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Abstract

Urbanization has led to more than 50% of the global population residing in urban areas, contributing to
significant modifications in the urban climate that exacerbate the adverse effects of climate change,
particularly on human health. This study aims to assess the Heat Vulnerability Index (HVI) in the Klang
Valley, Malaysia, using Principal Component Analysis (PCA) and Equal-Weighted Index (EWI). It further
compares both methods to determine which more effectively reflects the region’s environmental and socio-
economic context. Focusing on land surface temperature as an exposure, other sensitivity and adaptive
variables were triangulated where the heat vulnerability index is developed. The findings show the Klang
valley’s regions are of varying degrees of vulnerability to heat stress, with the most affected cities being
Kuala Lumpur and Petaling due to exposure-sensitivity and adaptive capacity factors. As can be seen, HVI-
PCA covers 7.06% for Very Low, 12.87% for Low, 54.82% for Moderate, 14.99% for High, and 10.26% for
Very High vulnerabilities, while HVI-EWI represents Very Low at 6.62%, Low at 51.29%, Moderate at
26.86%, High at 15.22% and Very High at 0.02%. These differences underscore the importance of
methodological choice, where PCA supports empirical robustness based on data-driven methods. At the
same time, EWI is suitable when expert consensus is lacking or when simplicity and broad stakeholder buy-
in are needed. Recommendations include maximizing indicator representativeness for accurate assessments
and resilient urban planning against heat-related stressors. The study could serve as a baseline HVI of the
study area, enabling the development of pre-emptive techniques to mitigate extreme heat conditions.

Keywords: Heat Vulnerability Index (HVI); Principal Component Analysis (PCA); Equal-Weighted Index
(EWI).

1. Introduction

Urbanization and climate change are closely intertwined in a complex relationship that affects
both environmental and human systems. Urbanization, the increase in the proportion of people in
a country living in urban areas, has significant impacts on climate change through increased
energy use, gas emissions, and resource utilization. The result is environmentally destructive
activities such as air pollution, water pollution, deforestation, and the destruction of habitats.
Climate change, particularly global warming, can promote urbanization by increasing
temperatures and exacerbating extreme weather events, such as heat waves and floods, which
impact agricultural productivity and drive rural-to-urban migration (Helbling & Meierrieks, 2023;
Salleh et al., 2013). The ecological impacts of urbanization extend beyond city borders, including
deforestation, habitat loss, and changes to freshwater ecosystems, which collectively contribute
to disruptions in biodiversity and ecological balances (Piczak et al., 2023).

The negative consequences of urbanization also extend to human health since the Urban Heat
Island (UHI) phenomenon is a significant concern. Urbanization and climate change are
intensifying the UHI effect, exacerbating the risks of heat-related morbidity and mortality in
densely populated regions. The Klang Valley, as Malaysia's most urbanized region, is particularly
susceptible to these impacts due to its rapid development, high population density, and
environmental changes. The UHI phenomenon amplifies ambient temperatures, especially during
heatwaves, posing significant health threats to vulnerable populations. UHI arises due to the
concentration of built environments and human activities, leading to higher temperatures in urban
regions when compared with adjacent rural zones (Isa et al., 2017).

Urban areas are important zones of vulnerability to heat caused by climate change, which mainly
affects vulnerable populations with economic and health inequalities. Heat vulnerability is
determined by three interrelated components: exposure, sensitivity, and adaptive capacity.
Exposure refers to the extent to which populations are subjected to extreme heat. Sensitivity
encompasses the physiological and social characteristics that increase susceptibility, such as age,
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income, and pre-existing health conditions. Adaptive capacity denotes the ability of individuals
and communities to cope with and recover from heat-related stress. The Heat Vulnerability Index
(HV1) is one of the advanced methods used in the measurement of exposure characteristics to
heat, for which the analysis takes into consideration several socio-economic, demographic, and
infrastructural factors (U.S. Environmental Protection Agency (EPA) and Centers for Disease
Control and Prevention (CDC), 2016). The wide application of HVI is attributable to its ability to
gauge the risk of heat stress, detect people at different levels of risk, and provide information on
adaptive capacity, which is key in resource allocation and developing intervention strategies
aimed at reducing the respective vulnerabilities (Paterson & Godsmark, 2020; Cheng et al., 2021).

Building up the HVI entails considerable review of area and population particularities, which are
judged through socioeconomic status (SES), health status, and environment. Population metrics
require age, poverty, education, housing, urban features, weather, and health care. These
characteristics also form the so-called landscape of vulnerability, and they define how different
populations cope and adapt to heat stress and its consequences (Soomar & Soomar, 2023; Cheng
etal., 2021).

Regarding heat impact vulnerability, trends occur around the built environment and cities and
their geographical locations. For example, in urban situations, one important variable for
assessment is Land Surface Temperature (LST), as it can help locate areas such as green space or
housing conditions that are likely to be at risk (Zha et al., 2024; Liu et al., 2020). These criteria
provide a broad understanding of heat vulnerability situations, which can help develop effective
adaptation approaches. Managing HVI is of utmost importance, especially in fast-developing
urban areas like Klang Valley, where there may be the risk of excessive heat, especially during
hot periods. As cities grow and the effects of climate change persist, it is crucial to have an
appropriate scoring system for heat vulnerability so that resilience strategies for low-income
communities can be developed. In order to help in this function, HVI is used as a pointer to assist
resource allocation efficiently and interventions targeted at exposed population subgroups by
policymakers, city planners, and public health officials (Nayak et al., 2018). HVI can therefore
be used to identify areas most vulnerable to heat stress, thereby prioritizing areas for intervention
to enhance resilience to heat stress and its related health impacts.

Ramli & Alias (2023) present a new method for evaluating vulnerability in several dimensions by
combining Catastrophe Theory with Geographic Information Systems (GIS), and make a
substantial contribution to the field of disaster risk management by offering an innovative
methodology for assessing vulnerability. Advancements in geospatial technologies, such as
remote sensing and GIS, have revolutionized the study of urban heat vulnerability. High-
resolution satellite imagery, like that from Landsat and Sentinel, provides detailed information on
land surface temperature, vegetation cover, and urban morphology (li et al., 2024). This data,
coupled with GIS tools, allows for the creation of detailed maps and spatial analysis of heat-
related factors. Furthermore, advanced mesoscale meteorological models, such as the Weather
Research and Forecasting model, enable researchers to simulate atmospheric conditions and
predict the impact of heat waves on urban areas. These simulations can be combined with
geospatial data to assess heat vulnerability at a fine scale and inform mitigation strategies (Salleh
et al., 2015; Salleh et al., 2023). These technological advancements have significantly improved
our ability to understand and address the complex challenges of urban heat.

Many studies of HVI have attempted to address the heat vulnerability factors in an integrated
manner. Here, a range of approaches have been used: from Equal-Weights Index (EWI) to more
advanced Principal Component Analysis (PCA) and many others (Tomlinson et al., 2011;
Cresswell, 2023). Usually, EWI is selected because of its simplicity, where all indicators are given
equal weight. However, this method may overlook the importance of certain aspects in
determining vulnerability, resulting in less detailed evaluations. Conversely, PCA is now a well-
known approach capable of handling large datasets and also pinpointing major indicators by
reducing dimensionality that contribute most to vulnerability (Cheng et al., 2021). Moreover,
local studies investigating heat vulnerability in built-up areas such as the Klang Valley have also
explored various methods to improve HVI measurement accuracy. For example, specific weights
are assigned to each indicator by PCA since it addresses broader aims of comprehensive
assessments of vulnerability (Isa et al., 2018; Latif et al., 2023; Kayal & Chowdhury, 2025a;
2025b). In addition, the current research has used PCA for developing a more refined and context-
based HVI for Klang Valley, which justifies its preference over simpler techniques such as EWI.
Hence, this study aims to develop a heat vulnerability index for the Klang Valley using both
Equal-Weighted Index (EWI) and Principal Component Analysis (PCA) methods, in order to
spatially identify areas and populations most at risk from extreme heat events.
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2. Research Methods
2.1. Study Area

Klang Valley, also known as Greater Kuala Lumpur, covers approximately 2,832 square
kilometers, as shown in Figure 1. It is situated in the central part of West Coast Peninsular
Malaysia and includes major areas like the Federal Territory of Kuala Lumpur, Putrajaya, Hulu
Langat, Klang, and Petaling. The population of Klang Valley was estimated at 8.21 million in
2021. The population growth rate of the Klang Valley increased by approximately 2.4% from
2021 to 2023. Population density and growth are primarily concentrated within a 50 km radius of
the city center, gradually extending outward into suburban regions, and the land surface
temperatures have fluctuated between 22 and 32°C, with a mean annual temperature of 25.4°C.
As one of the fastest urbanizing and economically developing regions in Southeast Asia, the Klang
Valley serves as an ideal case study for this research, which focuses on the Heat Vulnerability
Index (HVI). This city was chosen for the research because it has mixed urban morphology and
urban environments. It is characterized by heterogeneous urban development, socio-economic
diversity, and varying levels of infrastructure resilience. According to Lourdes et al. (2024), the
landscape mosaic includes commercial, residential, and industrial areas, as well as green spaces
such as agricultural zones, parks, forest reserves, and wetlands. The built-up area expanded from
20.58% in 2010 to 30.02% in 2020, driven by new building developments and influenced by
infrastructure projects such as the Mass Rapid Transit (MRT) system (Man & Majid, 2024). The
study by Wong et al. (2017) found that the working community in the city centre experienced the
effects of UHI, including temperature rises, decreased water resources, and increased haze and air
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Figure 1. The Study Area.
2.2. Datasets

The study employed various datasets, which included Landsat-8 OLI/TIRS imagery, a Digital
Elevation Model (DEM), statistical data, and vector data. We compiled data on demographic,
socio-economic, and environmental indicators relevant to heat vulnerability. These included
population density, age distribution, income levels, land surface temperature (LST), vegetation
cover from the Normalized Difference Vegetation Index (NDVI), and access to healthcare
facilities. From the United States Geological Survey (USGS), Landsat-8 OLI/TIRS data were
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obtained with important spectral bands for HVI analysis. It included bands of blue to long-wave
thermal infrared, which contain information concerning land cover and land surface temperature
or vegetation growth. With the assistance of the visualization software of the SNAP Desktop, a
DEM of Klang Valley was also generated from Sentinel-2 images, which capture terrain elevation.
The Department of Statistics Malaysia (DOSM) received extensive data on population age
structure and citizenship, as these factors are necessary for estimating the HVI. Lastly, the
Malaysian Public Works Department (JKR) supplied a vector map, from which the road data is
extracted to indicate the road density used in Klang Valley (Table 1). The conceptual framework
is structured around the triad of vulnerability components based on their relevance in the
vulnerability literature (Qureshi & Rachid, 2022; Noori et al., 2023; Tesfamariam et al., 2024):

e Exposure: Land Surface Temperature (LST), urban land use.

e  Sensitivity: Eight demographic indicators were included. These include population density,
percentage of elderly population, percentage of very young population, median age, female
population percentage, male population percentage, proportion of citizens, and proportion
of non-citizens. These variables reflect susceptibility due to age-related health risks, social
support networks, population structure, and potential barriers to accessing adaptive
resources.

e Adaptive Capacity: Access to healthcare, education level, green space availability,
normalized indices (e.g., Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI), road density, slope, and land surface albedo.

Table 1. The Data Sources of the Research Study.

No Dataset Description

1 Landsat-8 OLI/TIRS Remotely sensed data acquired from the Landsat satellite's Operational Land Imager (OLI) and
Thermal Infrared Sensor (TIRS)
Acquisition Date: August 13, 2022

2 Digital Elevation Extracted from Sentinel images using the SNAP Desktop program

Model Acquisition Date: October 29/2022

3 Statistical Data Provided by the Department of Statistics Malaysia (DOSM)
Parameters: Population Density, Population aged 65 years and over, Population aged 15 - 64
years, Population aged 0 - 14 years, Female Population, Male Population, Citizen Population,
Non-Citizen Population

4 Vector Data Road data obtained from the Malaysian Public Works Department (JKR)

3. Heat Vulnerability Index Construction

The methodology entails the use of a series of techniques that start from data processing and
conclude with the determination of the Heat Vulnerability Index HVI using advanced spatial
analysis and Geographic Information System GIS tools (Figure 2). This study applied two
different approaches:

1. Equal-Weighted Index (EWI)

Each indicator was normalized and assigned an equal weight. This approach is simple,
transparent, and commonly used when there is no clear rationale for assigning differential weights

2. Principal Component Analysis (PCA)

PCA was employed to reduce dimensionality and to identify the most significant contributors to
heat vulnerability. This method is particularly useful in the Klang Valley context due to its ability
to handle multicollinearity and to derive weights based on variance contribution empirically.

3. Natural Jenks Classification Techniques

The natural Jenks classification method was adopted. This technique is widely used in geospatial
analyses due to its ability to minimize variance within classes and maximize variance between
classes, making it ideal for highlighting natural groupings in heterogeneous datasets (Zhang et al.,
2022; Noori et al., 2023). The Natural Jenks method is particularly appropriate for urban heat
vulnerability analysis, where data distributions are often skewed or clustered.

4. Ordinal Spatial Scaling Measurement

The decision to use five ordinal categories, ranging from Very Low, Low, Moderate, High, and
Very High, aligns with common practice in environmental risk assessments and facilitates
comparability across different vulnerability indicators (Noori et al., 2023). This five-class
provides sufficient scale to detect meaningful spatial differences while remaining intuitive for
policymakers and planners. The combination of the Natural Jenks technique with a five-tier

Samsuddin, et al.

Page 191



Forum Geografi,

39(2), 2025; DOI: 10.23917/forgeo.v39i2.8633

classification enables both statistical robustness and interpretability in mapping vulnerability
patterns.
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Figure 2. The Research Process of HVI.
3.1. Data Pre-processing

Prior to data processing, critical pre-processing steps were implemented to ensure that Landsat 8
OLI/TIRS and statistical data were of good quality for the research study’s usage. For instance,
images with less than 30% cloud cover were acquired. Then, cloud removal was performed on
the Landsat data using the Sen2Cor Processor to remove atmospheric noise, enabling accurate
analysis through high-quality results. On the other hand, these were submitted to a proper cleanup,
thereby making them suitable for use with the ArcGIS Pro software. These steps were essential
in ensuring maintenance of data quality and enhancing its utility, which made it possible to carry
out meaningful analysis and interpretation of the data collected.

3.2. Exposure Variables: Land Surface Temperature (LST)

The thermal emissivity data of the remote sensing imageries is important while estimating land
surface temperatures LST and assessing the regional heat environmental risks. Geographically,
LST retrieval from Landsat 8 has been undertaken using a number of algorithms aimed at end
users, which assist in some aspects of temperature distribution comprehension in the Klang
Valley.

1. Top-of-Atmosphere (TOA)

To obtain LST, the TOA reflectance computation must be performed in particular. This procedure
consists of the procedure of reflectance conversion from the raw digital numbers or radiance
acquired through the space-borne sensors. This clean LST data will include algorithms that take
into consideration rough estimation of spectral ratios of LST images, as well as measures of
radiance for Landsat 8’s band 10 (Equation 1).

TOA (L) = ML = QCAL + AL @

Where TOA: Top of Atmosphere (TOA), ML: band-specific multiplicative rescaling factor from
the metadata (RADIANCE_MULT_BAND_10), QCAL: thermal band (Band 10), AL: band-
specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND_10).

2. Normalized Difference Vegetation Index (NDVI)

The presence of vegetation can be assessed utilizing NDVI derived from the visible and near-
infrared bands of Landsat, which is a significant determinant in ascertaining factors of
vulnerability and sensitivity in the region (Equation 2).

NDVI = (NIR — RED) / (NIR + RED) )
Where RED: DN values from the red band, NIR: DN values from the near-infrared band.
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3. Proportion of Vegetation (PV)

The physical proportion of vegetation cover, represented as PV and valued in NDV1 as previously
discussed, plays a crucial role in assessing other aspects of vegetation cover in the study area
(Equation 3).

Pv = Square ((NDVI — NDVIs) / (NDVIv — NDVIs)) 3)

Where Pv: proportion of vegetation, NDVI: DN values from the NDVI image, NDVIs: minimum
DN values from NDVI image, NDVIv: maximum DN values from NDVI image.

4. Land Surface Emissivity (LSE)

LSE is a proportionality factor used to scale blackbody radiance (Planck’s law) to estimate the
emitted radiance (Jimenez-Munoz et al., 2009). LSE is the measured fraction of vegetation cover
that contributes A parameter in thermal remote sensing where a value helps to form thermal
attributes in Klang Valley (Equation 4).

e = 0.004 * Pv + 0.986 4)
Where €: LSE, Pv: proportion of vegetation.
5. Land Surface Temperature (LST)

LST may be predicted using parameters like Brightness Temperature, Emissivity, and other
relevant data that yield information about the distribution of surface temperature over the Klang
Valley region (Equation 5).

LST = (BT /1) + W % (BT /14380) x In(e) ()

Where LST: Land Surface Temperature, BT: top of atmosphere brightness temperature (C), W:
wavelength of emitted radiance, &: LSE.

6. Classification of the Parameter of Exposure Variables

Natural Jenks classification methods contain additional classification to classify Landsat data into
LST, which allows for more information about temperature variations in the region. The
classification uses the natural Jenks method, which results in five different categories, namely
Very Low, Low, Moderate, High, and Very High.

3.3. Sensitivity Variable: Demographic Data

Eight parameters, which include demographic distributions and population density, are picked
from census data to serve as sensitivity variables. These parameters estimate the exposure of
populations to heat-related impacts. The next step in the analysis of these data, after determining
sensitivity variable parameters, involves a series of steps. Eight parameters that were extracted
are the population density, elderly population density, median age population density, very young
population density, female population density, male population density, non-citizen population
density, and citizen population density. The data are first extracted from the census database, and
input as the spatial data attributes according to the districts. These data are then reclassed
according to the natural jenks method. The same processes were repeated to all eight spatial layers
where each representing each parameter.

3.4. Adaptive Capacity Variables: NDVI, NDWI, Road Density, Slope, and Land
Surface Albedo

In the case of Klang Valley, certain parameters measuring the Adaptive Capacity of the HVI
include NDVI, NDWI, Slope, Road Density, and Land Surface Albedo.

1. Normalized Difference Vegetation Index (NDVI)

NDVI is the parameter that determines the weightage of vegetation in the heat vulnerability index
(HVI) based on assessing vegetative cover and its endurance against extreme temperatures. It
indicates how effective the local vegetation stands and how it might provide green urban spaces
that have a cooling effect. NDVI is given by Equation 2.

2. Normalized Difference Water Index (NDWI)

Heat vulnerability assessment involves using NDWI as an important parameter. It is derived from
images captured by the Landsat-8 satellite to show areas at risk on the ground surface. This can
be explained as high values refer to healthy water bodies and sufficient soil moisture, promoting
regions’ resilience against heat. At the same time, low readings may indicate areas prone to heat-
induced water stress. Equation 6 then determines NDWI readings.
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nowr = G NIR) 6
"~ (G + NIR) ©)

Where G: DN values from the green band, NIR: DN values from the near-infrared band.
3. Road Density

Klang Valley’s road density can be computed by employing the ArcGIS Pro Line Density Tool
(with a search radius of 0.037 and an output cell size of 4.48). Using data sourced from Selangor
Public Works Department (Jabatan Kerja Raya Selangor), these values are autogenerated based
on the extent of the input features and cell size. This is often reasonable for exploratory analyses.
Because Cell size (inherits from the environment settings or source layer), while Search radius
(automatically calculated based on feature distribution and extent).

Such factors as accessibility and transport infrastructure in the Klang Valley will help to assess
how well the region can resist or recover from long-lasting high temperatures. High Road density
can facilitate quicker emergency responses and better access to cooling resources or healthcare
during heat events, hence enhancing a community’s capacity to adapt.

4. Slope

Evaluation of the Heat Vulnerability Index’s adaptive capacity for Klang Valley makes it crucial
that slope analysis is conducted over the Klang Valley region. The slope data were derived from
the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) at a spatial
resolution of 30 meters. To ensure consistency in vulnerability assessment, slope values were
standardized and reclassified into five ordinal categories (Very Low to Very High) using the
Natural Jenks classification method. To assess the capacity to withstand heat waves, it is important
to know about the topography of a place.

5. Land Surface Albedo (LSA)

Albedo, which has been reported as an ignored factor in most studies on surface radiation and
thermal properties, can be quantified through time-series analysis showing its periodicity or
amplitude concerning land use and cover, thereby offering another perspective on climate
modeling (Isa et al., 2013). Calculating surface albedo utilizes Landsat imagery converted to Top
of Atmosphere (TOA) reflectance. The TOA is given by Equation 7.

PA = Mp Qcal + Ap @)

Where Mp: Band-specific multiplicative rescaling factor from the metadata, Qcal: Quantized and
calibrated standard product pixel values (DN), Ap: Band-specific additive rescaling factor from
the metadata.Finally, from the computation of TOA reflectance by Smith (2010), shortwave
albedo is computed using Landsat data (Equation 8).

_ (0.356p1 + 0.130p3 + 0.373p4 + 0.085p5 + 0.072p7 — 0.0018) ®)
B (0.356 + 0.130 + 0.373 4 0.085 + 0.072)

Thus, Land Surface Albedo can be calculated using bands 1, 3, 4, and 7 for Landsat. It is important
to include LSA because it represents the reflectivity of surfaces and directly influences the amount

of solar energy absorbed by urban areas. Surfaces with higher albedo reflect more solar radiation
and retain less heat, thus helping to moderate local temperatures.

Pshort

6. Classification of the Parameters of the Adaptive Capacity Variables

After defining the parameters for adaptive capacity variables, these are classified according to the
prevailing procedures used in previous research work. Each parameter is further divided into five
classes: Very Low, Low, Moderate, High, and Very High. It is a systematic approach that assists
in assessing the overall level of resilience against heat stress across a region. This systematic
approach supports the evaluation of the extent of the capability of regions to withstand heat stress.

3.5. Heat Vulnerability Index (HVI): The Comparative Analysis

The material in this chapter encompasses the Heat Vulnerability Index (HVI) construction for
Klang Valley in two ways, using the Principal Component Analysis (PCA) and the
EqualWeighted Index (EWI).

1. Principal Component Analysis (PCA)

The first process of PCA is a two-tiered system using the “Principal Component” Tool in ArcGIS
Pro to handle parameterization of each variable’s parameters. It is the design of the index that
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makes it possible to define the importance (inter relevant) of the given criteria for solving the Heat
Index. In this case, all three variables, sensitivity, exposure, and adaptive capacity, are analyzed
in a sequential manner using principal component analysis. This combines all the above obtained
weights into maps of exposure, sensitivity, and adaptive capacity through the ‘Weighted Overlay
Analysis’ Tool. In the center of gravity, PCA is used in the second stage for the iterative
modification of HVI, which then undergoes another stage of Weighted Overlay Analysis. This
finally leads to the HVI.

2. Equal-Weighted Index (EWI)

In this method, weightage is distributed equally on all layers. This tool applies a similar percentage
to each feature while operating the Weighted Overlay Analysis Tool at Tier 1, where EWI was
perceived as well. From these maps, those depicting exposure, sensitivity, and adaptive capacity
are generated. Though on tier 2, the weighted overlay analysis tool is again utilized to generate
HVI, but this time around, weights are not distributed among the three variables in any manner.

3. Comparative Analysis

A detailed comparative analysis of both PCA and EWI has been conducted, considering various
qualitative and quantitative parameters that influence the understanding of heat vulnerability
about urban development of the population characteristics of Klang Valley, as well as the
architectural design of the buildings in the region under study. The qualitative analysis combines
the findings of the two approaches. In contrast, the quantitative analysis determines an increase
in geographic spatial extent across varying degrees of vulnerability using GIS, as detailed
procedures in investigating knowledge-based outcomes. The attributes, advantages, and
disadvantages of all these methods were also investigated in order to find out the differences and
similarities. However, quantitatively, she only compares and contrasts the numbers, and all the
rest of the qualitative analysis deals with how the results are related to the information and
circumstances surrounding the outcomes.

4. Results and Discussion

The PCA-derived HVI revealed distinct spatial patterns compared to the EWI-based index. PCA
captured nuanced relationships among indicators and highlighted high-vulnerability zones not
evident in the EWI map. The Klang Valley’s urban core showed consistent high vulnerability, but
PCA identified peripheral areas with latent risks due to socio-economic fragility.

4.1. Exposure Variable of the Heat Vulnerability Index of Klang Valley

In this section, the Exposure Variables of the Heat Vulnerability Index (HVI) Specific to Klang
Valley are focused on. Land Surface Temperature (LST) is one of the most important exposure
determinants, and its distribution over the valley is shown in Figure 3. Temperatures range from
15°C to 33.2°C, with the middle section experiencing the highest temperatures due to
urbanization, while the northwest, with less urbanization, sees lower temperatures.

100°S0°E 101°€ 101°10 10120 101930€ 101%40€ 101550€ 100°S0°E 101°€ 101°10€ 1019206 101°30€ 101°40E 101°50€

(a) (b)

N
e N
-
< Huluseladgor: B

5
e

i 4%
-~ X

330N

3020n-] 32208 i ) -3°20N

F1ON

Py 26
> ks Langsg 7 P
- - Se

19.7-21.8°C Moderat
aon] VALUE i Loen  Value = po rate o
B <16.2°C e e Very Low I Hig
16.3 - 19.6 o M 24.3-332°C tow N very High

-230m

100°50€ 101°€

0
L

15

30
1

101°10€

T
101°20€

101°30€ 101°40E

60 Kilometers
)

101°50°

100°S0°E

T
101°€

T
101°10°€ 101°20€

Figure 3. Exposure Variable. a) LST, b) The reclass of the LST.

101°30°€

T
101°40°€

T
101°S0°€

|-2230n

Samsuddin, et al.

Page 195



Forum Geografi, 39(2), 2025; DOI: 10.23917/forgeo.v39i2.8633

Using the Natural Jenks classification technique, five groups are developed for parameters after
LST calculation. It is designed to enhance both internal and external heterogeneity of data
partitioning. These classes are Very Low, Low, Moderate, High, and Very High with specific
temperature ranges as shown in Figure 4. This figure visualizes this classification, while Table 2
presents temperatures for each category in detail. This classification will be useful in creating an
exposure map.

Table 2. The classification of the Land Surface Temperature.

No  Classification Classification Method Land Surface Temperature (LST)
1 Very Low <16.2°C
2 Low 16.3-19.6 °C
3 Moderate Natural Jenks 19.7-21.8°C
4 High 21.9-242°C
5 Very High 24.3-33.2°C

4.2. Sensitivity Variable of the Heat Vulnerability Index

The section begins by examining the variation in population density across various age groups,
including the elderly, 15-64-year-olds, and 0-14-year-olds. Moreover, it discusses gendered
population densities, revealing differences among districts. In particular, female population
density mirrors overall population density patterns, whereby higher concentration rates appear in
central areas. Male population density follows a similar pattern but with some variations,
especially within the southern parts. Moreover, spatial distributions are explained by contrasting
the densities of Malaysian citizens against those of non-citizens. For instance, non-citizen
residents are mainly concentrated in central places, while Malaysian citizenry varies from one
district to another. Figure 5 and Table 3 present categorization based on population density levels;
thus, they are necessary for generating the Sensitivity Map of the Klang Valley, which provides
an overview of demographic landscapes and socio-economic dynamics across various regions
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Table 3. The Classification of the Parameters of the Sensitivity Variable.

Parameters Classification Classification Method Ranges
Population Density 1- Very Low 109 — 245
2-Low 246 — 600
3 - Moderate Natural Jenks 601 — 1448
4 - High 1449 — 2418
5 - Very High 2419 - 8045
Elderly Population 1-Very Low 8-16
Density 2-Low 17-31
3 - Moderate Natural Jenks 32-41
4 - High 42 -135
5 - Very High 136 - 486
Median Age Population 1- Very Low 77-171
Density 2-Low 172 - 435
3 - Moderate Natural Jenks 436 - 1058
4 - High 1059 - 1269
5 - Very High 1270 - 5306
Very Young Population 1- Very Low 28 -58
Density 2—Low 59 -139
3 — Moderate Natural Jenks 140 - 363
4 — High 364 - 1013
5 - Very High 1014 - 1359
Female Population Density 1 - Very Low 54 - 120
2-Low 121 - 287
3 - Moderate Natural Jenks 288 - 719
4 - High 720 - 985
5 - Very High 986 - 3361
Male Population Density 1- Very Low 58 - 126
2 - Low 127 - 327
3 - Moderate Natural Jenks 328 - 777
4 - High 778 - 957
5 - Very High 958 - 3791
Citizen Population Density 1 - Very Low 107 - 234
2-Low 235 - 562
3 - Moderate Natural Jenks 563 - 1407
4 - High 1408 - 1882
5 - Very High 1883 - 6501
Non-Citizen Population 1-Very Low 5-20
Density 2-Low 21-58
3 - Moderate Natural Jenks 59 - 89
4 - High 90 - 147
5 - Very High 148 - 651

4.3. Adaptive Capacity Variable of the Heat VVulnerability Index

Slope analysis reveals differences in topography, with steeper elevations and slope angles in the
northeastern part compared to other sections. It is important to understand these differences and
their impact on topological factors and associated vulnerabilities. Also, local road density
distribution and types of prevalence show other characteristics of the development network,
highlighting greater densities within the dominant areas than in the border regions.

This is also important in the event of very high temperatures when movement and accessibility
are a concern. Finally, Land Surface Albedo shows some important features of the surface that
affect its ability to absorb heat. In this case, the central region has different ranges of albedo,
which signifies different materials with different thermal properties, which will also alter the heat
vulnerability in this region (Figure 6).

The parameters employ The Natural Jenks method over NDVI, Slope, and Road Density.
Classification errors will be reduced owing to the strong classification within the example. As for
NDWI and Land Surface Albedo, class intervals are applied that are constructed by the known
literature how to increase their precision and relevance.

Thereby, a variety of classifications is created (Table 4), which will classify the Adaptive Capacity
of Klang Valley as Very Low to Very High. Discussion of each parameter supported with visual
aids promotes understanding of the region's overall adaptivity by classifying the outcomes of each
parameter at a finer level, facilitating overall analysis (see Figure 6).
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Table 4. The Classification of the Parameters of the Adaptive Capacity Variable.

Parameters Classification Classification Method ~ Ranges
Normalized Difference Vegetation 1- Very Low Natural Jenks -0.26 - 0.14
Index (NDVI) 2 - Low 0.14-0.25

3 - Moderate 0.25-0.36

4 - High 0.36 - 0.45

5 - Very High 0.45-0.63
Normalised Difference Water Index 1- Very Low Manual Interval (Szabé  -0.60 - -0.40 (Drought)
(NDWI) 2-Low etal., 2016) -0.40 — 0.00 (Moderate

Drought)

3 - Moderate 0.00 — 0.20 (Water)

4 - High 0.20 — 0.30 (Water)

5 - Very High 0.30 — 0.40 (Water)
Slope 1- Very Low Natural Jenks 0.00-4.21

2-Low 4.22-10.01

3 - Moderate 10.01-17.38

4 - High 17.38 — 25.81

5 - Very High 25.81-67.16
Road Density 1- Very Low Natural Jenks 0.001 — 133.766 km?

2-Low 133.77 — 414.673 km?

3 — Moderate 414.65 — 769.15 km?

4 —High 769.13 — 1130.32 km?

5 - Very High 1130.32 — 1705.51 km?
Land Surface Albedo 1- Very Low Manual Interval 0-0.10

2-Low 0.10-0.20

3 - Moderate 0.20 - 0.40

4 - High 0.40-0.70

5 - Very High 0.70 —1.00

4.4. Heat Vulnerability Index (HVI): Principal Component Analysis (PCA) and
Equal-Weighted Index (EWI)

1. Principal Component Analysis (PCA): HVI-PCA

The Heat Vulnerability Index (HVI1) for the Klang Valley is calculated using Principal Component
Analysis (PCA). The computation has two tiers: the first-tier PCA examines exposure, sensitivity,
and adaptive capacity parameters. To produce maps showing the regional exposure, sensitivity,
and adaptive ability, each parameter's weightage is determined.

The weight of 100% is given to the Land Surface Temperature (LST) as the only parameter that
determines exposure. Various parameters related to sensitivity, such as population density, are
analyzed using PCA. Most heavily weighted among these is Population Density at 98.172%
(Table 5).

Table 5. The Results of the Parameters of the Sensitivity Variables.

Parameters Weight (%)

Population Density 98.17
Elderly Population Density 0.86
Very Young Population Density 0.76
Median Age Population Density 0.21
Female Population Density 0.00
Male Population Density 0.00
Citizen Population Density 0.00
Non-Citizen Population Density 0.00

Factors like NDVI, NDWI, Slope, Road Density, and LSA are analyzed, with NDVI having the
highest weightage at 49.607% (Table 6).

Table 6. The Results of the Parameters of the Adaptive Capacity Variables.

Parameters Weight (%)

Normalized Difference Vegetation Index (NDVI) 49.61
Normalized Difference Water Index (NDWI) 29.14
Slope 13.62
Road Density 24.75
Land Surface Albedo (LSA) 2.88

A complicated analysis shows how variables are weighted in the HVI, namely exposure,
sensitivity, and adaptive capacity. Every variable carries a different percentage that reflects its
importance in vulnerability (Table 7).
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Table 7. The Results of the PCA of the Variables.

Parameters Weight (%)

Exposure Variable 68.70
Sensitivity Variable 23.40
Adaptive Capacity Variable 7.90

The resulting HVI map is an exhaustive representation of the susceptibility of heat-related issues
in Klang Valley. It indicates diverse levels of susceptibility distributed across multiple locations,
which offer critical insights into spatial vulnerability patterns (Figure 7).
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Figure 7. The Heat Vulnerability Index (HVI) of Klang Valley using the PCA Method.

1. Principal Equal-Weighted Index (EWI: HVI-EWI)

In this method, all parameters within the Exposure, Sensitivity, and Adaptive Capacity Variables
receive equal weight under EWI. This approach aims to achieve balance by considering all factors
involved in heat vulnerability. Land Surface Temperature weighs and occupies 100%. This map
is further partitioned into five divisions, which explicitly demonstrates the extent of heat exposure
within the Klang Valley region, which serves as an excellent reference for the vulnerability
assessment (Figure 8).
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Method.

In this uniformity of weighting of the demographic parameters, the Sensitivity Map provides a
global view of the sensitivity levels prevailing in that area (Table 9).

Table 8. The Weightage Distribution for Sensitivity Variable.

Parameters Weight (%)

Population Density 12.50
Elderly Population Density 12.50
Very Young Population Density 12.50
Median Age Population Density 12.50
Female Population Density 12.50
Male Population Density 12.50
Citizen Population Density 12.50
Non-Citizen Population Density 12.50
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The following variable shall now be presented under the caption of Adaptive Capacity Variables.
This variable coincides with the allocation of assistance known as equal-weightage and details
how well it adapts to heat stressors within a particular district or subdistricts, if any exist (Table
9).

Table 9. The Weightage Distribution for the Adaptive Capacity Variable.

Parameters Weight (%)

Normalised Difference Vegetation Index (NDVI) 20
Normalised Difference Water Index (NDWI) 20
Slope 20
Road Density 20
Land Surface Albedo (LSA) 20

HVI-EWI is arrived at through the proportionate allocation of weight among Exposure,
Sensitivity, and Adaptive Capacity Variables (Table 10). The HVI map resulting from the overlay
classification only allows to distinguish six categories of potential vulnerabilities of the
Quelimane urban area, depicting not only the focal hot spots of Kuala Lumpur Himalayan
Peninsular Geosites in Petaling and Klang but other regions such as Sabak Bernam, Hulu Selangor
low in vulnerability levels; this integrative assessment underlined while extenuation of climate
change vulnerability is the exposure, sensitivity and adaptive capacity aspect risk towards climate
change (Figure 8).

Table 10. The Weightage Distribution of the Heat Vulnerability Index Component.

Parameters Weight (%)

Exposure Variable 33.33
Sensitivity Variable 33.33
Adaptive Capacity Variable 33.34

45. Heat Vulnerability Index (HVI): Comparative Analysis of Principal
Component Analysis (PCA) and Equal-Weighted Index (EWI)

Figure 9 presents a comparison between the Heat Vulnerability Index (HVI) as calculated using
Principal Component Analysis (PCA) and the Equal-Weighted Index (EWI). The percentage area
covered by each methodology for the five vulnerability categories is illustrated in Table 11.
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Figure 9. Comparison of EWI and PCA for HVI Analysis. a) HVI-EWI b) HVI-PCA.
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Table 11. The Area Percentage Covered by Each Methodology.

Method Value Percentage Area Covered (%)

HVI-PCA 1-Very Low 7.07
2-Low 12.87
3 - Moderate 54.82
4 - High 14.99
5 - Very High 10.26

HVI-EWI 1-Very Low 6.62
2 - Low 51.29
3 - Moderate 26.85
4 - High 15.22
5 - Very High 0.024

The resulting HVI map is a detailed representation of Klang Valley’s heat-related vulnerability
landscape. The illustration of different levels of susceptibility spread across several places in order
to provide useful indicators for understanding spatial vulnerability patterns is what makes this
figure important. The paper provides an overview of the process and outcomes that go into
calculating the Heat Vulnerability Index for Klang Valley, which include exposure, sensitivity,
adaptive capacity, among others, and finally the HVI overall.

Principal Component Analysis (PCA) and Equal-Weighted Index are two different methods used
to assess heat vulnerability, with each being unique. In Table 12, we bring out the differences
between PCA and EWI based on their methodological approach, impact on the estimation of heat
vulnerabilities, as well as data characteristics.

Table 12. The Reason for the Differences between PCA and EWI.

Aspect

Principal Component Analysis (PCA) Equal-Weighted Index (EWI)

Approach

Impact on Heat
Vulnerability
Estimation

Measures the distribution of variables,
distinguishes the direction of influence, and
adds variations with equal weights for the
index.

Dimensionality reduction, identifying
integrated variables from multiple
indicators.

The absolute values of the coefficients Equal weighting of variables may influence
may differ due to incorporating many results.

variables into the model for

dimensionality reduction.

In addition, it also brings out other factors when discussing how to choose between PCA or EWI,
including considerations such as data characteristics influencing the choice of PCA or EWI and
its use in the development of an HVI (Table 13).

Table 13. The Dependence of Choices between Both Approaches.

Aspect

Principal Component Analysis (PCA) Equal Weighted Index (EWI)

Application in the Heat

Data characteristics

Vulnerability Index

Decision Factors

Considerations

Overall dependence

Gives equal importance to all variables in the
index without emphasizing statistical
characteristics.

Creating an index that gives equal weight to all
contributing factors without emphasizing
statistical characteristics.

This is particularly useful when dealing with a
large number of variables, aiming to identify the
most critical components and explain variance.

Identifying key factors contributing to heat

vulnerability by reducing dimensionality and
identifying common factors.

Depends on the need to reduce dimensionality and  Depends on the need to create an index with
identify integrated variables. equal weight.

Useful for large datasets and identifying key Appropriate for cases where equal weight to all
components. variables is desired.

The choice between PCA and EWI depends on specific analysis objectives and the nature of the data
being assessed.

The dual method approach demonstrates the value of both simplicity (EWI) and statistical rigor
(PCA). EWI offers ease of interpretation and policy communication, while PCA enhances the
accuracy and analytical strength of the index. The application of PCA in the Klang Valley
provides a novel contribution by empirically identifying weight structures aligned with regional
variability. This study contributes to the literature by:

a. Introducing a comparative methodological analysis in a Southeast Asian context.

b. Integrating triadic vulnerability components into a spatially explicit HVI.
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c. Demonstrating the relevance of PCA for detailed and refined urban climate risk profiling.

Both PCA and EWI offer complementary strengths for HVI development. PCA is best when data
quality and availability are high, allowing for detailed and refined data-driven insights. EWI
excels in settings requiring simplicity, stakeholder inclusiveness, or when data limitations exist.
Choosing the appropriate method depends on your goals, audience, data availability, and context
of application. In addition, the PCA technique also has the advantage of managing large datasets
efficiently, which is crucial in handling complex data involving the Klang Valley. Apart from
this, it enables the identification and prioritization of essential indicators by assigning unique
weights based on their contribution to variance, thereby ensuring that major factors are duly
stressed. Hence, the PCA method is aligned with the purposes of this study and serves as a strong
one, backed up by an evidence-based approach to depicting vulnerability levels, rightly comparing
them across various locations.

On the contrary, the EWI Method is more straightforward compared to PCA; nonetheless, it
cannot determine which indicator is more important. This will lead to an over-simplification of
results, hence not capturing the varying degrees of impact each factor has on HVI. Given the
uniform distribution of weights used in developing such an index, it may yield less accurate
results. Therefore, this research will prefer PCA as its most suitable method.

5. Discussion

This study presents a context specific Heat VVulnerability Index for the Klang Valley using EWI
and PCA approaches. While EWI facilitates straightforward application, PCA offers a more
refined analysis of regional vulnerability dynamics. The integration of exposure, sensitivity, and
adaptive capacity provides a comprehensive understanding of heat risks, supporting targeted
climate adaptation and urban planning strategies. To summarize, this study successfully assessed
the Heat Vulnerability Index (HVI) in Malaysia's Klang Valley region using both Principal
Component Analysis (PCA) and Equal Weighted Index (EWI1) approaches. The findings showed
the importance of variables such as Land Surface Temperature (LST), population density, NDVI
and NDWI, slope analysis, road density maps, and land surface albedo in evaluating heat
vulnerability for both HVI-PCA and HVI-EWI. Weighted Overlay Analysis comprehensively
investigated regional variations in exposure, sensitivity, and adaptive capacity across the Klang
Valley.

This study has several limitations. First, the availability and resolution of data constrained the
selection of indicators, particularly for adaptive capacity and real-time health outcomes. Some
socioeconomic data were only available at aggregated levels, which may mask intraurban
variability. Methodologically, while PCA effectively reduces dimensionality, its reliance on
statistical variance may overlook the context-specific relevance of certain indicators. Similarly,
EWI assumes equal importance of all variables, which might not reflect the actual weight of each
factor in influencing heat vulnerability.

To reiterate, the original objectives of this study were to construct a heat vulnerability index for
the Klang Valley using both EWI and PCA, and to compare the spatial outputs to identify
vulnerable populations and regions. These objectives have been addressed through a systematic
evaluation of vulnerability indicators and comparative mapping, yielding insights into regional
heat risk dynamics and the applicability of both methodologies in urban Malaysian contexts.

Based on the Exposure Variables of the HVI in the Klang Valley Area, temperatures range from
15°C to 33.2°C, with the middle section having the greatest temperatures due to urbanization, and
the northwest experiencing lower temperatures due to less urbanization. In terms of population
density, female population density generally follows overall population density patterns, with
higher concentrations in central locations. Male population density, on the other hand, follows a
similar trend, albeit with significant variances, especially in the south. Furthermore, noncitizen
population density is particularly concentrated in central regions, whereas Malaysian citizen
density varies by district. Other considerations can certainly be valued added to the study, like the
inclusion of existing or recurrent natural disasters (Dewa et al., 2023), indoor thermal comfort
and air quality (Muhamad et al., 2024).

NDVI values indicate lower vegetation density in the center regions and higher density in the
northern parts, while color-coded maps provide a more nuanced picture of greenery distribution.
NDWI values demonstrate that center regions are represented in blue, indicating water presence,
while the peripherals appear in red, indicating drier conditions, emphasizing vulnerability to
water-related difficulties. Slope study reveals topographic differences, with the northeast having
greater elevations and steeper slopes than other places. Road density maps provide insight into
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the infrastructure network, with key sections having higher densities than outlying places. This
understanding is critical for determining mobility and access during extreme heat occurrences.
For Land Surface Albedo, the middle region demonstrates multiple albedo ranges, reflecting
distinct surface materials and their thermal properties, thus influencing heat vulnerability.

The weighting of the parameters for HVI-PCA and HVI-EWI differs; for HVI-PCA, LST is the
only parameter that affects exposure, while population density has the highest weighting for
sensitivity. NDVI is the factor with the most weight in adaptive capacity. All in all, it shows
different degrees of vulnerability dispersed throughout different places in the Klang Valley,
providing crucial information about patterns of spatial vulnerability. On the other hand, HVI-EWI
prioritises land surface temperature, giving it a weight of 100%. It also provides a detailed picture
of the sensitivity levels in the region and equally distributes the weight of adaptive capacity to
explain how adaptable the region is to heat stressors. Based on the HVI-EWI computation, core
regions like Klang, Petaling, and Kuala Lumpur become hotspots of susceptibility, whereas Sabak
Bernam and Hulu Selangor show lower degrees of exposure. The comparison between the
outcomes of PCA and EWI methods underscored the differences in vulnerability assessments and
the factors influencing these variations. However, PCA is the most appropriate for the HVI in the
Klang Valley because it can handle big datasets, find important indications, and assign unique
weights to each indicator, all of which are in line with the assessment's goals. To progress,
maximal representativeness of indicators, consideration of social and behavioral characteristics,
utilization of advanced analytical techniques, and interaction with the society in order to improve
accuracy and inclusivity of the Klang Valley heat vulnerability assessments are necessary.

This research contributes to the emerging field of proactive planning for heat waves as well as
enhancing urban resilience by unveiling complexities surrounding human health under
urbanization and climate change. For future research endeavors in this area, there is need to
continue exploring innovative ways (Cresswell, 2023; Bayomi & Fernandez, 2023), long term
(Kasihairani et al, 2024) and strategies that can help mitigate the challenges from extreme heat
events and climate change so that ultimately promotes sustainable and healthy cities (Akbari et
al, 2024). Future studies could also expand on this framework by incorporating real-time climate
data and validating the HV1 with health outcome records to further enhance policy relevance. This
study lays the groundwork for future undertakings in relation to heat vulnerability assessment. It
highlights the significance of interdisciplinary partnerships between researchers together with
community members for countering negative impacts of global warming on public health in cities.

6. Conclusion

This study developed and compared Heat Vulnerability Indices (HVI) for Malaysia’s Klang
Valley using Equal Weighted Index (EWI) and Principal Component Analysis (PCA) approaches,
offering new insights into how urbanization shapes heat risk. Both methods consistently identified
land surface temperature, population density, vegetation cover, water availability, slope, road
networks, and surface albedo as key drivers of vulnerability. The results show that urbanized
districts such as Klang, Petaling, and Kuala Lumpur experience heightened susceptibility to heat,
while less urbanized areas like Sabak Bernam and Hulu Selangor are less exposed. Among the
two methods, PCA proved particularly effective in handling complex datasets and assigning
context-specific weights to indicators, producing a more nuanced understanding of spatial
vulnerability patterns than the uniform weighting assumed by EWI. At the same time, the study
acknowledges its limitations. Data availability and resolution constrained indicator selection,
particularly for adaptive capacity and health outcomes, while methodological assumptions may
have simplified real-world dynamics. These findings highlight the need for future research to
integrate real-time climate and health data, apply more advanced analytical techniques, and
engage directly with local communities to ensure assessments reflect lived experiences. By
providing a robust, context-sensitive picture of heat vulnerability, this research contributes to
proactive urban planning and climate adaptation in Malaysia. It underscores that addressing heat
risk is not only a technical exercise but also a social and collaborative endeavor that one that
benefits from interdisciplinary partnerships, policy relevance, and public engagement to build
healthier, more resilient cities in the face of climate change..
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