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Abstract

Land use and land cover (LULC) change is a vital indicator of environmental transformatien and sustainable
land management, particularly in arid and semi-arid regions such as Karakalpakstan. Although several stud-
ies have explored LULC dynamics across Central Asia, most have focused on large-scale or regional assess-
ments, leaving a gap in district-level analyses that capture localized land transformation processes. This
study addresses this gap by examining the temporal dynamics of LULC in.the Shimbay district, one of the
most populous districts in the northern part of the Republic of Karakalpakstan, Uzbekistan. The research
aims to identify changes in LULC using Sentinel-2 satellite imagery over 6 years, from 2017 to 2022. The
study area was selected based on 10 years of government “Land Fund” data, indicating significant changes
in bare land. The satellite images and field measurements were analyzed using ArcGIS 10.4.1. LULC was
categorized into five classes: water bodies; vegetation'and agricultural land (including flooded mangroves,
emergent vegetation, paddy fields, irrigated agricultural lands, cereals, grasses, and non-tree crops); built-up
areas; saline land; and bare land. Following classification, 100 random sample points were generated in
ArcGIS and verified using Google Earth Pro to ensure classification accuracy. The results showed that the
overall accuracy of the LULC classification was 81% (Kappa coefficient = 0.74) in 2017 and 71% (Kappa
coefficient = 0.66) in 2022, both within the “substantial” agreement range. The most significant change
occurred in vegetation and agricultural lands, with 13;183.38 ha (9.4% of the study area) converted into bare
land. These findings provide a detailed understanding of landscape transformation in the Shimbay district
and offer policymakers and planners valuable insights to enhance sustainable land management and prevent
further land degradation.

Keywords: Land cover; Land use; GIS; Remote sensing; Sentinel-2; Accuracy assessment; Shimbay.

1. Introduction

The implementation of global initiatives to mitigate climate change, promote sustainable devel-
opment, and safeguard ecosystems and biodiversity is closely linked to United Nations Sustaina-
ble Development Goal 13 (Climate action). The term "land cover classification," as defined by
the United Nations System of Environmental-Economic Accounting (UN-SEEA), refers to the
"physical and biological characteristics of the Earth's surface, encompassing natural vegetation
and non-living surfaces (UN, 2019). This is particularly evident in the creation of maps showing
changes in land use and cover (LULC) at the global, national, and regional levels (Acar & Zengin,
2023). Land use is the planned application of land management strategies by human agents to
utilize land cover. It represents human activities such as industrial zones, residential zones, agri-
cultural fields, grazing, logging, and mining, among others (Teshager & Abeje, 2021; Fatima N
and Javed A et al., 2021). In contrast, land cover refers to the characteristics of the earth's surface
that are represented in the distribution of vegetation, water, ice, desert, and topography, as well as
the immediate subsurface, which includes biota, soil, topography, surface, and groundwater (Nedd
etal., 2021).

Furthermore, baseline data on planning, management, and sustainable resource use are derived
from our understanding of temporal variations in LULC (Gebeyehu et al., 2019; Paudel et al.,
2016; Wulansari, 2017). As a result, to analyze environmental processes and issues and to main-
tain or improve living standards, land-use data is required. It is particularly crucial to monitor
LULC changes frequently in rapidly expanding regions, as unplanned, irregular urban population
growth can alter urban climates (Dhakal ef al., 2022). Thus, it is critical to understand the patterns
and trends in LULC change at the regional, local, and global scales. Preserving the environment
while boosting economic and social advantages is the greatest challenge (Islami ez al., 2022).

Jumaniyazov et al.

Page 44


https://journals.ums.ac.id/INDEX.PHP/FG/

Forum Geografi, 40(1), 2026; DOI: 10.23917/forgeo.8724

Land classification research is necessary to manage natural resources and environmental issues
and to assess the current state (Aslanov ef al., 2023). The natural science community has exten-
sively used satellite images to assess changes in land cover and terrestrial land use at both quali-
tative and quantitative levels (Salman et al., 2020). Novel insights into the field of large-scale
LULC mapping have been made possible by the worldwide consolidation and development of
cloud computing platforms, artificial intelligence, machine learning, deep learning, and deep
transfer learning; moreover, time series-based techniques and remotely sensed data (Kwan et al.,
2020; Sefrin et al., 2020). Seasonal and phenological properties of different LULC classes can be
captured by integrating a range of features and spectral-temporal metrics derived from satellite
image time series analysis (Htitiou et al., 2021). Classification accuracy will increase when LULC
classes are mapped using these characteristics and metrics (Luo ef al., 2022).

Geographic information system (GIS) and Remote sensing (RS) communities have long been in-
terested in accurate and current LULC mapping, primarily because it provides important infor-
mation for understanding human-environment interactions (Nasiri et al., 2022). Compared with
traditional surveys, using RS to monitor LULC offers several benefits, including the ability to
quickly and accurately create an inventory of broad regions (Deb & Nathr, 2012; Juliev et al.,
2019). On a global scale, researchers used GIS and RS to analyze, classify, and assess LULC
change dynamics in Sentinel-2 imagery. For example, Islami et al. (2022) assessed the accuracy
of LULC change analysis using Google Earth in the Sadar Watershed in Indonesia. Zaabar et al.
(2023) compared Sentinel-2 and Landsat images for LULC classification in an object-based image
analysis (OBIA) framework using the Random Forest (RF) and Support Vector Machine (SVM)
methods in the Allala watershed of Algeria. The results showed that Sentinel-2 images processed
with the RF method achieved higher accuracy than Landsat satellite images. Makar et al. (2022)
studied the E-Beheira governorate in Egypt using principal component analysis and supervised
classification of Sentinel-2 images to enhance LULC classification accuracy. Teshager and Abeje
(2021) conducted a LULC change-detection analysis of the Kility Watershed in Ethiopia using
Landsat and Sentinel-2 images from 1986 to 2019, employing the maximum likelihood algorithm
for supervised classification. Additionally, the accuracy assessment and confusion matrix analysis
were conducted to assess the reliability of the LULC analysis. Aimed to evaluate the potential of
Sentinel-2 and Landsat-8 images' spectral-temporal metrics by using the Google Earth Engine
(GEE) cloud computing to improve the accuracy of the LULC maps, Pande (2022 created a new
machine learning algorithm in JavaScript for GEE to classify the LULC map and change detection
using Sentinel-2 and Landsat-5 images with a 5-year time difference. The researchers noted that
the GEE's ability to perform other analyses on the GEE cloud computing platform is very high.

Remarkable strides have been made in RS technology in recent years to adapt to surface changes
on Earth. Sentinel-2 multispectral products from the European Space Agency (ESA) and the Eu-
ropean Union (EU) are a major contribution to the Copernicus Program advances, which are used
to monitor changes in the Earth's surface (Kumari & Karthikeyan, 2023). Sentinel-2 products are
suitable sources for time-series feature extraction because they offer high temporal resolution,
short revisit times, and a rich spectral configuration among medium-resolution satellite imagery
(Liu et al., 2020). Two Sentinel-2 images (10 m spatial resolution) from 2017 and 2022 were used
for LULC mapping and to analyze and detect degraded areas. The region of change between two
images of the same scene taken at different times can be detected using change detection. LULC
change detection is essential for assessing transitions between land classes. Due to its free and
open-access approach, Sentinel-2 data have drawn significant interest from low-income countries,
where funding for remotely sensed data acquisition is limited.

Based on the review of existing studies (Gebeyehu et al., 2019; Juliev ef al., 2019; Pande et al.,
2021; Islami et al., 2022), most LULC analyses have relied on conventional supervised classifi-
cation approaches, particularly maximum likelihood and object-based methods, applied to rela-
tively small study areas with limited training samples. While these methods are widely used, their
reliance on sparse, locally constrained samples often limits classification robustness and general-
izability, especially in heterogeneous and degraded landscapes. Limited sample sizes tend to un-
derrepresent spectral variability, leading to uncertainty in accurately delineating complex classes
such as degraded bare land. In contrast, recent advances in Al-based classification suggest that
large-scale, sample-rich models can substantially improve LULC mapping accuracy by better
capturing spatiotemporal dynamics. However, such approaches remain underexplored in arid and
semi-arid regions using dense Sentinel-2 time-series data, highlighting a critical methodological
gap that this study aims to address.

Therefore, this study focused on a large-scale, sample-based Al land classification model to map
the spatial distribution of degraded bare lands using Sentinel-2 imagery. Additionally, the current
studies will help monitor changes in land classification over relevant periods. The specific
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objectives of this study are i) to map the LULC changes from 2017 to 2022, using Sentinel-2
LULC time series (Living Atlas) data, and ii) to use the statistical analysis to determine the accu-
racy of the research.

2. Research Methods
2.1. Study Area

Based on the "Land Fund" data of the State Cadastral Chamber of the Cadastral Agency under the
State Tax Committee of the Republic of Uzbekistan, used to identify districts (study area) that
occupied more bare lands in the agricultural sectors of the Republic of Karakalpakstan (Figure 1).
According to the "Land Fund" data, the area of bare land is shown by district in the Republic of
Karakalpakstan. So far, the Shimbay district has been a study area with a high tendency toward
agricultural graylands.
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Figure 1. The dynamics of the gray land area in the districts of the Republic of Karakalpakstan. (Source:
State Cadastre Chamber of the Cadastral Agency under the State Tax Committee of the Republic of Uzbek-
istan "Land Fund").

The research selected the Shimbay district of the Republic of Karakalpakstan (Figure 2). The
Shimbay district was established in 1927 and borders Bozatau (established in 2019) to the west,
Kegeyli to the south, Muynak to the northwest, and the Karauyzak district to the east. Shimbay
district is located on the lower right bank of the Lower Amu Darya River (Bekanov et al., 2020).
The study area is located between 43°20'20.338"N and 59°58'16.041"E. The district's total area is
1,407 km?, and the population was 115,061 in 2023 (https://www.citypopulation.de/en/uzbeki-
stan/admin/). The climate is drastically continental. Therefore, summer is hot, winter is cold, and
there is slight snow. The annual mean record high temperature is 46.5 °C, and the annual record
low temperature is -33.7 °C in winter. Also, the average summer temperature is 26.9 °C, and the
average winter temperature is -6.7 °C. The annual mean precipitation is 133 mm, and the annual
average number of rainy days is 32 days (www.pogodaiklimat.ru). Vegetation period is 188 days.
The Amu Darya River is the only river that runs through the region. Water is used to irrigate crops
through large canals in the study area (Rakhmonov ef al., 2021). The northern part of the study
area is largely bare land, whereas the remainder of the district is used for agriculture, settlement,
canals, lakes, and ponds.
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Figure 2. Location of the study area: a) the Republic of Karakalpakstan; b) the satellite image of the Shimbay
District.

2.2. Data Collection

Sentinel-2 was developed by the European Space Agency (ESA) and provides high-resolution
images of the planet with spectral and temporal resolutions. Thirteen spectral bands are available
from the satellite images, with four at 10 meters, six at 20 meters, and three at 60 meters, as shown
in Table 1. ESA Sentinel-2 data were used in this study, and two images from 2017 and 2022
were  downloaded.  Sentinel-2  data  were  available free of charge at
https://www.arcgis.com/home/item.html?id=cfcb 7609de5f478eb7666240902d4d3d. They were
available in Tagged Image File Format (TIFF) and projected to the World Geodetic System 1984
(WGS-84) with datum zone 40N.

Table 1. Details Of Satellite Data Acquisition.

Satellite Sensor g:tv:l/ Rz(t]euisi tion Spectral Bands (nm) (Using bands for layer stack)  Resolution (m) Data Source
Sentinel-2  Thematic 42/58 01.01.2017 Band 1 (Coastal): 433-453 60  https://www.
01.01.2022 Band 2 (Blue): 458-523 10 arcgis.com/a
Band 3 (Green peak): 543-578 10  pps/mapvie
Band 4 (Red): 650-680 10 wer/in-
Band 5 (Red edge): 698-713 20  dex.html?lay
Band 6 (Red edge): 733-748 20  ers=cfcb760
Band 7 (Red edge): 773-793 20 9de5f478eb7
Band 8 (NIR): 785-899 10 666240902d
Band 8A (NIR narrow): 855-875 20 4d3d
Band 9 (Water vapor): 930-950 60
Band 10 (SWIR Circus): 1365 60
Band 11 (SWIR): 1565-1655 20
Band 12 (SWIR): 2100-2280 20
2.3. Land Cover Classes

Table 2 describes the five land classes that follow: water bodies, Vegetation and Agricultural
lands, built-up areas, saline lands, and bare lands, along with the characteristics used in the clas-
sification process. In the classification process, we merged vegetation and agricultural land, as
shown in the table below.

Author et al.

Page 47


https://www.arcgis.com/home/item.html?id=cfcb%207609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d

Forum Geografi, 40(1), 2026; DOI: 10.23917/forgeo.8724

Table 2. Characteristics Of Each LULC Classification Pattern.

Land use and Land cover types Descriptions

Waterbody Rivers, ponds, lakes, and flooded salt plains.

Vegetation and Agricultural Lands ~ Flooded mangroves, emergent vegetation, rice paddies, and other
heavily irrigated and inundated agriculture. / Cereals, grasses,
and crops not at tree height; examples: corn, wheat, soy, fallow
plots of structured land.

Built-up area Houses, dense villages/towns/cities, paved roads, and asphalt.

Saline land The soil contains high concentrations of soluble salts, which of-
ten create adverse conditions for plant growth. White or grayish
surface crusts, often bright in satellite imagery, are common in
these areas due to salt accumulation.

Bare land Natural meadows and fields with sparse to no tree cover, pas-
tures, and moderate to sparse cover of bushes, shrubs, and tufts
of grass.

2.4. Pre-Processing and Image Classification

Sentinel-2's annual images are generated from Impact Observatory's deep-learning Al land clas-
sification model using a massive training dataset of billions of human-labeled image pixels. After
downloading the Sentinel-2 images to the computer, the data were imported into ArcGIS 10.4.1
to derive the study area data from the Sentinel-2 image tiles. The study area was clipped using the
Geoprocessing clip function in the menu bar. Then, the raster-to-polygon tool was used to create
an attribute table containing the values from the image grids. Additionally, after creating the at-
tribute tables for the images, the dissolve function was used to combine identical values. The next
step is to apply the symbology function to each layer's properties. In this step, we can select the
appropriate colors for land types in the study area.

This step involves applying a classification algorithm to assign pixels in a satellite image to pre-
defined land-cover classes based on training data. The classifier uses spectral and index infor-
mation to assign labels to classes such as forest, urban, water, and agricultural land. In this anal-
ysis, supervised classification was used to classify the land classes.

Geometric correction is a preprocessing step in remote sensing that aligns raw image data with a
known coordinate system and corrects for sensor errors, Earth curvature, topographic relief, and
satellite motion to produce a geometrically accurate image. However, in the Sentinel-2 images,
no additional geometric correction is needed because they are already geometrically corrected
(orthorectified). In the research, 100 random samples were used for each of the years 2017 and
2022. The accuracy assessment is calculated manually. Nevertheless, the LULC images were
downloaded using the Impact Observatory deep learning land-classification model via the Living
Atlas platform.

2.5. Accuracy Assessment

For both pre- and post-classified images, accuracy assessment is crucial. A total of 100 randomly
selected points were used to validate and assess classification accuracy. To provide a numerical
description of the spectral features of each land-cover class, random points are used to identify
regions representing each desired land-cover class (Islami et al., 2022). Random points are auto-
matically generated by using the "Create Accuracy Assessment Points" tool of the ArcGIS 10.4.1
software. Based on the confusion matrices, global quality metrics such as Overall Accuracy (OA)
and Cohen suggested the Kappa coefficient (K) (Equation (1) and (2)) result be interpreted as
follows (Table 3): values < 0 as indicating no agreement and 0.01-0.20 as none to slight, 0.21—
0.40 as fair, 0.41— 0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost perfect
agreement (McHugh, 2012).

Moreover, the class-level user's accuracy (UA) and producer's accuracy (PA) were calculated
(Equations (3) and (4)) to evaluate the impact of Impact Observatory's deep-learning Al land
classification model on LULC classification (Nasiri et al., 2022). Equations 1-4 are used in this
study to compute the metrics described above. Where TS is the total sample, TS2 is the total
sample 2, TCS is the total corrected sample, UA is the user’s accuracy, and PA is the producer’s
accuracy.

Total number of correctly classified pixels(Diagonal)
*

Overall accuracy = 100 ®

Total number of reference points

(TS = TCS) — Y.(Column Total * Row Total) @)
TS? — ¥ (Column Total — Row Total)

Kappa Coef ficient =
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UA = Number of Correctly Classified Samples in each Class 3)
B Number of Samples Classified to that Class
pA - Number of Correctly Classified Samples in each Class 4)

" Number of Samples from Reference Data in each Class

Table 3. Standards for evaluating Kappa Coefficient (Islami et al., 2022).

No  Kappa statistics Strength of agreement
1 <0 Poor
2 0.001 —0.20  Slight
3 021 —0.40 Fair
4 041 —0.60 Moderate
5 0.61 —0.80  Substantial
6 0.81 — 1  Almost perfect

The flowchart presented in the diagram (Figure 3) reflects a robust, logical, and data-driven ap-
proach to land use and land cover classification using remote sensing and GIS technologies. Each
step—from pre-processing to post-classification ensures the accuracy and practical value of the
final map. With the increasing availability of satellite imagery and advancements in classification
algorithms, such workflows are becoming indispensable in modern geospatial analysis and sus-
tainable land management.

Remote sensing Data

Preprocessing

Atmospheric comrection

Image subsetting
(ROI clipping)

: Spectral indices calculation :
e

Traming data preparation
(field data/gh-resolution

reference maps)

Land vse/Land cover map

Accuracy assessment

Post classification and output

Figure 3. Flowchart of the Proposed Methodology.

3. Results and Discussion
3.1. Accuracy Assessment

To validate the precision of the aforementioned classification data, accuracy assessment is a cru-
cial step in image classification (Foody, 2020). The statistical calculations for the LULC analysis
were conducted using 100 randomly selected ground-truth data points to establish overall accu-
racy and Kappa statistics for the classified images by year, without visiting the study area.
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Random points were selected from the classified images and cross-referenced with high-resolu-
tion imagery from Google Earth Pro and with ground-truth points for verification.

Accuracy assessment was conducted using the Spatial Analyst tool in ArcGIS 10.4.1. Using the
"Create Accuracy Assessment Points" tool, the spatial analyst generated 100 random points in the
study area. The generated random points were converted to KML format using the ArcGIS 10.4.1
software Conversion tool. The converted KML file was imported into Google Earth Pro, and the
sampled random points class in both ArcGIS and Google Earth Pro were compared to identify the
interconnection between them. If the classified value matches the ground truth, the input value
will be kept; if it does not, it will be changed to the appropriate class value and after the assess-
ment, used the "Compute Confusion Matrix" tool to automatically calculate the Overall Accuracy,
Producer Accuracy, User Accuracy, and Kappa statistics in ArcGIS 10.4.1 and Excel (Skidmore,
1999).

The output of this tool will be used to calculate the Overall Accuracy and Kappa Coefficient using
the formulas for Overall Accuracy given above (Equations (1) and (2)). User's accuracy (Equation
(3) refers to the commission error, which arises when a pixel is incorrectly assigned to a specific
class. It can be computed by dividing the number of accurately classified pixels belonging to a
particular class by the total number of pixels assigned to that class. Producer's accuracy (Equation
(4), also referred to as the omission error) occurs when a pixel that should belong to a specific
class is not included in that class. It is calculated by dividing the number of accurately classified
pixels by the total number of reference pixels for that particular class (Congalton, 1991). The
accuracy outcomes for classified images from both years are presented in Table 4.

Table 4. Accuracy Assessment Result Of LULC Images.

Land use cover Sentinel-2 2017 Sentinel-2 2022
UA PA UA PA

Waterbody - - - -
Vegetation and Agricultural Lands 89.8 80.3 83.7 69.5
Built-up area 100 100 571 80
Saline land 100 50 100 50
Bare land 64.9 82.7 58.1 73.5
Overall Accuracy 81 71
Kappa Coefficient 0.74 0.66

In the water body, the land-cover class does not have overlaid random points in both years. There-
fore, Table 4 does not give data for UA and PA. The mean overall accuracy is 76%, and the mean
overall Kappa Coefficient is 0.7%. According to the Kappa Coefficient (Table 4), both 2017 and
2022 images belong to the "Substantial" category.

3.2. LULC Pattern of Shimbay in 2017 and 2022

The acquired Sentinel-2 images were classified using the Observatory's deep-learning Al land
classification model. The classified image analyses are given in Figure 4. The research period is
from 2017 to 2022. The total area of the study region was 139971.7 ha. The total area classifica-
tion value is provided in Table 5. According to the 2017 analysis, vegetation and agricultural land
were the largest land-use classes, accounting for 72,024.2 ha (51.43% of the total area), and bare
land was the second-largest, accounting for 54,032.1 ha (38.6%). The remaining land-use cover
types were built-up areas (9,136.9 ha; 6.5%), saline land (4,362.27 ha; 3.1%), and water bodies
(416.23 ha; 0.3%) of the total area of the study area. In the 2022-year analysis, vegetation and
agricultural lands covered 68,022.9 ha (48.6%), and bare land occupied 62,032.2 ha (44.3%),
ranking first and second, respectively, as in the 2017 year. According to the other land use classes,
built-up area, saline land, and water body classes occupied 9015.94 ha (6.4%), 770.21 ha (0.6%),
and 130.97 ha (0.09%), respectively.

Table 5. Results of the LULC Classification of Images Showing the Area of Each Category and Category
Percentages for the Shimbay District.

Land cover classes 2017 2022
Area, ha Area, % Area, ha Area, %

Water body 416.23 0.30 130.97 0.09
Vegetation and Agricultural 72,024.20 51.43 68,022.90 48.6
Lands

Built-up area 9,136.90 6.53 9,015.94 6.44
Saline land 4,362.27 3.12 770,21 0.55
Bare land 54,032.10 38.60 62,032.20 44.32
Total area 139,971.70 100 139,972.22 100
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Figure 4. LULC classified Maps of the Study Area from 2017 to 2022.

3.3. LULC Change Detection from 2017 to 2022

Figure 5 shows the changes in land cover classes between 2017 and 2022. The profound changes
occurred in vegetation, agricultural, and saline lands, totaling -4,001.3 ha and -3,592.06 ha, or -
5.5% and -82.3% of the area of the use category. In addition, the smallest decreases were recorded
in the water body and built-up areas, at -285.26 ha (68.5%) and -120.96 ha (1.3%) of the total
area, respectively. Just a bare land cover class occurred, increasing by 14.8% during the research
period, totaling 8000.1 ha in the use category.
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Figure S. Areal Changes in the Study Area between 2017 and 2022.
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3.3. LULC Transitions

This part examined changes in land use and land cover using LULC image analysis of 2017 and
2022 to identify class changes between the initial and final years (Figure 6). The noticeable
changes occurred between Vegetation and Agricultural lands and Bare lands: 131,83.38 ha of
Vegetation and Agricultural lands changed into Bare lands, which is 9.4% of the study area. How-
ever, the next change is the reverse of the previous change: bare land was converted to vegetation
and agricultural land, totaling 7604.95 ha, representing 5.4% of the study area. The remaining
land-cover changes differed between the same and other land-cover types, as shown in Figure 7.
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Figure 7. LULC Change Detection Between 2017 and 2022.
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3.4. Transition Matrix

The land-cover transition matrices in Table 6 provide detailed information on transformations
among land-cover classes during 2017-2022. Analyzing the land cover change between 2017 and
2022 (Table 6), it is clear that the saline lands recorded (experienced) the most significant trans-
formation, with a total of 3,629.5 ha being converted to various land cover types, including built-
up area, vegetation and agricultural lands, bare land, and water bodies. Additionally, the water
body land cover class is among the most significantly transformed, with a 79.3% change to other
land cover classes.

During the same period, the remaining land-cover classes changed by less than 20%, including
13,183.4 ha of vegetation and agricultural land, mostly converted to bare land, and 942.9 ha to
built-up areas. Moreover, the built-up and bare land transformations partially altered vegetation
and agricultural land by 1,302.5 ha and 7,605 ha, respectively.

Table 6. Transition Matrix of Land Cover Changes (ha), 2017-2022 Years.

2022
Land cover classes Saline Built-up Vegetation and Bare Water Total
land area Agricultural lands  land body
Saline land 723.07 36.89 1,008.10  2,580.74 3.74 4,352.54
Built-up area 14.37 7,582.53 1,302.53 23246 23 9,134.19
2017 Vegetation and Agricultural lands 5.75 942.88 57,895.96 13,183.38 7.28 72,035.25
Bare land 7.74 438.9 7,604.95 45,952.24 30.64  54,034.47
Waterbody 7.99 9.03 218.57 93.55 86.04 415.18
Total 758.92 9,010.23 68,030.11  62,034.65 130 139,971.63

4. Discussion

Using Al-based classification algorithms for Sentinel-2 imagery, the study provides a thorough
evaluation of land-use and land-cover (LULC) changes across the Shimbay district from 2017 to
2022. Sentinel-2 high-resolution 10x10 m (Delwart, 2015) LULC maps and quantitative sum-
maries for all major land cover types, including built-up areas not previously mapped in the liter-
ature, were produced district-wide. The overall accuracy of the Al-based classification method
exceeded 85% (Karra et al., 2021), demonstrating the efficacy of automated classification models
in generating dependable and geographically consistent LULC datasets. When applying high-res-
olution LULC products to region-specific studies, careful map selection and local validation are
crucial. Xu et al. (2024) conducted a thorough comparative validation of the 10 most recent 10 m
global land cover maps, revealing significant variability in class-wise accuracy and regional per-
formance. Li et al. (2024) demonstrated enhanced generalization and robustness across multiple
datasets by introducing a novel learning paradigm for foundation-model-based remote sensing
change detection. This highlights the growing potential of large-scale Al models to capture intri-
cate spatiotemporal land-surface dynamics relevant to this study. Also, Aziz et al. (2024) showed
that machine learning-based classification of remote sensing data can efficiently map forest cover
with high accuracy. This supports the applicability of the Al-based methods used in this study and
highlights the suitability of data-driven approaches for detailed land-cover characterization. Using
remote sensing data, Zafar ef al. (2024) assessed the effectiveness of several machine learning
algorithms for LULC mapping. They found that algorithm selection significantly affects classifi-
cation accuracy, underscoring the need for careful model selection and validation in Al-based
LULC mapping studies such as the current work. Another researcher, Peng et al. (2024), con-
ducted a comparative analysis of pre-trained CNN-based deep learning models for crop monitor-
ing using remote-sensing LULC and land-change data. Also, He ef al. (2024) demonstrated the
efficacy of a deep learning-based temporal semantic segmentation framework for time-series land
cover change detection in capturing intricate spatiotemporal dynamics. Another study, Tejasree
and Agilandeeswari (2024), highlighted the benefits of sequence-based deep learning models for
capturing intricate land-surface patterns pertinent to time-series remote sensing analyses, demon-
strating that deep LSTM networks efficiently model temporal and spectral dependencies for
LULC classification of hyperspectral imagery.

The current study offers numerous methodological improvements over the work of Bekanov et
al. (2020), who used Landsat-8 images (30x30 m) (Vaughn Thlen, 2019) and a traditional unsu-
pervised pixel-based methodology to map only agricultural areas within the Shimbay region.
First, Sentinel-2 imagery enabled more accurate land-cover classification owing to its enhanced
spectral sensitivity and finer spatial resolution. Second, the current study identified patterns of
land alteration and degradation that are not apparent in single-year evaluations, using a multi-
temporal analysis covering 2017-2022. This temporal depth provides important information on
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ongoing changes in vegetation decline, agricultural land expansion, and potential early indicators
of desertification. Third, the use of Al-based categorization eliminated the need for manual photo
downloads and GIS-based reclassification, which are typical of conventional approaches, by au-
tomating the production of training data. This invention increased accuracy and reproducibility
while reducing analytical time. However, some restrictions still exist. Seasonal land-use differ-
ences may be missed when using annual composite images. For example, croplands harvested in
early summer may show as bare soil for the rest of the year. The paucity of pre-2017 imagery in
the Sentinel-2 archive also prevented the analysis from extending back to earlier decades, limiting
the long-term historical perspective on LULC change.

The results of this study are consistent with those of Bekanov, who also demonstrated the useful-
ness of GIS and remote sensing for LULC mapping in the Shimbay district. By leveraging Al-
based time-series analysis and achieving greater geographical precision, the current study builds
on their contribution. Moreover, the integration of artificial intelligence techniques into land cover
classification reflects an emerging consensus in recent research. According to studies like those
by Maxwell et al. (2018) and Pelletier ef al. (2019)Machine learning and deep learning algorithms
improve classification accuracy, automate analysis, and reduce reliance on manually collected
field data. In dry and semi-arid regions such as the Aral Sea region, where regular monitoring is
essential for understanding environmental degradation and informing policy responses, these
methods are particularly useful.

The results highlight the potential of Al-enhanced Sentinel-2 time-series analysis for accurate
detection of land-cover changes, despite certain data constraints. Regional planning and sustain-
able land management can be substantially aided by the Impact Observatory Global LULC dataset
when combined with high-resolution imagery. These findings highlight the need for governments
to focus on protecting agricultural land and mitigating degradation. Seasonal composites and
predictive models should be used in future studies to estimate potential LULC changes in the
larger Aral Sea basin.

5. Conclusion

The research was conducted in the western part of Uzbekistan, in the Republic of Karakalpakstan,
which is surrounded by the Kyzylkum Desert and the Ustyurt Plateau. This research used the
Impact Observatory's deep-learning Al-based classification model on Sentinel-2 data. During the
research, some positive and negative outcomes of the Impact Observatory's deep-learning Al land
classification model were identified. The advantage of this model is that it helps clarify land types
in the research area that were previously unfamiliar and facilitates analysis of the dynamics of
land-type change over the years. Additionally, it requires less time for analysis and mapping than
other types of the LULC classification process. Because Sentinel-2 10m Land Use and Land
Cover Time Series data is included ready classified land classes data on images. On the
ArcGIS.com website, information on the LULC classification model accuracy is 85%. In our re-
search work, the average overall accuracy was 76% in two 2017-2022 years. The Kappa statistics
results of the classified images belonged to the "Substantial" class. Moreover, user accuracy and
producer accuracy also help to improve the precision of the classified LULC images of the Impact
Observatory's deep-learning Al model.

These findings are vital for policymakers and environmental managers, providing a basis for cre-
ating informed conservation strategies. The study highlights the importance of sustainable devel-
opment practices to reduce negative effects on these important natural resources. The Al models
utilized in this research can act as a blueprint for similar studies in other areas, improving our
ability to manage and safeguard natural landscapes in the face of increasing environmental chal-
lenges. In conclusion, the result showed that the Sentinel-2 Land Use and Land Cover Time Series
data can be usable for mapping and analyzing LULC changes. In addition, the Overall Accuracy
and Kappa Coefficients results also showed the acceptability of the classified images. We suggest
that in the case of the Republic of Uzbekistan and Karakalpakstan, need to improve the quantity
and quality of the LULC classification research works to understand the change of the land cover
by the impact of global climate change and the impact of the Aral Sea dust storms.
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