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Abstract 

Land use and land cover (LULC) change is a vital indicator of environmental transformation and sustainable 

land management, particularly in arid and semi-arid regions such as Karakalpakstan. Although several stud-

ies have explored LULC dynamics across Central Asia, most have focused on large-scale or regional assess-

ments, leaving a gap in district-level analyses that capture localized land transformation processes. This 
study addresses this gap by examining the temporal dynamics of LULC in the Shimbay district, one of the 

most populous districts in the northern part of the Republic of Karakalpakstan, Uzbekistan. The research 

aims to identify changes in LULC using Sentinel-2 satellite imagery over 6 years, from 2017 to 2022. The 

study area was selected based on 10 years of government “Land Fund” data, indicating significant changes 
in bare land. The satellite images and field measurements were analyzed using ArcGIS 10.4.1. LULC was 

categorized into five classes: water bodies; vegetation and agricultural land (including flooded mangroves, 

emergent vegetation, paddy fields, irrigated agricultural lands, cereals, grasses, and non-tree crops); built-up 

areas; saline land; and bare land. Following classification, 100 random sample points were generated in 
ArcGIS and verified using Google Earth Pro to ensure classification accuracy. The results showed that the 

overall accuracy of the LULC classification was 81% (Kappa coefficient = 0.74) in 2017 and 71% (Kappa 

coefficient = 0.66) in 2022, both within the “substantial” agreement range. The most significant change 

occurred in vegetation and agricultural lands, with 13,183.38 ha (9.4% of the study area) converted into bare 
land. These findings provide a detailed understanding of landscape transformation in the Shimbay district 

and offer policymakers and planners valuable insights to enhance sustainable land management and prevent 

further land degradation. 
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1. Introduction 

The implementation of global initiatives to mitigate climate change, promote sustainable devel-

opment, and safeguard ecosystems and biodiversity is closely linked to United Nations Sustaina-

ble Development Goal 13 (Climate action). The term "land cover classification," as defined by 

the United Nations System of Environmental-Economic Accounting (UN-SEEA), refers to the 

"physical and biological characteristics of the Earth's surface, encompassing natural vegetation 

and non-living surfaces (UN, 2019). This is particularly evident in the creation of maps showing 

changes in land use and cover (LULC) at the global, national, and regional levels (Acar & Zengi̇n, 

2023). Land use is the planned application of land management strategies by human agents to 

utilize land cover. It represents human activities such as industrial zones, residential zones, agri-

cultural fields, grazing, logging, and mining, among others (Teshager & Abeje, 2021; Fatima N 

and Javed A et al., 2021). In contrast, land cover refers to the characteristics of the earth's surface 

that are represented in the distribution of vegetation, water, ice, desert, and topography, as well as 

the immediate subsurface, which includes biota, soil, topography, surface, and groundwater (Nedd 

et al., 2021).  

Furthermore, baseline data on planning, management, and sustainable resource use are derived 

from our understanding of temporal variations in LULC (Gebeyehu et al., 2019; Paudel et al., 

2016; Wulansari, 2017). As a result, to analyze environmental processes and issues and to main-

tain or improve living standards, land-use data is required. It is particularly crucial to monitor 

LULC changes frequently in rapidly expanding regions, as unplanned, irregular urban population 

growth can alter urban climates (Dhakal et al., 2022). Thus, it is critical to understand the patterns 

and trends in LULC change at the regional, local, and global scales. Preserving the environment 

while boosting economic and social advantages is the greatest challenge (Islami et al., 2022). 
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Land classification research is necessary to manage natural resources and environmental issues 

and to assess the current state (Aslanov et al., 2023). The natural science community has exten-

sively used satellite images to assess changes in land cover and terrestrial land use at both quali-

tative and quantitative levels (Salman et al., 2020). Novel insights into the field of large-scale 

LULC mapping have been made possible by the worldwide consolidation and development of 

cloud computing platforms, artificial intelligence, machine learning, deep learning, and deep 

transfer learning; moreover, time series-based techniques and remotely sensed data (Kwan et al., 

2020; Sefrin et al., 2020). Seasonal and phenological properties of different LULC classes can be 

captured by integrating a range of features and spectral-temporal metrics derived from satellite 

image time series analysis (Htitiou et al., 2021). Classification accuracy will increase when LULC 

classes are mapped using these characteristics and metrics (Luo et al., 2022). 

Geographic information system (GIS) and Remote sensing (RS) communities have long been in-

terested in accurate and current LULC mapping, primarily because it provides important infor-

mation for understanding human-environment interactions (Nasiri et al., 2022). Compared with 

traditional surveys, using RS to monitor LULC offers several benefits, including the ability to 

quickly and accurately create an inventory of broad regions (Deb & Nathr, 2012; Juliev et al., 

2019). On a global scale, researchers used GIS and RS to analyze, classify, and assess LULC 

change dynamics in Sentinel-2 imagery. For example, Islami et al. (2022) assessed the accuracy 

of LULC change analysis using Google Earth in the Sadar Watershed in Indonesia. Zaabar et al. 

(2023) compared Sentinel-2 and Landsat images for LULC classification in an object-based image 

analysis (OBIA) framework using the Random Forest (RF) and Support Vector Machine (SVM) 

methods in the Allala watershed of Algeria. The results showed that Sentinel-2 images processed 

with the RF method achieved higher accuracy than Landsat satellite images. Makar et al. (2022) 

studied the E-Beheira governorate in Egypt using principal component analysis and supervised 

classification of Sentinel-2 images to enhance LULC classification accuracy. Teshager and Abeje 

(2021) conducted a LULC change-detection analysis of the Kility Watershed in Ethiopia using 

Landsat and Sentinel-2 images from 1986 to 2019, employing the maximum likelihood algorithm 

for supervised classification. Additionally, the accuracy assessment and confusion matrix analysis 

were conducted to assess the reliability of the LULC analysis. Aimed to evaluate the potential of 

Sentinel-2 and Landsat-8 images' spectral-temporal metrics by using the Google Earth Engine 

(GEE) cloud computing to improve the accuracy of the LULC maps, Pande (2022 created a new 

machine learning algorithm in JavaScript for GEE to classify the LULC map and change detection 

using Sentinel-2 and Landsat-5 images with a 5-year time difference. The researchers noted that 

the GEE's ability to perform other analyses on the GEE cloud computing platform is very high. 

Remarkable strides have been made in RS technology in recent years to adapt to surface changes 

on Earth. Sentinel-2 multispectral products from the European Space Agency (ESA) and the Eu-

ropean Union (EU) are a major contribution to the Copernicus Program advances, which are used 

to monitor changes in the Earth's surface (Kumari & Karthikeyan, 2023). Sentinel-2 products are 

suitable sources for time-series feature extraction because they offer high temporal resolution, 

short revisit times, and a rich spectral configuration among medium-resolution satellite imagery 

(Liu et al., 2020). Two Sentinel-2 images (10 m spatial resolution) from 2017 and 2022 were used 

for LULC mapping and to analyze and detect degraded areas. The region of change between two 

images of the same scene taken at different times can be detected using change detection. LULC 

change detection is essential for assessing transitions between land classes. Due to its free and 

open-access approach, Sentinel-2 data have drawn significant interest from low-income countries, 

where funding for remotely sensed data acquisition is limited. 

Based on the review of existing studies (Gebeyehu et al., 2019; Juliev et al., 2019; Pande et al., 

2021; Islami et al., 2022), most LULC analyses have relied on conventional supervised classifi-

cation approaches, particularly maximum likelihood and object-based methods, applied to rela-

tively small study areas with limited training samples. While these methods are widely used, their 

reliance on sparse, locally constrained samples often limits classification robustness and general-

izability, especially in heterogeneous and degraded landscapes. Limited sample sizes tend to un-

derrepresent spectral variability, leading to uncertainty in accurately delineating complex classes 

such as degraded bare land. In contrast, recent advances in AI-based classification suggest that 

large-scale, sample-rich models can substantially improve LULC mapping accuracy by better 

capturing spatiotemporal dynamics. However, such approaches remain underexplored in arid and 

semi-arid regions using dense Sentinel-2 time-series data, highlighting a critical methodological 

gap that this study aims to address. 

Therefore, this study focused on a large-scale, sample-based AI land classification model to map 

the spatial distribution of degraded bare lands using Sentinel-2 imagery. Additionally, the current 

studies will help monitor changes in land classification over relevant periods. The specific 
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objectives of this study are i) to map the LULC changes from 2017 to 2022, using Sentinel-2 

LULC time series (Living Atlas) data, and ii) to use the statistical analysis to determine the accu-

racy of the research. 

2. Research Methods  

2.1. Study Area 

Based on the "Land Fund" data of the State Cadastral Chamber of the Cadastral Agency under the 

State Tax Committee of the Republic of Uzbekistan, used to identify districts (study area) that 

occupied more bare lands in the agricultural sectors of the Republic of Karakalpakstan (Figure 1). 

According to the "Land Fund" data, the area of bare land is shown by district in the Republic of 

Karakalpakstan. So far, the Shimbay district has been a study area with a high tendency toward 

agricultural graylands. 

 

Figure 1. The dynamics of the gray land area in the districts of the Republic of Karakalpakstan. (Source: 
State Cadastre Chamber of the Cadastral Agency under the State Tax Committee of the Republic of Uzbek-

istan "Land Fund"). 

The research selected the Shimbay district of the Republic of Karakalpakstan (Figure 2). The 

Shimbay district was established in 1927 and borders Bozatau (established in 2019) to the west, 

Kegeyli to the south, Muynak to the northwest, and the Karauyzak district to the east. Shimbay 

district is located on the lower right bank of the Lower Amu Darya River (Bekanov et al., 2020). 

The study area is located between 43°20'20.338"N and 59°58'16.041"E. The district's total area is 

1,407 km2, and the population was 115,061 in 2023 (https://www.citypopulation.de/en/uzbeki-

stan/admin/). The climate is drastically continental. Therefore, summer is hot, winter is cold, and 

there is slight snow. The annual mean record high temperature is 46.5 °C, and the annual record 

low temperature is -33.7 °C in winter. Also, the average summer temperature is 26.9 °C, and the 

average winter temperature is -6.7 °C. The annual mean precipitation is 133 mm, and the annual 

average number of rainy days is 32 days (www.pogodaiklimat.ru). Vegetation period is 188 days. 

The Amu Darya River is the only river that runs through the region. Water is used to irrigate crops 

through large canals in the study area (Rakhmonov et al., 2021). The northern part of the study 

area is largely bare land, whereas the remainder of the district is used for agriculture, settlement, 

canals, lakes, and ponds. 

file:///C:/Users/ilyas/OneDrive/Рабочий%20стол/Forum%20Geografi%20Journal/2nd%20review/www.pogodaiklimat.ru
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Figure 2. Location of the study area: a) the Republic of Karakalpakstan; b) the satellite image of the Shimbay 

District. 

2.2. Data Collection 

Sentinel-2 was developed by the European Space Agency (ESA) and provides high-resolution 

images of the planet with spectral and temporal resolutions. Thirteen spectral bands are available 

from the satellite images, with four at 10 meters, six at 20 meters, and three at 60 meters, as shown 

in Table 1. ESA Sentinel-2 data were used in this study, and two images from 2017 and 2022 

were downloaded. Sentinel-2 data were available free of charge at 

https://www.arcgis.com/home/item.html?id=cfcb 7609de5f478eb7666240902d4d3d. They were 

available in Tagged Image File Format (TIFF) and projected to the World Geodetic System 1984 

(WGS-84) with datum zone 40N. 

Table 1. Details Of Satellite Data Acquisition. 

Satellite Sensor 
Row/ 

Path 

Date 

Acquisition 
Spectral Bands (nm) (Using bands for layer stack) Resolution (m) Data Source 

Sentinel-2 Thematic 42/58 01.01.2017 
01.01.2022 

Band 1 (Coastal): 433-453 
Band 2 (Blue): 458-523 

Band 3 (Green peak): 543-578 

Band 4 (Red): 650-680 

Band 5 (Red edge): 698-713 
Band 6 (Red edge): 733-748 

Band 7 (Red edge): 773-793 

Band 8 (NIR): 785-899 

Band 8A (NIR narrow): 855-875 
Band 9 (Water vapor): 930-950 

Band 10 (SWIR Circus): 1365 

Band 11 (SWIR): 1565-1655 

Band 12 (SWIR): 2100-2280 

60 
10 

10 

10 

20 
20 

20 

10 

20 
60 

60 

20 

20 

https://www.
arcgis.com/a

pps/mapvie

wer/in-

dex.html?lay
ers=cfcb760

9de5f478eb7

666240902d

4d3d  

2.3. Land Cover Classes 

Table 2 describes the five land classes that follow: water bodies, Vegetation and Agricultural 

lands, built-up areas, saline lands, and bare lands, along with the characteristics used in the clas-

sification process. In the classification process, we merged vegetation and agricultural land, as 

shown in the table below. 

https://www.arcgis.com/home/item.html?id=cfcb%207609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
https://www.arcgis.com/apps/mapviewer/index.html?layers=cfcb7609de5f478eb7666240902d4d3d
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Table 2. Characteristics Of Each LULC Classification Pattern. 

Land use and Land cover types Descriptions 

Waterbody Rivers, ponds, lakes, and flooded salt plains. 

Vegetation and Agricultural Lands Flooded mangroves, emergent vegetation, rice paddies, and other 
heavily irrigated and inundated agriculture. / Cereals, grasses, 

and crops not at tree height; examples: corn, wheat, soy, fallow 

plots of structured land. 

Built-up area Houses, dense villages/towns/cities, paved roads, and asphalt. 
Saline land The soil contains high concentrations of soluble salts, which of-

ten create adverse conditions for plant growth. White or grayish 

surface crusts, often bright in satellite imagery, are common in 

these areas due to salt accumulation. 
Bare land Natural meadows and fields with sparse to no tree cover, pas-

tures, and moderate to sparse cover of bushes, shrubs, and tufts 

of grass. 

2.4. Pre-Processing and Image Classification 

Sentinel-2's annual images are generated from Impact Observatory's deep-learning AI land clas-

sification model using a massive training dataset of billions of human-labeled image pixels. After 

downloading the Sentinel-2 images to the computer, the data were imported into ArcGIS 10.4.1 

to derive the study area data from the Sentinel-2 image tiles. The study area was clipped using the 

Geoprocessing clip function in the menu bar. Then, the raster-to-polygon tool was used to create 

an attribute table containing the values from the image grids. Additionally, after creating the at-

tribute tables for the images, the dissolve function was used to combine identical values. The next 

step is to apply the symbology function to each layer's properties. In this step, we can select the 

appropriate colors for land types in the study area. 

This step involves applying a classification algorithm to assign pixels in a satellite image to pre-

defined land-cover classes based on training data. The classifier uses spectral and index infor-

mation to assign labels to classes such as forest, urban, water, and agricultural land. In this anal-

ysis, supervised classification was used to classify the land classes. 

Geometric correction is a preprocessing step in remote sensing that aligns raw image data with a 

known coordinate system and corrects for sensor errors, Earth curvature, topographic relief, and 

satellite motion to produce a geometrically accurate image. However, in the Sentinel-2 images, 

no additional geometric correction is needed because they are already geometrically corrected 

(orthorectified). In the research, 100 random samples were used for each of the years 2017 and 

2022. The accuracy assessment is calculated manually. Nevertheless, the LULC images were 

downloaded using the Impact Observatory deep learning land-classification model via the Living 

Atlas platform. 

2.5. Accuracy Assessment 

For both pre- and post-classified images, accuracy assessment is crucial. A total of 100 randomly 

selected points were used to validate and assess classification accuracy. To provide a numerical 

description of the spectral features of each land-cover class, random points are used to identify 

regions representing each desired land-cover class (Islami et al., 2022). Random points are auto-

matically generated by using the "Create Accuracy Assessment Points" tool of the ArcGIS 10.4.1 

software. Based on the confusion matrices, global quality metrics such as Overall Accuracy (OA) 

and Cohen suggested the Kappa coefficient (K) (Equation (1) and (2)) result be interpreted as 

follows (Table 3): values ≤ 0 as indicating no agreement and 0.01–0.20 as none to slight, 0.21–

0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect 

agreement (McHugh, 2012).  

Moreover, the class-level user's accuracy (UA) and producer's accuracy (PA) were calculated 

(Equations (3) and (4)) to evaluate the impact of Impact Observatory's deep-learning AI land 

classification model on LULC classification (Nasiri et al., 2022). Equations 1-4 are used in this 

study to compute the metrics described above. Where TS is the total sample, TS2 is the total 

sample 2, TCS is the total corrected sample, UA is the user’s accuracy, and PA is the producer’s 

accuracy. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠(𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
∗ 100 

(1) 

𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
(𝑇𝑆 ∗ 𝑇𝐶𝑆) − ∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)

𝑇𝑆2 − ∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙 − 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)
 

(2) 
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𝑈𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝐶𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑎𝑡 𝐶𝑙𝑎𝑠𝑠
 

(3) 

𝑃𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝐶𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑎𝑡𝑎 𝑖𝑛 𝑒𝑎𝑐ℎ 𝐶𝑙𝑎𝑠𝑠
 

(4) 

Table 3. Standards for evaluating Kappa Coefficient (Islami et al., 2022). 

No Kappa statistics Strength of agreement 

1 <0 Poor 

2 0.001 — 0.20 Slight 

3 0.21 — 0.40 Fair 
4 0.41 — 0.60 Moderate 

5 0.61 — 0.80 Substantial 

6 0.81 — 1 Almost perfect 

The flowchart presented in the diagram (Figure 3) reflects a robust, logical, and data-driven ap-

proach to land use and land cover classification using remote sensing and GIS technologies. Each 

step—from pre-processing to post-classification ensures the accuracy and practical value of the 

final map. With the increasing availability of satellite imagery and advancements in classification 

algorithms, such workflows are becoming indispensable in modern geospatial analysis and sus-

tainable land management. 

 

Figure 3. Flowchart of the Proposed Methodology. 

3. Results and Discussion 

3.1. Accuracy Assessment 

To validate the precision of the aforementioned classification data, accuracy assessment is a cru-

cial step in image classification (Foody, 2020). The statistical calculations for the LULC analysis 

were conducted using 100 randomly selected ground-truth data points to establish overall accu-

racy and Kappa statistics for the classified images by year, without visiting the study area. 
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Random points were selected from the classified images and cross-referenced with high-resolu-

tion imagery from Google Earth Pro and with ground-truth points for verification. 

Accuracy assessment was conducted using the Spatial Analyst tool in ArcGIS 10.4.1. Using the 

"Create Accuracy Assessment Points" tool, the spatial analyst generated 100 random points in the 

study area. The generated random points were converted to KML format using the ArcGIS 10.4.1 

software Conversion tool. The converted KML file was imported into Google Earth Pro, and the 

sampled random points class in both ArcGIS and Google Earth Pro were compared to identify the 

interconnection between them. If the classified value matches the ground truth, the input value 

will be kept; if it does not, it will be changed to the appropriate class value and after the assess-

ment, used the "Compute Confusion Matrix" tool to automatically calculate the Overall Accuracy, 

Producer Accuracy, User Accuracy, and Kappa statistics in ArcGIS 10.4.1 and Excel (Skidmore, 

1999).  

The output of this tool will be used to calculate the Overall Accuracy and Kappa Coefficient using 

the formulas for Overall Accuracy given above (Equations (1) and (2)). User's accuracy (Equation 

(3) refers to the commission error, which arises when a pixel is incorrectly assigned to a specific 

class. It can be computed by dividing the number of accurately classified pixels belonging to a 

particular class by the total number of pixels assigned to that class. Producer's accuracy (Equation 

(4), also referred to as the omission error) occurs when a pixel that should belong to a specific 

class is not included in that class. It is calculated by dividing the number of accurately classified 

pixels by the total number of reference pixels for that particular class (Congalton, 1991). The 

accuracy outcomes for classified images from both years are presented in Table 4. 

Table 4. Accuracy Assessment Result Of LULC Images. 

Land use cover 
Sentinel-2 2017 Sentinel-2 2022 

UA PA UA PA 

Waterbody - - - - 
Vegetation and Agricultural Lands 89.8 80.3 83.7 69.5 

Built-up area 100 100 57.1 80 

Saline land 100 50 100 50 

Bare land 64.9 82.7 58.1 73.5 
Overall Accuracy 81 71 

Kappa Coefficient 0.74 0.66 

In the water body, the land-cover class does not have overlaid random points in both years. There-

fore, Table 4 does not give data for UA and PA. The mean overall accuracy is 76%, and the mean 

overall Kappa Coefficient is 0.7%. According to the Kappa Coefficient (Table 4), both 2017 and 

2022 images belong to the "Substantial" category. 

3.2. LULC Pattern of Shimbay in 2017 and 2022 

The acquired Sentinel-2 images were classified using the Observatory's deep-learning AI land 

classification model. The classified image analyses are given in Figure 4. The research period is 

from 2017 to 2022. The total area of the study region was 139971.7 ha. The total area classifica-

tion value is provided in Table 5. According to the 2017 analysis, vegetation and agricultural land 

were the largest land-use classes, accounting for 72,024.2 ha (51.43% of the total area), and bare 

land was the second-largest, accounting for 54,032.1 ha (38.6%). The remaining land-use cover 

types were built-up areas (9,136.9 ha; 6.5%), saline land (4,362.27 ha; 3.1%), and water bodies 

(416.23 ha; 0.3%) of the total area of the study area. In the 2022-year analysis, vegetation and 

agricultural lands covered 68,022.9 ha (48.6%), and bare land occupied 62,032.2 ha (44.3%), 

ranking first and second, respectively, as in the 2017 year. According to the other land use classes, 

built-up area, saline land, and water body classes occupied 9015.94 ha (6.4%), 770.21 ha (0.6%), 

and 130.97 ha (0.09%), respectively. 

Table 5. Results of the LULC Classification of Images Showing the Area of Each Category and Category 

Percentages for the Shimbay District. 

Land cover classes 
2017 2022 

Area, ha Area, % Area, ha Area, % 

Water body 416.23 0.30 130.97 0.09 

Vegetation and Agricultural 

Lands 

72,024.20 51.43 68,022.90 48.6 

Built-up area 9,136.90 6.53 9,015.94 6.44 
Saline land 4,362.27 3.12 770,21 0.55 

Bare land 54,032.10 38.60 62,032.20 44.32 

Total area 139,971.70 100 139,972.22 100 



Forum Geografi, 40(1), 2026; DOI: 10.23917/forgeo.8724 

Author et al.  Page 51   

 

Figure 4. LULC classified Maps of the Study Area from 2017 to 2022. 

3.3. LULC Change Detection from 2017 to 2022 

Figure 5 shows the changes in land cover classes between 2017 and 2022. The profound changes 

occurred in vegetation, agricultural, and saline lands, totaling -4,001.3 ha and -3,592.06 ha, or -

5.5% and -82.3% of the area of the use category. In addition, the smallest decreases were recorded 

in the water body and built-up areas, at -285.26 ha (68.5%) and -120.96 ha (1.3%) of the total 

area, respectively. Just a bare land cover class occurred, increasing by 14.8% during the research 

period, totaling 8000.1 ha in the use category. 

 

Figure 5. Areal Changes in the Study Area between 2017 and 2022. 
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3.3. LULC Transitions 

This part examined changes in land use and land cover using LULC image analysis of 2017 and 

2022 to identify class changes between the initial and final years (Figure 6).  The noticeable 

changes occurred between Vegetation and Agricultural lands and Bare lands: 131,83.38 ha of 

Vegetation and Agricultural lands changed into Bare lands, which is 9.4% of the study area. How-

ever, the next change is the reverse of the previous change: bare land was converted to vegetation 

and agricultural land, totaling 7604.95 ha, representing 5.4% of the study area. The remaining 

land-cover changes differed between the same and other land-cover types, as shown in Figure 7. 

 

Figure 6. LULC Change Detection Map for 2017-2022. 

 

Figure 7. LULC Change Detection Between 2017 and 2022. 
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3.4. Transition Matrix 

The land-cover transition matrices in Table 6 provide detailed information on transformations 

among land-cover classes during 2017-2022. Analyzing the land cover change between 2017 and 

2022 (Table 6), it is clear that the saline lands recorded (experienced) the most significant trans-

formation, with a total of 3,629.5 ha being converted to various land cover types, including built-

up area, vegetation and agricultural lands, bare land, and water bodies. Additionally, the water 

body land cover class is among the most significantly transformed, with a 79.3% change to other 

land cover classes. 

During the same period, the remaining land-cover classes changed by less than 20%, including 

13,183.4 ha of vegetation and agricultural land, mostly converted to bare land, and 942.9 ha to 

built-up areas. Moreover, the built-up and bare land transformations partially altered vegetation 

and agricultural land by 1,302.5 ha and 7,605 ha, respectively. 

Table 6. Transition Matrix of Land Cover Changes (ha), 2017-2022 Years. 

Land cover classes 

2022 

Saline 

land 

Built-up 

area 

Vegetation and 

Agricultural lands 

Bare 

land 

Water 

body 
Total 

2017 

Saline land 723.07 36.89 1,008.10 2,580.74 3.74 4,352.54 

Built-up area 14.37 7,582.53 1,302.53 232.46 2.3 9,134.19 

Vegetation and Agricultural lands 5.75 942.88 57,895.96 13,183.38 7.28 72,035.25 

Bare land 7.74 438.9 7,604.95 45,952.24 30.64 54,034.47 
Waterbody 7.99 9.03 218.57 93.55 86.04 415.18 

Total 758.92 9,010.23 68,030.11 62,034.65 130 139,971.63 

4. Discussion 

Using AI-based classification algorithms for Sentinel-2 imagery, the study provides a thorough 

evaluation of land-use and land-cover (LULC) changes across the Shimbay district from 2017 to 

2022.  Sentinel-2 high-resolution 10x10 m (Delwart, 2015) LULC maps and quantitative sum-

maries for all major land cover types, including built-up areas not previously mapped in the liter-

ature, were produced district-wide. The overall accuracy of the AI-based classification method 

exceeded 85% (Karra et al., 2021), demonstrating the efficacy of automated classification models 

in generating dependable and geographically consistent LULC datasets. When applying high-res-

olution LULC products to region-specific studies, careful map selection and local validation are 

crucial. Xu et al. (2024) conducted a thorough comparative validation of the 10 most recent 10 m 

global land cover maps, revealing significant variability in class-wise accuracy and regional per-

formance. Li et al. (2024) demonstrated enhanced generalization and robustness across multiple 

datasets by introducing a novel learning paradigm for foundation-model-based remote sensing 

change detection. This highlights the growing potential of large-scale AI models to capture intri-

cate spatiotemporal land-surface dynamics relevant to this study. Also, Aziz et al. (2024) showed 

that machine learning-based classification of remote sensing data can efficiently map forest cover 

with high accuracy. This supports the applicability of the AI-based methods used in this study and 

highlights the suitability of data-driven approaches for detailed land-cover characterization. Using 

remote sensing data, Zafar et al. (2024) assessed the effectiveness of several machine learning 

algorithms for LULC mapping. They found that algorithm selection significantly affects classifi-

cation accuracy, underscoring the need for careful model selection and validation in AI-based 

LULC mapping studies such as the current work. Another researcher, Peng et al. (2024), con-

ducted a comparative analysis of pre-trained CNN-based deep learning models for crop monitor-

ing using remote-sensing LULC and land-change data. Also, He et al. (2024) demonstrated the 

efficacy of a deep learning-based temporal semantic segmentation framework for time-series land 

cover change detection in capturing intricate spatiotemporal dynamics. Another study, Tejasree 

and Agilandeeswari (2024), highlighted the benefits of sequence-based deep learning models for 

capturing intricate land-surface patterns pertinent to time-series remote sensing analyses, demon-

strating that deep LSTM networks efficiently model temporal and spectral dependencies for 

LULC classification of hyperspectral imagery.  

The current study offers numerous methodological improvements over the work of Bekanov et 

al. (2020), who used Landsat-8 images (30×30 m) (Vaughn Ihlen, 2019) and a traditional unsu-

pervised pixel-based methodology to map only agricultural areas within the Shimbay region.  

First, Sentinel-2 imagery enabled more accurate land-cover classification owing to its enhanced 

spectral sensitivity and finer spatial resolution.  Second, the current study identified patterns of 

land alteration and degradation that are not apparent in single-year evaluations, using a multi-

temporal analysis covering 2017–2022. This temporal depth provides important information on 
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ongoing changes in vegetation decline, agricultural land expansion, and potential early indicators 

of desertification. Third, the use of AI-based categorization eliminated the need for manual photo 

downloads and GIS-based reclassification, which are typical of conventional approaches, by au-

tomating the production of training data.  This invention increased accuracy and reproducibility 

while reducing analytical time.  However, some restrictions still exist.  Seasonal land-use differ-

ences may be missed when using annual composite images. For example, croplands harvested in 

early summer may show as bare soil for the rest of the year.  The paucity of pre-2017 imagery in 

the Sentinel-2 archive also prevented the analysis from extending back to earlier decades, limiting 

the long-term historical perspective on LULC change. 

The results of this study are consistent with those of Bekanov, who also demonstrated the useful-

ness of GIS and remote sensing for LULC mapping in the Shimbay district.  By leveraging AI-

based time-series analysis and achieving greater geographical precision, the current study builds 

on their contribution. Moreover, the integration of artificial intelligence techniques into land cover 

classification reflects an emerging consensus in recent research. According to studies like those 

by Maxwell et al. (2018) and Pelletier et al. (2019)Machine learning and deep learning algorithms 

improve classification accuracy, automate analysis, and reduce reliance on manually collected 

field data. In dry and semi-arid regions such as the Aral Sea region, where regular monitoring is 

essential for understanding environmental degradation and informing policy responses, these 

methods are particularly useful. 

The results highlight the potential of AI-enhanced Sentinel-2 time-series analysis for accurate 

detection of land-cover changes, despite certain data constraints.  Regional planning and sustain-

able land management can be substantially aided by the Impact Observatory Global LULC dataset 

when combined with high-resolution imagery.  These findings highlight the need for governments 

to focus on protecting agricultural land and mitigating degradation.  Seasonal composites and 

predictive models should be used in future studies to estimate potential LULC changes in the 

larger Aral Sea basin. 

5. Conclusion 

The research was conducted in the western part of Uzbekistan, in the Republic of Karakalpakstan, 

which is surrounded by the Kyzylkum Desert and the Ustyurt Plateau. This research used the 

Impact Observatory's deep-learning AI-based classification model on Sentinel-2 data. During the 

research, some positive and negative outcomes of the Impact Observatory's deep-learning AI land 

classification model were identified. The advantage of this model is that it helps clarify land types 

in the research area that were previously unfamiliar and facilitates analysis of the dynamics of 

land-type change over the years. Additionally, it requires less time for analysis and mapping than 

other types of the LULC classification process. Because Sentinel-2 10m Land Use and Land 

Cover Time Series data is included ready classified land classes data on images. On the 

ArcGIS.com website, information on the LULC classification model accuracy is 85%. In our re-

search work, the average overall accuracy was 76% in two 2017-2022 years. The Kappa statistics 

results of the classified images belonged to the "Substantial" class. Moreover, user accuracy and 

producer accuracy also help to improve the precision of the classified LULC images of the Impact 

Observatory's deep-learning AI model. 

These findings are vital for policymakers and environmental managers, providing a basis for cre-

ating informed conservation strategies. The study highlights the importance of sustainable devel-

opment practices to reduce negative effects on these important natural resources. The AI models 

utilized in this research can act as a blueprint for similar studies in other areas, improving our 

ability to manage and safeguard natural landscapes in the face of increasing environmental chal-

lenges. In conclusion, the result showed that the Sentinel-2 Land Use and Land Cover Time Series 

data can be usable for mapping and analyzing LULC changes. In addition, the Overall Accuracy 

and Kappa Coefficients results also showed the acceptability of the classified images. We suggest 

that in the case of the Republic of Uzbekistan and Karakalpakstan, need to improve the quantity 

and quality of the LULC classification research works to understand the change of the land cover 

by the impact of global climate change and the impact of the Aral Sea dust storms. 

References 

Acar, R.U., Zengi̇N, E. (2023). Performance assessment of Landsat 8 and Sentinel-2 satellite images for the production of 

time series land use/land cover (LULC) maps. J. Sci. Rep.-Rep. -A, 1–15. doi: 10.59313/jsr-a.1213548  

Aslanov, I., Jumaniyazov, I., Embergenov, N., Allanazarov, K., Khodjaeva, G., Joldasov, A., Alimova, S. (2023). Remote 

Sensing for Land Use Monitoring in the Suburban Areas of Tashkent, Uzbekistan, XV International Scientific 

Conference “INTERAGROMASH 2022, Lecture Notes in Networks and Systems. Springer International Pub-

lishing, Cham, 1899–1907. doi: 10.1007/978-3-031-21219-2_211  

Acknowledgements 

This research was conducted at the 

“Joint Research Center for Geoin-

formatics” at the National Research 

University “Tashkent Institute of 

Irrigation and Agricultural Mecha-

nization Engineers.” Also, thanks 

to the ArcGIS company developers 

for providing us with ready satellite 

image data to conduct research on 

Land Use and Land Cover Classifi-

cation. 

 

Author Contributions 

Conceptualization: Jumaniyazov, I.; 

methodology: Jumaniyazov, I.; inves-

tigation: Jumaniyazov, I., Juliev, 

M., Reimov, M., Oymatov, R.,; 

writing—original draft preparation:  

Jumaniyazov, I.,; writing—review 

and editing: Jumaniyazov, I.,; visual-

ization: Jumaniyazov, I.,. All au-

thors have read and agreed to the 

published version of the manu-

script. 

 

Conflict of interest 

The author declares that he has no 

known competing financial inter-

ests or personal relationships that 

could have appeared to influence 

the work reported in this paper. 

 

Data availability 

Data is available upon Request. 

 

Funding 

This research received no external 

funding. 



Forum Geografi, 40(1), 2026; DOI: 10.23917/forgeo.8724 

Author et al.  Page 55   

Aziz, G., Minallah, N., Saeed, A., Frnda, J., Khan, W., (2024). Remote sensing basedsensing-based forest cover classifi-

cation using machine learning. Sci. Rep. 14, 69. doi: 10.1038/s41598-023-50863-1 

Bekanov, K., Safarov, E., Prenov, S., Uvraimov, S., & Yusupov, B. (2020). Creating land use/land cover map using 

methods gis and remote sensing (on the example the chimbay district of the karakalpakstan republic). International 

Journal of Pharmaceutical Research, 12(3), 1704-1708. doi: 10.31838/ijpr/2020.12.03.231 

Bekanov, K., Safarov, E., Prenov, Sh., Uvraimov, S., Yusupov, B. (2020). Creating land use / land cover map using 

methods gis and remote sensing (on the example the chimbay district of the karakalpakstan republic). Int. J. 

Pharm. Res. 9(3), 12. doi: 10.31838/ijpr/2020.12.03.231  

Blanka, V., Par Johan, A., (2015). New sensors benchmark report on Sentinel-2A. Commission of the European Union. 

Joint Research Centre. Institute for the Protection and the Security of the Citizen..Citizen. Publications Office, 

LU. 

City Population. (2025). Uzbekistan: Administrative Division. Retrieved from https://www.citypopulation.de/en/uzbeki-

stan/admin/    

Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. 

Environ, 37, 35–46. doi: 10.1016/0034-4257(91)90048-B  

Deb, D.S.K., Nathr, R.K. (2012). Land use/cover classification- An introduction review and comparison. Retrieved from 

https://globaljournals.org/GJRE_Volume12/2-Land-usecover-classification-An-introduction-review.pdf 

Delwart, S. (2015).  ESA Standard Document. 

Dhakal, S., Kandel, S., Puri, L., Shrestha, S. (2022). Assessment on Land Use Land Cover Mapping:Mapping : Sentinel-

2 Versus Landsat-9. For. J. Inst. For. Nepal, 19, 56–63. doi: 10.3126/forestry.v19i01.55704  

Esri. (2025). Sentinel-2 10m Land Use/Land Cover Time Series [ArcGIS Online dataset]. Retrieved from 

https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d 

Fatima, N., Javed, A. (2021). Assessment of Land Use Land Cover Change Detection Using Geospatial Techniques in 

Southeast Rajasthan. Journal of Geoscience and Environment Protection, 09(12), 299–319. doi : 

10.4236/gep.2021.912018  

Foody, G.M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accu-

racy of thematic maps obtained by image classification. Remote Sens. Environ, 239, 111630. doi: 

10.1016/j.rse.2019.111630  

Gebeyehu, A.E., Chunju, Z., Yihong, Z. (2019). Assessment and Mapping of Land Use Change by Remote Sensing and 

GIS:GIS : A Case Study of Abaya Chamo Sub-basin, Ethiopia. Nat. Environ. Pollut. Technol., 18. 

He, H., Yan, J., Liang, D., Sun, Z., Li, J., Wang, L., (2024). Time-series land cover change detection using deep learning-

based temporal semantic segmentation. Remote Sens. Environ, 305, 114101. doi: 10.1016/j.rse.2024.114101 

Htitiou, A., Boudhar, A., Chehbouni, A., Benabdelouahab, T. (2021). National-Scale Cropland Mapping Based on Phe-

nological Metrics, Environmental Covariates, and Machine Learning on Google Earth Engine. Remote Sensing, 

13(21), 4378. doi: 10.3390/rs13214378  

Islami, F.A., Tarigan, S.D., Wahjunie, E.D., Dasanto, B.D. (2022). Accuracy Assessment of Land Use Change Analysis 

Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conf. Ser. Earth Environ. Sci., 950, 012091. 

doi: 10.1088/1755-1315/950/1/012091  

Juliev, M., Pulatov, A., Fuchs, S., Hübl, J., (2019). Analysis of Land Use Land Cover Change Detection of Bostanlik 

District, Uzbekistan. Pol. J. Environ. Stud., 28, 3235–3242. doi: 10.15244/pjoes/94216  

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land 

cover with Sentinel 2 and deep learning. In 2021 IEEE international geoscience and remote sensing symposium 

IGARSS. IEEE, 4704-4707. 

Kumari, A., Karthikeyan, S. (2023). Sentinel-2 Data for Land Use/Land Cover Mapping:Mapping : A Meta-analysis and 

Review. SN Comput. Sci., 4, 815. doi: 10.1007/s42979-023-02214-0  

Kwan, C., Ayhan, B., Budavari, B., Lu, Y., Perez, D., Li, J., Bernabe, S., Plaza, A. (2020). Deep Learning for Land Cover 

Classification Using Only a Few Bands. Remote Sensing, 12, 2000. doi: 10.3390/rs12122000  

Li, K., Cao, X., Meng, D., 2024. A New Learning Paradigm for Foundation Model-Based Remote-Sensing Change De-

tection. IEEE Trans. Geosci. Remote Sensing, 62, 1–12. doi: 10.1109/TGRS.2024.3365825 

Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., Qiao, Z. (2020). Mapping cropping intensity in China using time 

series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ., 239, 111624. doi: 

10.1016/j.rse.2019.111624  

Luo, C., Zhang, X., Wang, Y., Men, Z., Liu, H. (2022). Regional soil organic matter mapping models based on the optimal 

time window, feature selection algorithm and Google Earth Engine. Soil Tillage Res., 219, 105325. doi: 

10.1016/j.still.2022.105325  

Makar R. S., Shahin Sahar A., El-Nazer Mostafa., Wheida Ali. (2022). Development of a PCA-based land use/land cover 

classification utilizing Sentinel-2time series. Middle East Journal of Agriculture Research, 11(2), 630-637. doi: 

10.36632/mejar/2022.11.2.42 

Maxwell, A.E., Warner, T.A., Fang, F., (2018). Implementation of machine-learning classification in remote sensing: an 

applied review. Int. J. Remote Sens., 39, 2784–2817. doi: 10.1080/01431161.2018.1433343 

McHugh, M.L. (2012). Interrater reliability: the kappa statistic. Biochem. Medica, 276–282. doi: 10.11613/BM.2012.031  

Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S.M.M., Borz, S.A. (2022). Land Use and Land Cover Mapping Using 

Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine:Engine : A Comparison of Two Composition 
Methods. Remote Sens., 14, 1977. doi: 10.3390/rs14091977  

Nedd, R., Light, K., Owens, M., James, N., Johnson, E., Anandhi, A., (2021). A Synthesis of Land Use/Land Cover 

Studies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Land-

scape. Land, 10, 994. doi: 10.3390/land10090994 

Pande, C.B., Moharir, K.N., Khadri, S.F.R., (2021). Assessment of land-use and land-cover changes in Pangari watershed 

area (MS), India, based on the remote sensing and GIS techniques. Appl. Water Sci., 11, 96. doi: 10.1007/s13201-

021-01425-1 

Pande, Dr.C. (2022). Land Use/Land Cover and Change Detection mapping in Rahuri watershed area (MS), India using 

the Google Earth Engine and Machine Learning Approach. Geocarto International, 37(26). doi: 

10.1080/10106049.2022.2086622  

Paudel, B., Zhang, Y., Li, S., Liu, L., Wu, X., Khanal, N.R. (2016). Review of studies on land use and land cover change 

in Nepal. J. Mt. Sci., 13, 643–660. doi: 10.1007/s11629-015-3604-9 

Pelletier, C., Webb, G., Petitjean, F., (2019). Temporal Convolutional Neural Network for the Classification of Satellite 

Image Time Series. Remote Sensing, 11, 523. doi: 10.3390/rs11050523  



Forum Geografi, 40(1), 2026; DOI: 10.23917/forgeo.8724 

Author et al.  Page 56   

Peng, M., Liu, Y., Khan, A., Ahmed, B., Sarker, S.K., Ghadi, Y.Y., Bhatti, U.A., Al-Razgan, M., Ali, Y.A., (2024). Crop 

monitoring using remote sensing land use and land change data: Comparative analysis of deep learning methods 

using pre-trained CNN models. Big Data Res. 36, 100448. https://doi.org/10.1016/j.bdr.2024.100448 

Pogoda i Klimat. (2025). Weather and climate data. Retrieved from http://www.pogodaiklimat.ru/ 

Rakhmonov, S., Umurzakov, U., Rakhmonov, K., Bozarov, I., Karamatov, O., (2021). Land Use and Land Cover Change 

in Khorezm, Uzbekistan. E3S Web Conf., 227, 01002. doi: 10.1051/e3sconf/202122701002  

Salman, Md.A., Nomaan, Md.S.S., Sayed, S., Saha, A., Rafiq, M.R., (2020). Land use and land cover change detection 

by using remote sensing and GIS technology in Barishal district, Bangladesh. Earth Sci. Malays, 5, 33–40. doi: 

10.26480/esmy.01.2021.33.40 

Sefrin, O., Riese, F.M., Keller, S., (2020). Deep Learning for Land Cover Change Detection. Remote Sens, 13, 78. doi: 

10.3390/rs13010078 

Skidmore, A.K., Stein, A., Van Der Meer, F., Gorte, B. (1999). Accuracy assessment of spatial information, in Spatial 

Statistics for Remote Sensing, Remote Sensing and Digital Image Processing. Springer Netherlands, Dordrecht, 

197–209. doi: 10.1007/0-306-47647-9_12  

Tejasree, G., Agilandeeswari, L., (2024). Land use/land cover (LULC) classification using deep-LSTM for hyperspectral 

images. Egypt. J. Remote Sens. Space Sci. 27, 52–68. https://doi.org/10.1016/j.ejrs.2024.01.004 

Teshager, Z., & Abeje, K. (2021). GIS and Remote Sensing based Land Us e/Land Cover Change Detection: The Case of 

Kility Watershed. J Remote Sens GIS, 10(3). doi: 10.35248/2469-4134.21.10.282 

UN. (2019). Sustainable Development Goals Report. Retrieved from https://unstats.un.org/sdgs/report/2019/   

Vajsova, B., & Aastrand, P. (2015). New sensors benchmark report on Sentinel-2A. Retrieved from https://ec.europa.eu/jrc 

Vaughn, I. (2019). Landsat 8 (L8) Data Users. Handbook. Retrieved From https://www.usgs.gov/media/files/landsat-8-

data-users-handbook 

Wulansari, H. (2017). Uji Akurasi Klasifikasi Penggunaan Lahan Dengan Menggunakan Metode Defuzzifikasi Maximum 

Likelihood Berbasis Citra Alos Avnir-2. BHUMI J. Agrar. Dan Pertanah., 3, 98. doi: 10.31292/jb.v3i1.233 

Xu, P., Tsendbazar, N.-E., Herold, M., De Bruin, S., Koopmans, M., Birch, T., Carter, S., Fritz, S., Lesiv, M., Mazur, E., 

Pickens, A., Potapov, P., Stolle, F., Tyukavina, A., Van De Kerchove, R., Zanaga, D., 2024. Comparative valida-

tion of recent 10 m-resolution global land cover maps. Remote Sens. Environ, 311, 114316. doi: 

10.1016/j.rse.2024.114316 

Zaabar, N., Niculescu, S., Mihoubi, M.K. (2023). Assessment of Land Cover Changes in the Allala Watershed Based on 

Object Based Image Analysis Using Landsat and Sentinel-2 Images, in:in : Niculescu, S. (Ed.), European Spatial 

Data for Coastal and Marine Remote Sensing. Springer International Publishing, Cham, 81–96. doi: 10.1007/978-

3-031-16213-8_5 

Zafar, Z., Zubair, M., Zha, Y., Fahd, S., Ahmad Nadeem, A., (2024). Performance assessment of machine learning algo-

rithms for mapping of land use/land cover using remote sensing data. Egypt. J. Remote Sens. Space Sci. 27, 216–

226. doi: 10.1016/j.ejrs.2024.03.003 


