-07-20; Accepted: 2023-10-27; Published: 2023-11-19

ABSTRACT

Introduction: Shoulder pain is the third most common pain in musculoskeletal cases, after lower back and knee pain. These complaints are caused by various things, including subacromial pain syndrome. Subacromial pain syndrome is a synonym for rotator cuff syndrome, which refers to all non-traumatic unilateral shoulder problems involving the structures surrounding the subacromial. The purpose of this study was to determine the effect of stretching andstrengthening exercises on reducing pain and functional impairment in subacromialpain syndrome. Methods: The method used is a literature review with a narrative type. The data for the selected publication articles are RCTs for 2013-2022 in English. Search publication articles using search PEDro, and Google Scholar which are classified into inclusion and exclusion criteria. Data analysis by assessing the quality of journals using the PEDro scale, outline literature review of the PICO method and data synthesis. Results: Strengthening and stretching exercises show significant short-term functional improvement and pain reduction in subacromial pain syndrome. Additionally, specific rotator cuff and scapular exercises, combined with active/passive ROM exercises, significantly enhance function and reduce pain levels. Conclusion: Strengthening (eccentric, isometric) and stretching exercises on the posterior shoulder and rotator cuff or scapular in the short term have an effect on reducing pain (VAS), as well as a significant improvement in function (DASH scale).

Keywords: Subacromial pain syndrome, pain, functional disorder, stretching, strengthening.

7

ISSN 2722 - 9610 E -ISSN 2722 - 9629

INTRODUCTION

Humans need prime body conditions to be able to support optimal physical activity. Physical activity is body movement produced by skeletal muscles with the help of energy (WHO, 2018). The energy released must be balanced or not excessive because it causes side effects or problems in the body, especially in the upper extremities.

One of the health problems that arises is pain and functional movement disorders of the body. The upper extremities are limbs that are vulnerable to functional disorders because they are often used for throwing, taking, lifting objects and so on. The part of the upper extremity that often experiences problems is the shoulder joint because it has high mobility and stability (Rosadi *et al.*, 2021).

Disorders or complaints that often arise are shoulder pain and functional limitations during activities. Shoulder pain is the third most common pain complaint in *musculoskeletal* cases, after low back and knee pain (Thigpen *et al.*, 2016). Shoulder complaints that often arise are pain when doing activities that raise the arms above the head, inability to hold objects, stiffness and swelling in the shoulders. These complaints are caused by various things, including *adhesive capsulitis, strains/sprains* and *subacromial pain syndrome*.

Subacromial pain syndrome is a synonym for rotator cuff syndrome related to all unilateral

non-traumatic shoulder problems affecting the structures around the *subacromial*. This condition is characterized by functional limitations and pain that can worsen during or after lifting the arm during activities, as well as sleeping on the affected shoulder (Eliason *et al.*, 2021). *Subacromial pain syndrome* is caused by intrinsic factors, namely tendon quality that decreases with age and extrinsic factors by problems with muscle extensibility, *postural* and *rotator cuff* tendon pathology, such as inflammation due to mechanical compression due to *overuse* (Michener *et al.*, 2015).

The reported prevalence of shoulder pain ranges from 2.4 - 26% (Kelley *et al.*, 2013) and is estimated to reach 67% in the general population (Chaconas *et al.*, 2017). The biggest cause of shoulder pain is *subacromial pain syndrome*, estimated at around 44 - 65% (Bhattacharyya *et al.*, 2014) and will increase with age (Nejati *et al.*, 2017).

Physiotherapy is an individual or group health service to develop and maintain movement abilities and function throughout the life cycle. The role of physiotherapy in cases of *subacromial pain syndrome* aims to reduce pain and restore shoulder functionality. Physiotherapy can provide various interventions to achieve this goal, such as *electrical stimulation*, *taping*, *manual therapy* and exercise therapy.

The exercise therapy that can be given is *stretching* and *strengthening*. *Stretching* is a muscle stretching exercise which aims to increase muscle extensibility which consists of active, passive and *isometric* movements. Meanwhile, *strengthening* is *anaerobic* exercise which aims to increase muscle strength by contracting muscles against weight or force.

Randomized control trial (RCT) by Chaconas et al., (2017), shoulder abductor eccentric exercises for subacromial impingement syndrome had an effective effect on rotator cuff muscle function and strength rather than pain. RCT by Gutiérrez-espinoza et al., (2019), the addition of stretching pectoralis minor did not have a clinical effect on function and pain in

subacromial pain syndrome. Meanwhile, in the RCT by Tahran & Yes, (2020), posterior shoulder stretching exercises have an impact on disability, functional improvement, reduction of pain during sleep and activity in subacromial impingement syndrome.

Based on the description of the data above, various types of exercise therapy interventions can be given to *subacromial pain syndrome*, especially their effect on functional abilities and pain symptoms. Therefore, researchers are interested in conducting a *literature review* to understand the effectiveness of *stretching* and *strengthening* exercises in reducing pain and functional disorders in cases of *subacromial pain syndrome*.

METHODS

The method used is a *literature review* with a *narrative* type which aims to get a general picture regarding a topic and potentially identify gaps in the literature. The selected published article data is RCTs from 2013-2022 in English. *Search* for published articles using PEDro search, and *Google Scholar* which is classified into inclusion and exclusion criteria, see Table 1. Data analysis by assessing journal quality using the PEDro *scale*, as in Table 2, PICO method *literature review outline* in Table 3 and data synthesis for the study, and link it to the research objectives, as in Table 4. Next, provide arguments from the *literature survey* and final arguments related to the topics discussed sequentially.

RESULTS

Haik et al (2015) and Gutiérrez et al (2019) stated the effect of strengthening and stretching exercises in the short term on significant functional improvement, as well as reducing pain in cases of subacromial pain or impingement syndrome. Meanwhile, Moslehi et al (2020) and Nejati et al (2017) suggested a significant effect on both functional and pain levels with specific exercises for the rotator cuff or scapular plus active/passive ROM exercise (table 4).

Table 1. Inclusion and Exclusion Criteria

Criteria	Inclusion	Exclusion
Population	Subacromial patient's pain/impingement/rotator cuff tendinopathy/syndrome	Shoulder fracture/dislocation
Intervention	Stretching (static, dynamic, isometric) prime mover shoulder joint muscle; rotator cuff (infraspinatus, supraspinatus, subscapularis,teres minor) & griddle; trapezius (upper, lower), pectoralis minor Strengthening (eccentric, concentric,	Aerobic, SWD,NMES and tapping
Comparison	isometric) otot prime mover shoulder joint; rotator cuff (supraspinatus, infraspinatus, teres minor) & griddle; trapezius (upper, lower), serratus anterior Pain (VAS) and shoulder function (DASH	There isn't any
Outcome	scale) before and after the intervention Shoulder functional improvement (DASH scale) and pain reduction (VAS)	There isn't any

Table 2. Eligibility Criteria PEDro Scale Result

Criteria	Haik et	Tomás et	Ingwers	Gutiérr	Mosl	Boudre	Nejati
	al	al	en et al	e et al	ehiet al	auet al	et al
Random allocation	✓	✓	✓	✓	✓	✓	✓
Concealed allocation Baseline	✓	X	✓	✓	✓	✓	X
Comparability	✓	✓	✓	✓	✓	✓	✓
Blind subject Blind	XX	XX	X	X	XX	XX	X
Therapist			X	X			X
Blind assessors	\checkmark	\checkmark			X	\checkmark	
			\checkmark	\checkmark			\checkmark
Adequate follow-up	✓	X	✓	✓	✓	✓	X
Intention to treat analysis	✓	✓	✓	✓	X	✓	X
Between-group comparison	✓	√	√	✓	✓	√	✓
Estimate &variability	✓	✓	✓	✓	✓	✓	✓
Total	8	6	8	8	6	8	5

Table 3. Outline Literature Review (PICO) Results

Title	Population	Intervention	Comparison	Outcome
Stretching,	46 patients had a	Intervention group (n = 23);	Scapular	There was a
Strengthenin	history of non-	Stretching both arms without pain	kinematic,	functional
g Exercises	traumatic shoulder	in the pectoralis minor muscle,	functional	increase &
with or	pain, painful arch,	upper trapezius, and posterior	(DASH	decrease in
Without	1 or more positive	shoulder (3 repetitions for 30	scale) Pain	pain, as well
Manual	SIS tests (jobe,	seconds, pause 30 seconds).	&	as
Therapy on	neer, Hawkins	strengthening external rotation,	mechanical	mechanical
Scapular	Kennedy),	shoulder extension; (latissimus	sensitivity	sensitivity in
Kinematics,		dorsi) shoulder protraction;	(VAS).	the exercise
Function &	Painful	(serratus anterior); prone lying +		group
Pain in SIS	passive/isometric	elastic band; supine arm flexed 90		without
Patients,	external rotation at	degrees, elbow extended, pull the		manual
Haik et al	90 degrees	elastic band towards the front (3		therapy after
(2015)	abduction and	sets of 10 repetitions, pause 1		4 weeks.
	tenderness on	minute).		
	palpation of the	Therapy manuals; grade 3 & 4	Pain	
	rotator cuff	mobilization 45 minutes each on	(VAS),	
Improved	tendons.	the affected arm.	Function	SFT
Scapular		The control group $(n = 23)$ did not	al,	exercises can
Focused	75 patients with	receive manual therapy.	(DASH	control pain
Exercise	shoulder pain	Intervention group $(n = 25)$:	scale) &	& improve
Feedback in	> 6 weeks, 2 of the	1. Shoulder position (week 1),	kinematic	function.
SIS Patients,	following	2. Scapular-focused treatment	error.	The
Moslehi et al	conditions are	(SFT); strengthening; eccentric,		rehabilitation
(2020)	present; full arc	intrinsic (weeks 2-7),		program +
	flexion or	3. Flexibility & isometric		EMG
	abduction pain,	stretching of the rotator cuff		feedback is
	external rotation	(Weeks 4 & 8).		thought to be
	resistance pain.	Group + EMG biofeedback (SFTF)		effective in
	abduction.	(n = 25); exercise was the same as		improving
	Positive test; neer,	the intervention group.		functional,
	hawkins-kennedy	The control group $(n = 25)$ was not		and
	or Jobe test.	given SFT.		kinematic &
				reducing
				pain after 8
				weeks.

Title	Donalation		Communicati	·
	Population	Intervention	Comparison	Outcome
Does	80 patients	Intervention group $(n = 40)$;	Pain (VAS)	There was a
Stretchin	aged > 18	scapular control;	and	significant
g the	years were	1. Shoulder flexion 60 degrees	shoulder	effect on
Pectoralis	diagnosed	(supine) progressively 90 degrees	function	shoulder
Minor	with SAPS at	(sitting) + elastic band.	(DASH	function in
Provide	Central	2. Protraction with <i>elbow</i> extension	scale).	the control
Additiona	Metropolitan	(supine) +		group and a
1 Benefits	Health Service	elastic band (close kinetic chain).		slight effect
Over an	Chile,	3. Shoulder extension (prone) and		on pain.
Exercise	complaining	arm extension.		
Program	of	Glenohumeral control;		The addition
in SAPS	anterolateral	1. Isometric adduction with a pillow		of stretching
Patients,	shoulder pain	at the elbow, then do isometric		the pectoralis
Gutiérrez et	> 3 months,	external rotation.		minor does
al (2019)		2. Isometric adduction at 30-60		not provide
	1 or more	degrees glenohumeral abduction.		significant
	positive tests;	Stretching;		benefits of
	neer / Hawkins-	1. Pectoralis minor "unilateral		functional
	Kennedy / pain	cornel stretch" (10 repetitions for 1		improvement
	against resistance	minute, pause 30 seconds).		, and pain
	during external	2. Passive stretching upper		reduction
	rotation or empty	trapezius & posterior capsule 3		over 12
	can test.	times.		weeks.
		Pain-free movement shoulder		
		retraction, abduction in the scapular		
		plane, neck retraction 10 times.		
		The control group $(n = 40)$ received		
		no		
		stretching pectoralis minor.		
		2		

Title Population Intervention Comparis	son Outcome
SIS 62 patients aged at Group 1 ($n = 31$); Pain (VA)	
treat least 40 years with <i>platelet-rich</i> functional	ıl <i>plasma</i> &
ment complaints of plasma 4ml Group (DASH	exercise
; shoulder pain for at $2 (n = 31)$; Phase scale),	therapy
Plate least 3 months, at 1: muscle	effectively
let- least 3 positive 1. isometric strength	reduced pain
Rich tests; jobe, neer, <i>exercise</i> ; flexion, (MMT).	and disability
Plas empty can, speed lateral rotation,	in SIS
ma test & Hawkins- abduction.	patients after
Or Kennedy test. 2. Passive ROM	6 months of
Exer & pendulum	follow-up.
cise $exercise 8 - 10$	
Ther times per day.	
apy 3. Stretching;	
Nejati et neck & cross-	
al (2017) body 10 seconds.	
Phase 2;	
1. Active ROM	
exercise; elevation	
> 60 degrees.	
2. Strength	
training;	
internal &	
external rotation rotator cuff 10	
repetitive 3 sets	
3. Stretching	
phase 1; 15-20	
seconds.	
Phase 3; rotator	
cuff strength	
training; external	
& internal	
rotation at 90	
degrees abduct,	
reverse fly,	
shoulder	
extension & bent-	
row exercise +	
elastic band; 10	
reprises 3 sets.	
Phase 4;	
strengthening	
rotator cuff &	
bicep using a	
medicine ball for	
15 reps, 3 sets.	
At the beginning of the session, 10-	
15 minutes of <i>aerobic</i> exercise is	
given and at the end of the session,	

Title Population Intervention Comparison Outcome

20 minutes of ice packs are given.

Title	Population	Intervention	Comparison	Outcome
Addition of Glenohumer al Adductor Coactivator in the Rotator Cuff Tendinopat hy Exercise Program, Boudreau et al (2019)	42 patients aged 18-65 years were diagnosed with rotator cuff pathology > 1 month, pain in abduction or flexion & resistance to external rotation or humeral abduction. Test positive: neer or Hawkins-Kennedy.	RCEx Group (n = 21); strengthening; 1. Serratus anterior; wall push-ups with outward pressure. 2. Upper trapezius; scapular retraction (standing arm abducted to 90 degrees scapular plane, then prone position at the end of the intervention). 3. Glenohumeral; external & internal rotation in standing position and arm next to trunk + elastic band progressively. If you can do everything without pain, then continue to the sitting position with 30 degrees abduction and elbows on the table for 10 repetitions. If you can do it without pain, continue glenohumeral flexor & abductor exercises. RCEX group + coactivator (n = 21); 1. glenohumeral + latissimus dorsi, pectoralis major exercises. 2. Understand latissimus dorsi & pectoralis major activation using EMG; electrodes in the pectoralis major muscle belly (sternal above the costochondral joint) and latissimus dorsi 1 cm below inferior scapula. If you experience an increase in pain of 5 – 10 (VAS) during exercise,	Functional (DASH scale & WORC), Pain (VAS) & AHD.	The addition of a glenohumera l adductor co-activator does not show benefits in improving function (DASH scale), reducing pain silent after 6 weeks & slight benefit on movement and functional pain (WORC scale).
Effectiveness of Physiotherapy	74 patients under 80 years of age, no cognitive impairment	adjust the load to light. Intervention group (n=36); isometric shoulder strengthening; internal rotation 5 seconds 5	Pain and function (VAS,	There was a significant functional
Interventions in Non-traumatic Inoperable Shoulder Pain, Tomás <i>et al</i> (2017)	with either condition; non-traumatic rotator cuff tears, tendinitis (supraspinatus, infraspinatus), capsulitis and SIS.	repetitions, external rotation 5 seconds, shoulder extension 5 seconds 5 repetitions. stretching posterior shoulders; 5 seconds & neck (flexion, extension, lateral flexion, rotation); 5 repetitions. Active ROM exercise: elevation 3 seconds 5 repetitions. Pendulum exercise; forward, backward and circle (1-3 minutes),	DASH scale).	increase (DASH scale) in the intervention group. There was no difference in the effect of pain reduction

Title	Population	Intervention	Comparison	Outcome
Progressively High Dose Strength Training Compared to Light Doses in Rotator Cuff Tendinopathy Ingwersen et al (2017)	100 patients aged 18 -65 years, complaints of proximal lateral pain in the upper arm for at least 3 months, worsened by abduction movements and one of the signs verified by US; tendon swelling, hypoechoic area, supraspinatus neovascularization. Positive test; full can jobe, neer or Hawkins- Kennedy.	movement on the table: elbow flexed arm on the table, forward movement; 5 repetitions. The control group (n=38) received similar interventions at their own time and subgroups. 2 exercise scapula-stabilizing muscle; protraksi, retraksi& stretching posterior shoulder. 2 specific exercise rotator cuff strengthening (deltoid activation), 2 mobility exercise rotator cuff & scapula thoracic + elastic band, dumbbell; 3 times a week and maximum pain 5 (VAS). Light (n = 51) & heavy (n = 49) doses of exercise had the same training. Light doses of exercise; 20-25 reps 3 sets and rest 30 seconds, Progressive heavy dose training; 15 reps weeks 1, 12 Repetitions Week 4-5, 8 repetitions	Pain (VAS), Functional (DASH scale), ROM (HALO digital goniometer), US.	(VAS) / almost none between the intervention and control groups after 5 weeks of follow-up. Progressive and light dose exercise resulted in a general improvement in functional (DASH scale), & pain (motion nocturnal, maximum pain), at 12 weeks - follow up, except for silent or resting pain (VAS).

weeks 6-8 & 6 reps weeks 9-12.

Table 4. Journal Synthesis Results

Study	Journal Synthesis
Haik <i>et al</i> (2015)	Providing stretching and strengthening (elastic bands) targeting the trapezius, serratus anterior, pectoralis minor and posterior muscles showed an increase in shoulder functionality on the DASH scale and changes in pain (VAS) in the short term.
Gutiérrez et al (2019)	The addition of stretching pectoralis minor "unilateral cornel stretch" in the short term does not provide any clinical effect or benefit for pain or function. The strengthening (glenohumeral, scapular control) and stretching (upper trapezius, posterior capsule) exercise program without stretching pectoralis minor showed a significant effect on function (DASH scale) and decreased pain (VAS).
Moslehi et al (2020)	Scapular-focused treatment + EMG biofeedback (SFTF) and Scapular-focused treatment (SFT); muscle strength & tight shoulder muscle flexibility/stretching rotator cuff can reduce subacromial inflammation and soft tissue impingement, and have a significant effect on reducing pain and improving shoulder functionality in the short term.
Nejati <i>et al</i> (2017)	Stretching and strengthening + active/passive ROM exercises in the rotator cuff & scapular muscles during 1, 3 and 6-month follow-up showed a significant effect on reducing pain (VAS) and functional improvement (DASH) in the short term.
Boudreau et al (2019) Tomás et al (2017)	The addition of <i>glenohumeral</i> + <i>coactivation</i> (<i>pectoralis major</i> , <i>latissimus dorsi</i>) to <i>strengthen</i> ing exercises (<i>serratus anterior</i> , <i>trapezius</i> , <i>glenohumeral</i>) or <i>strengthen</i> ing exercises themselves did not show any effect on functional improvement (DASH <i>scale</i>) and silent pain, had little effect on motion pain (VAS).
Ingwersen et al (2017)	Stretching (posterior shoulder, neck), strengthening (eccentric & isometric) with elastic bands and active/passive ROM exercise showed a significant effect on improving shoulder function ($P < 0.001$), but not for pain (0.723).
	Light or high dose training strengthening isometric internal, external rotation focuses on activating the deltoid muscle with resistance, scapula-stabilizing muscle, strengthening, mobility exercise rotator cuff, scapula thoracic complex plus

corticosteroid injection can increase functional muscle strength (DASH scale) significantly compared to who did not have corticosteroid injection added during the 12-week follow-up.

DISCUSSION

The research of Haik et al (2015), Gutiérrez et al (2019) and Moslehi et al (2020) is also strengthened bv valid and reliable measurements, as well as good research quality based on the PEDro scale so that the effect can be ascertained (table 2). Gutiérrez et al (2019), Moslehi et al (2020) and Nejati et al (2017) did not mention in detail the target muscles involved in the intervention. Haik et al (2015) and Gutiérrez et al (2019) did not clearly state the order of intervention provided. Meanwhile, Moslehi et al (2020) provided isometric stretching exercises in the middle and end of the meeting between strengthening exercises, namely weeks 4 and 8. Nejati et al (2017) provided a stretching, strengthening plus aerobic training program at the beginning of each training session and the final session with ice packs. Stretching is given in phases 1 and 2 of the exercise program, but the sequence is not explained in detail (table 3).

Nejati et al (2017)'s research are of sufficient quality, this is because there is no control group for intention to treat analysis, so there is bias in determining the effectiveness of treatment. There was adequate follow-up because as many as 11 of the total 31 patients in the exercise therapy group did not follow or failed to complete 6 months of follow-up for certain reasons. Monitoring stopped after 3 months of *follow-up*, so there is a possibility that the patient did not continue the exercise protocol given. There was no concealed allocation in this study because the MRI condition of the patient's shoulder was considered a confounder, so patients were randomly assigned to intervention groups in certain stages (table 2).

These four studies show the effectiveness of *stretching* and *strengthening* exercises on changes in pain and functional disorders in *subacromial pain syndrome* using the functional scale (DASH) and pain measurement (VAS) in the acute phase (table 4). *Strengthening* exercises are designed to increase muscle strength and movement function without symptoms, while *stretching* can increase flexibility, and ROM and reduce pain.

Visual analogue scale (VAS) is a psychometric measurement instrument designed to document disease-related symptom severity characteristics in patients and use it to achieve rapid (statistically measurable and reproducible) classification of symptom severity, as well as disease control. VAS scores range from 0–10, higher scores indicate greater pain intensity (Klimek *et al.*, 2017).

The reliability of the VAS for measuring acute pain as assessed by the ICC was high. Ninety per cent of the pain ratings were reproduced in 9 mm. These data indicate that the VAS is reliable enough to be used to assess acute pain (Bijur *et al.*, 2001).

The Disabilities of the Arm, Shoulder and Hand (DASH) Questionnaire is a 30-item questionnaire that looks at a patient's ability to perform certain upper extremity activities. This questionnaire is a self-report questionnaire that patients can rate difficulties and interference in daily life on a 5-point Likert scale (Franchignoni *et al.*, 2014).

In contrast to the four previous researchers, Tomás et al (2017) and Ingwersen et al (2017) only suggested a significant effect on shoulder function, but not pain. Boudreau et al (2019) stated that rotator cuff and glenohumeral strengthening exercises, either with or without the addition of co-activators (serratus anterior,

latissimus dorsi) showed smaller changes in movement pain (VAS), but there was no effect on the DASH scale (table 4). Boudreau et al (2019) made changes to the measurement time protocol which was originally based on RCT registration from 24 weeks to 6 weeks because no changes were found.

There was adequate follow-up bias in Tomás et al (2017) because the control group in the study received a similar intervention and 13 people in the control group did not complete it until the end (table 2). The sample in this study heterogeneous regarding problems, namely tendinitis (supraspinatus, infraspinatus), capsulitis and subacromial impingement syndrome. Capjualitis has several characteristic symptoms and causes that are different from subacromial pain/impingement/rotator cuff syndrome. The exercise procedures are not explained in this study or are listed separately with the link provided and the sequence is not explained. Tomás et al (2017) did not fully state the target muscles involved in the intervention (table 3).

Ingwersen et al (2017) were lacking in the effects obtained between intervention groups. This could be because the intervention time given was not long enough to improve tendon health. (Ingwersen et al (2017) added corticosteroid injection to strengthening exercises to maximize the effectiveness of these exercises, but there are shortcomings related to the secondary outcome of pain. Giving corticosteroid injections can create bias in assessing the effect of changes in pain from these exercises. Ingwersen et al (2017) do not fully state the target muscles being intervened (table 3).

CONCLUSION

Based on the *literature review* from the seven RCT journals, providing *strengthening* and *stretching* exercises that focus on the *posterior shoulder* and *rotator cuff* or *scapular* can have an effective influence on changes in pain and functional disorders. This exercise can be used as an option for providing physiotherapy intervention so that the shoulder is free from symptoms in cases of *subacromial pain syndrome*.

FISIO MU: Physiotherapy Evidences

ISSN 2722 - 9610 E -ISSN 2722 - 9629

REFERENCES

Abdulla, S. Y., Southerst, D., Côté, P., Shearer, H. M., Sutton, D., Randhawa, K., Varatharajan, S., Wong, J. J., Yu, H., Marchand, A. A., Chrobak, K., Woitzik, E., Shergill, Y., Ferguson, B., Stupar, M., Nordin, M., Jacobs, C., Mior, S., Carroll, L. J., ... Taylor-Vaisey, A. (2015). Is exercise effective for the management of subacromial impingement syndrome and other softtissue injuries of the shoulder? A systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. *Manual Therapy*, 20(5), 646–656. https://doi.org/10.1016/j.math.2015.03.013

Bhattacharyya, R., Edwards, K., & Wallace, A. W. (2014). Does arthroscopic sub-acromial decompression work for sub-acromial impingement syndrome: A cohort study. *BMC Musculoskeletal Disorders*, *15*(1), 1–7. https://doi.org/10.1186/1471-2474-15-324

Bijur, P. E., Silver, W., & Gallagher, E. J. (2001). Reliability of the visual analoguescale for the measurement of acute pain. *Academic Emergency Medicine*, 8(12), 1153–1157. https://doi.org/10.1111/j.1553-2712.2001.tb01132.x

Chaconas, E. (2015). University of St Augustine for Health Sciences SOAR @ USA Shoulder External Rotator Eccentric Training For Subacromial PainSyndrome.

Delgado, D. A., Lambert, B. S., Boutros, N., McCulloch, P. C., Robbins, A. B., Moreno, M. R., & Harris, J. D. (2018). Validation of Digital Visual Analog Scale Pain Scoring With a Traditional Paper-based Visual Analog Scale in Adults. *JAAOS: Global Research and Reviews*, 2(3), e088. https://doi.org/10.5435/jaaosglobal-d-17-00088

Franchignoni, F., Vercelli, S., Giordano, A., Sartorio, F., Bravini, E., & Ferriero, G. (2014). Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (quickDASH). *Journal of Orthopaedic and Sports Physical Therapy*, 44(1), 30–39. https://doi.org/10.2519/jospt.2014.4893

Gutiérrez-espinoza, H., Araya-quintanilla, F., &

Gutiérrez-monclus. R. (2019).Musculoskeletal Science and Practice Does pectoralis minor stretching provide additional benefit over an exercise program in participants with subacromial pain syndrome? A randomized controlled trial. Musculoskeletal Science and Practice, 102052. https://doi.org/10.1016/j.msksp.2019.102052

Haik, M. N., Vieira, M. S. A., & Salvini, M. S. T. F. (2015). research report 1. 45(270), 984-997. https://doi.org/10.2519/jospt.2015.5939

Hanratty, C. E., Mcveigh, J. G., Kerr, D. P., Basford, J. R., Finch, M. B., Pendleton, A., & Sim, J. (2012). The Effectiveness of Physiotherapy Exercises in Subacromial Impingement Syndrome: A Systematic Meta-Analysis. Review and YSARH, 42(3),297-316.

https://doi.org/10.1016/j.semarthrit.2012.03.

Ingwersen, K. G., Jensen, S. L., Sørensen, L., Jørgensen, H. R., Christensen, R., Søgaard, K., Juul-kristensen, B., & Prof, A. (2017). Three Months of Progressive High-Load Versus Traditional Low-Load Strength Training Among Patients With Rotator Cuff Tendinopathy Primary Results From the Double-Blind Randomized Controlled *RoCTEx* Trial. 1-19.https://doi.org/10.1177/2325967117723292

Klimek, L., Bergmann, K. C., Biedermann, T., Bousquet, J., Hellings, P., Jung, K., Merk, H., Olze, H., Schlenter, W., Stock, P., Ring, J., Wagenmann, M., Wehrmann, W., Mösges, R., & Pfaar, O. (2017). Visual analogue scales (VAS) - Measuring instruments for the documentation of symptoms and therapy monitoring in case of allergic rhinitis in everyday health care. Allergo Journal, 26(1), 36-47. https://doi.org/10.1007/s40629-016-0006-7

Michener, L. A., Subasi Yesilyaprak, S. S., Seitz, A. L., Timmons, M. K., & Walsworth, M. K. (2015).**Supraspinatus** tendon and subacromial space parameters measured on ultrasonographic imaging in subacromial impingement syndrome. Knee Surgery, Sports Traumatology, Arthroscopy, 23(2), 363-369. https://doi.org/10.1007/s00167Moseley, A. M., Elkins, M. R., Wees, P. J. Van Der, & Pinheiro, M. B. (2019). Brazilian Journal of Using research to guide practice: The physiotherapy evidence database (PEDro). Brazilian Journal of Physical

013-2542-8

Therapy, xx. https://doi.org/10.1016/j.bjpt.2019.11.002

Moslehi, M., Letafatkar, A., & Miri, H. (2020). Feedback improves the scapular-focused treatment effects in patients with shoulder impingement syndrome. Knee Surgery, Traumatology, Sports Arthroscopy, 0123456789.

https://doi.org/10.1007/s00167-020-06178-z Nejati, P., Ghahremaninia, A., Naderi, F., Gharibzadeh, S., & Mazaherinezhad, A. Treatment of subacromial impingement syndrome: Platelet-richplasma therapy?: A or exercise randomized controlled trial. Orthopaedic Journal of Sports Medicine, 5(5), 1-2.

https://doi.org/10.1177/2325967117702366

Reijneveld, E. A. E., Noten, S., Michener, L. A., Cools, A., & Struyf, F. (2017). Clinical outcomes of a scapular-focused treatment in patients with subacromial pain syndrome: a systematic review. 436-441. https://doi.org/10.1136/bjsports-2015-095460

The report, O. (2021). Guided Exercises With Or Without Joint Mobilization Or No Treatment **Patients** With Subacromial Pain Syndrome: A Clinical. 8. https://doi.org/10.2340/16501977-2806

Rosadi, R., Mabrur, A., Sunaringsih, S., & Wardojo, I. (2021). Pelaksanaan Fisioterapi Komunitas Dalam Upaya Meningkatkan Kesadaran Tentang Cedera Olahraga Pada Pemain Bola Voli Putri Generasi Muda Juata Laut. 7(2), 242–246.

Saito, H., Harrold, M. E., Cavalheri, V., & Mckenna, L. (2018). Scapular focused interventions to improve shoulder pain and function in adults withsubacromial pain: A meta-analysis. systematic review and Physiotherapy Practice, Theory and 00(00), 1-18.https://doi.org/10.1080/09593985.2018.1423

656

- Shire, A. R., Stæhr, T. A. B., Overby, J. B., Dahl, M. B., Jacobsen, J. S., & Christiansen, D. H. (2017). Specific or general exercise strategy for subacromial impingement syndrome does it matter? A systematic literature review and meta-analysis. 1–18. ttps://doi.org/10.1186/s12891-017-1518-0
- Singla, D., & Veqar, Z. (2017). Association Between Forward Head, Rounded Shoulders, and Increased Thoracic Kyphosis: A Review of the Literature. *Journal of Chiropractic Medicine*, 16(3), 220–229. https://doi.org/10.1016/j.jcm.2017.03.004
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of Business Research*, 104(March), 333–339.
 - https://doi.org/10.1016/j.jbusres.2019.07.03

- Tahran, Ö., & Yes, S. S. (2020). Effects of Modified Posterior Shoulder Stretching Exercises on Shoulder Mobility, Pain, and Dysfunction in Patients With. X(X). https://doi.org/10.1177/1941738119900532
- Thigpen, C. A., Shaffer, M. A., Gaunt, B. W., Leggin, B. G., Williams, G. R., & Wilcox, R. B. (2016). The American Society of Shoulder and Elbow Therapists' consensus statement on rehabilitation following arthroscopic rotator cuff repair. *Journal of Shoulder and Elbow Surgery*, 25(4), 521–535. https://doi.org/10.1016/j.jse.2015.12.018