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Abstract 

Urbanization has led to more than 50% of the global population residing in urban areas, contributing to 

significant modifications in the urban climate that exacerbate the adverse effects of climate change, 

particularly on human health. This study aims to assess the Heat Vulnerability Index (HVI) in the Klang 

Valley, Malaysia, using Principal Component Analysis (PCA) and Equal-Weighted Index (EWI). It further 

compares both methods to determine which more effectively reflects the region’s environmental and socio-

economic context. Focusing on land surface temperature as an exposure, other sensitivity and adaptive 

variables were triangulated where the heat vulnerability index is developed. The findings show the Klang 

valley’s regions are of varying degrees of vulnerability to heat stress, with the most affected cities being 

Kuala Lumpur and Petaling due to exposure-sensitivity and adaptive capacity factors. As can be seen, HVI-

PCA covers 7.06% for Very Low, 12.87% for Low, 54.82% for Moderate, 14.99% for High, and 10.26% for 

Very High vulnerabilities, while HVI-EWI represents Very Low at 6.62%, Low at 51.29%, Moderate at 

26.86%, High at 15.22% and Very High at 0.02%. These differences underscore the importance of 

methodological choice, where PCA supports empirical robustness based on data-driven methods. At the 

same time, EWI is suitable when expert consensus is lacking or when simplicity and broad stakeholder buy-

in are needed. Recommendations include maximizing indicator representativeness for accurate assessments 

and resilient urban planning against heat-related stressors. The study could serve as a baseline HVI of the 

study area, enabling the development of pre-emptive techniques to mitigate extreme heat conditions. 

Keywords: Heat Vulnerability Index (HVI); Principal Component Analysis (PCA); Equal-Weighted Index 

(EWI). 

1. Introduction 

Urbanization and climate change are closely intertwined in a complex relationship that affects 

both environmental and human systems. Urbanization, the increase in the proportion of people in 

a country living in urban areas, has significant impacts on climate change through increased 

energy use, gas emissions, and resource utilization. The result is environmentally destructive 

activities such as air pollution, water pollution, deforestation, and the destruction of habitats. 

Climate change, particularly global warming, can promote urbanization by increasing 

temperatures and exacerbating extreme weather events, such as heat waves and floods, which 

impact agricultural productivity and drive rural-to-urban migration (Helbling & Meierrieks, 2023; 

Salleh et al., 2013). The ecological impacts of urbanization extend beyond city borders, including 

deforestation, habitat loss, and changes to freshwater ecosystems, which collectively contribute 

to disruptions in biodiversity and ecological balances (Piczak et al., 2023).  

The negative consequences of urbanization also extend to human health since the Urban Heat 

Island (UHI) phenomenon is a significant concern. Urbanization and climate change are 

intensifying the UHI effect, exacerbating the risks of heat-related morbidity and mortality in 

densely populated regions. The Klang Valley, as Malaysia's most urbanized region, is particularly 

susceptible to these impacts due to its rapid development, high population density, and 

environmental changes. The UHI phenomenon amplifies ambient temperatures, especially during 

heatwaves, posing significant health threats to vulnerable populations. UHI arises due to the 

concentration of built environments and human activities, leading to higher temperatures in urban 

regions when compared with adjacent rural zones (Isa et al., 2017).  

Urban areas are important zones of vulnerability to heat caused by climate change, which mainly 

affects vulnerable populations with economic and health inequalities. Heat vulnerability is 

determined by three interrelated components: exposure, sensitivity, and adaptive capacity. 

Exposure refers to the extent to which populations are subjected to extreme heat. Sensitivity 

encompasses the physiological and social characteristics that increase susceptibility, such as age, 
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income, and pre-existing health conditions. Adaptive capacity denotes the ability of individuals 

and communities to cope with and recover from heat-related stress. The Heat Vulnerability Index 

(HVI) is one of the advanced methods used in the measurement of exposure characteristics to 

heat, for which the analysis takes into consideration several socio-economic, demographic, and 

infrastructural factors (U.S. Environmental Protection Agency (EPA) and Centers for Disease 

Control and Prevention (CDC), 2016). The wide application of HVI is attributable to its ability to 

gauge the risk of heat stress, detect people at different levels of risk, and provide information on 

adaptive capacity, which is key in resource allocation and developing intervention strategies 

aimed at reducing the respective vulnerabilities (Paterson & Godsmark, 2020; Cheng et al., 2021).  

Building up the HVI entails considerable review of area and population particularities, which are 

judged through socioeconomic status (SES), health status, and environment. Population metrics 

require age, poverty, education, housing, urban features, weather, and health care. These 

characteristics also form the so-called landscape of vulnerability, and they define how different 

populations cope and adapt to heat stress and its consequences (Soomar & Soomar, 2023; Cheng 

et al., 2021).  

Regarding heat impact vulnerability, trends occur around the built environment and cities and 

their geographical locations.  For example, in urban situations, one important variable for 

assessment is Land Surface Temperature (LST), as it can help locate areas such as green space or 

housing conditions that are likely to be at risk (Zha et al., 2024; Liu et al., 2020). These criteria 

provide a broad understanding of heat vulnerability situations, which can help develop effective 

adaptation approaches. Managing HVI is of utmost importance, especially in fast-developing 

urban areas like Klang Valley, where there may be the risk of excessive heat, especially during 

hot periods. As cities grow and the effects of climate change persist, it is crucial to have an 

appropriate scoring system for heat vulnerability so that resilience strategies for low-income 

communities can be developed. In order to help in this function, HVI is used as a pointer to assist 

resource allocation efficiently and interventions targeted at exposed population subgroups by 

policymakers, city planners, and public health officials (Nayak et al., 2018). HVI can therefore 

be used to identify areas most vulnerable to heat stress, thereby prioritizing areas for intervention 

to enhance resilience to heat stress and its related health impacts.  

Ramli & Alias (2023) present a new method for evaluating vulnerability in several dimensions by 

combining Catastrophe Theory with Geographic Information Systems (GIS), and make a 

substantial contribution to the field of disaster risk management by offering an innovative 

methodology for assessing vulnerability. Advancements in geospatial technologies, such as 

remote sensing and GIS, have revolutionized the study of urban heat vulnerability. High-

resolution satellite imagery, like that from Landsat and Sentinel, provides detailed information on 

land surface temperature, vegetation cover, and urban morphology (li et al., 2024). This data, 

coupled with GIS tools, allows for the creation of detailed maps and spatial analysis of heat-

related factors. Furthermore, advanced mesoscale meteorological models, such as the Weather 

Research and Forecasting model, enable researchers to simulate atmospheric conditions and 

predict the impact of heat waves on urban areas. These simulations can be combined with 

geospatial data to assess heat vulnerability at a fine scale and inform mitigation strategies (Salleh 

et al., 2015; Salleh et al., 2023). These technological advancements have significantly improved 

our ability to understand and address the complex challenges of urban heat. 

Many studies of HVI have attempted to address the heat vulnerability factors in an integrated 

manner. Here, a range of approaches have been used: from Equal-Weights Index (EWI) to more 

advanced Principal Component Analysis (PCA) and many others (Tomlinson et al., 2011; 

Cresswell, 2023). Usually, EWI is selected because of its simplicity, where all indicators are given 

equal weight. However, this method may overlook the importance of certain aspects in 

determining vulnerability, resulting in less detailed evaluations. Conversely, PCA is now a well-

known approach capable of handling large datasets and also pinpointing major indicators by 

reducing dimensionality that contribute most to vulnerability (Cheng et al., 2021). Moreover, 

local studies investigating heat vulnerability in built-up areas such as the Klang Valley have also 

explored various methods to improve HVI measurement accuracy. For example, specific weights 

are assigned to each indicator by PCA since it addresses broader aims of comprehensive 

assessments of vulnerability (Isa et al., 2018; Latif et al., 2023; Kayal & Chowdhury, 2025a; 

2025b).  In addition, the current research has used PCA for developing a more refined and context-

based HVI for Klang Valley, which justifies its preference over simpler techniques such as EWI. 

Hence, this study aims to develop a heat vulnerability index for the Klang Valley using both 

Equal-Weighted Index (EWI) and Principal Component Analysis (PCA) methods, in order to 

spatially identify areas and populations most at risk from extreme heat events. 
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2. Research Methods 

2.1. Study Area  

Klang Valley, also known as Greater Kuala Lumpur, covers approximately 2,832 square 

kilometers, as shown in Figure 1. It is situated in the central part of West Coast Peninsular 

Malaysia and includes major areas like the Federal Territory of Kuala Lumpur, Putrajaya, Hulu 

Langat, Klang, and Petaling. The population of Klang Valley was estimated at 8.21 million in 

2021. The population growth rate of the Klang Valley increased by approximately 2.4% from 

2021 to 2023. Population density and growth are primarily concentrated within a 50 km radius of 

the city center, gradually extending outward into suburban regions, and the land surface 

temperatures have fluctuated between 22 and 32°C, with a mean annual temperature of 25.4°C. 

As one of the fastest urbanizing and economically developing regions in Southeast Asia, the Klang 

Valley serves as an ideal case study for this research, which focuses on the Heat Vulnerability 

Index (HVI). This city was chosen for the research because it has mixed urban morphology and 

urban environments. It is characterized by heterogeneous urban development, socio-economic 

diversity, and varying levels of infrastructure resilience. According to Lourdes et al. (2024), the 

landscape mosaic includes commercial, residential, and industrial areas, as well as green spaces 

such as agricultural zones, parks, forest reserves, and wetlands. The built-up area expanded from 

20.58% in 2010 to 30.02% in 2020, driven by new building developments and influenced by 

infrastructure projects such as the Mass Rapid Transit (MRT) system (Man & Majid, 2024). The 

study by Wong et al. (2017) found that the working community in the city centre experienced the 

effects of UHI, including temperature rises, decreased water resources, and increased haze and air 

pollution. 

 

Figure 1. The Study Area. 

2.2. Datasets  

The study employed various datasets, which included Landsat-8 OLI/TIRS imagery, a Digital 

Elevation Model (DEM), statistical data, and vector data. We compiled data on demographic, 

socio-economic, and environmental indicators relevant to heat vulnerability. These included 

population density, age distribution, income levels, land surface temperature (LST), vegetation 

cover from the Normalized Difference Vegetation Index (NDVI), and access to healthcare 

facilities. From the United States Geological Survey (USGS), Landsat-8 OLI/TIRS data were 
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obtained with important spectral bands for HVI analysis. It included bands of blue to long-wave 

thermal infrared, which contain information concerning land cover and land surface temperature 

or vegetation growth. With the assistance of the visualization software of the SNAP Desktop, a 

DEM of Klang Valley was also generated from Sentinel-2 images, which capture terrain elevation. 

The Department of Statistics Malaysia (DOSM) received extensive data on population age 

structure and citizenship, as these factors are necessary for estimating the HVI. Lastly, the 

Malaysian Public Works Department (JKR) supplied a vector map, from which the road data is 

extracted to indicate the road density used in Klang Valley (Table 1). The conceptual framework 

is structured around the triad of vulnerability components based on their relevance in the 

vulnerability literature (Qureshi & Rachid, 2022; Noori et al., 2023; Tesfamariam et al., 2024): 

• Exposure: Land Surface Temperature (LST), urban land use. 

• Sensitivity: Eight demographic indicators were included. These include population density, 

percentage of elderly population, percentage of very young population, median age, female 

population percentage, male population percentage, proportion of citizens, and proportion 

of non-citizens. These variables reflect susceptibility due to age-related health risks, social 

support networks, population structure, and potential barriers to accessing adaptive 

resources. 

• Adaptive Capacity: Access to healthcare, education level, green space availability, 

normalized indices (e.g., Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI), road density, slope, and land surface albedo. 

Table 1. The Data Sources of the Research Study. 

No Dataset Description 

1 Landsat-8 OLI/TIRS Remotely sensed data acquired from the Landsat satellite's Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS) 

Acquisition Date: August 13, 2022 

2 Digital Elevation 

Model 

Extracted from Sentinel images using the SNAP Desktop program 

Acquisition Date: October 29/2022 

3 Statistical Data Provided by the Department of Statistics Malaysia (DOSM) 

Parameters: Population Density, Population aged 65 years and over, Population aged 15 - 64 

years, Population aged 0 - 14 years, Female Population, Male Population, Citizen Population, 

Non-Citizen Population 

4 Vector Data Road data obtained from the Malaysian Public Works Department (JKR) 

3. Heat Vulnerability Index Construction 

The methodology entails the use of a series of techniques that start from data processing and 

conclude with the determination of the Heat Vulnerability Index HVI using advanced spatial 

analysis and Geographic Information System GIS tools (Figure 2). This study applied two 

different approaches: 

1. Equal-Weighted Index (EWI) 

Each indicator was normalized and assigned an equal weight. This approach is simple, 

transparent, and commonly used when there is no clear rationale for assigning differential weights 

2. Principal Component Analysis (PCA) 

PCA was employed to reduce dimensionality and to identify the most significant contributors to 

heat vulnerability. This method is particularly useful in the Klang Valley context due to its ability 

to handle multicollinearity and to derive weights based on variance contribution empirically. 

3. Natural Jenks Classification Techniques 

The natural Jenks classification method was adopted. This technique is widely used in geospatial 

analyses due to its ability to minimize variance within classes and maximize variance between 

classes, making it ideal for highlighting natural groupings in heterogeneous datasets (Zhang et al., 

2022; Noori et al., 2023). The Natural Jenks method is particularly appropriate for urban heat 

vulnerability analysis, where data distributions are often skewed or clustered. 

4. Ordinal Spatial Scaling Measurement 

The decision to use five ordinal categories, ranging from Very Low, Low, Moderate, High, and 

Very High, aligns with common practice in environmental risk assessments and facilitates 

comparability across different vulnerability indicators (Noori et al., 2023). This five-class 

provides sufficient scale to detect meaningful spatial differences while remaining intuitive for 

policymakers and planners. The combination of the Natural Jenks technique with a five-tier 
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classification enables both statistical robustness and interpretability in mapping vulnerability 

patterns. 

 

Figure 2. The Research Process of HVI. 

3.1. Data Pre-processing 

Prior to data processing, critical pre-processing steps were implemented to ensure that Landsat 8 

OLI/TIRS and statistical data were of good quality for the research study’s usage. For instance, 

images with less than 30% cloud cover were acquired. Then, cloud removal was performed on 

the Landsat data using the Sen2Cor Processor to remove atmospheric noise, enabling accurate 

analysis through high-quality results. On the other hand, these were submitted to a proper cleanup, 

thereby making them suitable for use with the ArcGIS Pro software. These steps were essential 

in ensuring maintenance of data quality and enhancing its utility, which made it possible to carry 

out meaningful analysis and interpretation of the data collected. 

3.2. Exposure Variables: Land Surface Temperature (LST) 

The thermal emissivity data of the remote sensing imageries is important while estimating land 

surface temperatures LST and assessing the regional heat environmental risks. Geographically, 

LST retrieval from Landsat 8 has been undertaken using a number of algorithms aimed at end 

users, which assist in some aspects of temperature distribution comprehension in the Klang 

Valley. 

1. Top-of-Atmosphere (TOA) 

To obtain LST, the TOA reflectance computation must be performed in particular. This procedure 

consists of the procedure of reflectance conversion from the raw digital numbers or radiance 

acquired through the space-borne sensors. This clean LST data will include algorithms that take 

into consideration rough estimation of spectral ratios of LST images, as well as measures of 

radiance for Landsat 8’s band 10 (Equation 1). 

𝑇𝑂𝐴 (𝐿)  =  𝑀𝐿 ∗  𝑄𝐶𝐴𝐿 +  𝐴𝐿 (1) 

Where TOA: Top of Atmosphere (TOA), ML: band-specific multiplicative rescaling factor from 

the metadata (RADIANCE_MULT_BAND_10), QCAL: thermal band (Band 10), AL: band-

specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND_10). 

2. Normalized Difference Vegetation Index (NDVI) 

The presence of vegetation can be assessed utilizing NDVI derived from the visible and near-

infrared bands of Landsat, which is a significant determinant in ascertaining factors of 

vulnerability and sensitivity in the region (Equation 2). 

𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 −  𝑅𝐸𝐷) / (𝑁𝐼𝑅 +  𝑅𝐸𝐷) (2) 

Where RED: DN values from the red band, NIR: DN values from the near-infrared band. 
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3. Proportion of Vegetation (PV) 

The physical proportion of vegetation cover, represented as PV and valued in NDVI as previously 

discussed, plays a crucial role in assessing other aspects of vegetation cover in the study area 

(Equation 3). 

𝑃𝑣 =  𝑆𝑞𝑢𝑎𝑟𝑒 ((𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑉𝐼𝑠) / (𝑁𝐷𝑉𝐼𝑣 −  𝑁𝐷𝑉𝐼𝑠)) (3) 

Where Pv: proportion of vegetation, NDVI: DN values from the NDVI image, NDVIs: minimum 

DN values from NDVI image, NDVIv: maximum DN values from NDVI image. 

4. Land Surface Emissivity (LSE) 

LSE is a proportionality factor used to scale blackbody radiance (Planck’s law) to estimate the 

emitted radiance (Jimenez-Munoz et al., 2009). LSE is the measured fraction of vegetation cover 

that contributes A parameter in thermal remote sensing where a value helps to form thermal 

attributes in Klang Valley (Equation 4). 

𝜀 =  0.004 ∗  𝑃𝑣 +  0.986 (4) 

Where ε: LSE, Pv: proportion of vegetation. 

5. Land Surface Temperature (LST) 

LST may be predicted using parameters like Brightness Temperature, Emissivity, and other 

relevant data that yield information about the distribution of surface temperature over the Klang 

Valley region (Equation 5). 

𝐿𝑆𝑇 =  (𝐵𝑇 / 1)  +  𝑊 ∗  (𝐵𝑇 / 14380) ∗  𝑙𝑛(𝜀) (5) 

Where LST: Land Surface Temperature, BT: top of atmosphere brightness temperature (C), W: 

wavelength of emitted radiance, ε: LSE. 

6. Classification of the Parameter of Exposure Variables 

Natural Jenks classification methods contain additional classification to classify Landsat data into 

LST, which allows for more information about temperature variations in the region. The 

classification uses the natural Jenks method, which results in five different categories, namely 

Very Low, Low, Moderate, High, and Very High. 

3.3. Sensitivity Variable: Demographic Data 

Eight parameters, which include demographic distributions and population density, are picked 

from census data to serve as sensitivity variables. These parameters estimate the exposure of 

populations to heat-related impacts. The next step in the analysis of these data, after determining 

sensitivity variable parameters, involves a series of steps. Eight parameters that were extracted 

are the population density, elderly population density, median age population density, very young 

population density, female population density, male population density, non-citizen population 

density, and citizen population density. The data are first extracted from the census database, and 

input as the spatial data attributes according to the districts. These data are then reclassed 

according to the natural jenks method. The same processes were repeated to all eight spatial layers 

where each representing each parameter.  

3.4. Adaptive Capacity Variables: NDVI, NDWI, Road Density, Slope, and Land 

Surface Albedo 

In the case of Klang Valley, certain parameters measuring the Adaptive Capacity of the HVI 

include NDVI, NDWI, Slope, Road Density, and Land Surface Albedo. 

1. Normalized Difference Vegetation Index (NDVI) 

NDVI is the parameter that determines the weightage of vegetation in the heat vulnerability index 

(HVI) based on assessing vegetative cover and its endurance against extreme temperatures. It 

indicates how effective the local vegetation stands and how it might provide green urban spaces 

that have a cooling effect. NDVI is given by Equation 2. 

2. Normalized Difference Water Index (NDWI) 

Heat vulnerability assessment involves using NDWI as an important parameter. It is derived from 

images captured by the Landsat-8 satellite to show areas at risk on the ground surface. This can 

be explained as high values refer to healthy water bodies and sufficient soil moisture, promoting 

regions’ resilience against heat. At the same time, low readings may indicate areas prone to heat-

induced water stress. Equation 6 then determines NDWI readings. 
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𝑁𝐷𝑊𝐼 =
(𝐺 − 𝑁𝐼𝑅)

(𝐺 + 𝑁𝐼𝑅)
 (6) 

Where G: DN values from the green band, NIR: DN values from the near-infrared band. 

3. Road Density 

Klang Valley’s road density can be computed by employing the ArcGIS Pro Line Density Tool 

(with a search radius of 0.037 and an output cell size of 4.48). Using data sourced from Selangor 

Public Works Department (Jabatan Kerja Raya Selangor), these values are autogenerated based 

on the extent of the input features and cell size. This is often reasonable for exploratory analyses. 

Because Cell size (inherits from the environment settings or source layer), while Search radius 

(automatically calculated based on feature distribution and extent).  

Such factors as accessibility and transport infrastructure in the Klang Valley will help to assess 

how well the region can resist or recover from long-lasting high temperatures. High Road density 

can facilitate quicker emergency responses and better access to cooling resources or healthcare 

during heat events, hence enhancing a community’s capacity to adapt. 

4. Slope 

Evaluation of the Heat Vulnerability Index’s adaptive capacity for Klang Valley makes it crucial 

that slope analysis is conducted over the Klang Valley region. The slope data were derived from 

the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) at a spatial 

resolution of 30 meters. To ensure consistency in vulnerability assessment, slope values were 

standardized and reclassified into five ordinal categories (Very Low to Very High) using the 

Natural Jenks classification method. To assess the capacity to withstand heat waves, it is important 

to know about the topography of a place. 

5. Land Surface Albedo (LSA) 

Albedo, which has been reported as an ignored factor in most studies on surface radiation and 

thermal properties, can be quantified through time-series analysis showing its periodicity or 

amplitude concerning land use and cover, thereby offering another perspective on climate 

modeling (Isa et al., 2013). Calculating surface albedo utilizes Landsat imagery converted to Top 

of Atmosphere (TOA) reflectance. The TOA is given by Equation 7. 

𝑃𝜆 =  𝑀𝑝 𝑄𝑐𝑎𝑙 + 𝐴𝑝  (7) 

Where Mp: Band-specific multiplicative rescaling factor from the metadata, Qcal: Quantized and 

calibrated standard product pixel values (DN), Ap: Band-specific additive rescaling factor from 

the metadata.Finally, from the computation of TOA reflectance by Smith (2010), shortwave 

albedo is computed using Landsat data (Equation 8). 

𝑃𝑠ℎ𝑜𝑟𝑡 =
(0.356𝑝1 + 0.130𝑝3 + 0.373𝑝4 + 0.085𝑝5 + 0.072𝑝7 − 0.0018)

(0.356 + 0.130 + 0.373 + 0.085 + 0.072)
 (8) 

Thus, Land Surface Albedo can be calculated using bands 1, 3, 4, and 7 for Landsat. It is important 

to include LSA because it represents the reflectivity of surfaces and directly influences the amount 

of solar energy absorbed by urban areas. Surfaces with higher albedo reflect more solar radiation 

and retain less heat, thus helping to moderate local temperatures. 

6. Classification of the Parameters of the Adaptive Capacity Variables 

After defining the parameters for adaptive capacity variables, these are classified according to the 

prevailing procedures used in previous research work. Each parameter is further divided into five 

classes: Very Low, Low, Moderate, High, and Very High. It is a systematic approach that assists 

in assessing the overall level of resilience against heat stress across a region. This systematic 

approach supports the evaluation of the extent of the capability of regions to withstand heat stress. 

3.5. Heat Vulnerability Index (HVI): The Comparative Analysis 

The material in this chapter encompasses the Heat Vulnerability Index (HVI) construction for 

Klang Valley in two ways, using the Principal Component Analysis (PCA) and the 

EqualWeighted Index (EWI). 

1. Principal Component Analysis (PCA)  

The first process of PCA is a two-tiered system using the “Principal Component” Tool in ArcGIS 

Pro to handle parameterization of each variable’s parameters. It is the design of the index that 
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makes it possible to define the importance (inter relevant) of the given criteria for solving the Heat 

Index. In this case, all three variables, sensitivity, exposure, and adaptive capacity, are analyzed 

in a sequential manner using principal component analysis. This combines all the above obtained 

weights into maps of exposure, sensitivity, and adaptive capacity through the ‘Weighted Overlay 

Analysis’ Tool. In the center of gravity, PCA is used in the second stage for the iterative 

modification of HVI, which then undergoes another stage of Weighted Overlay Analysis. This 

finally leads to the HVI. 

2. Equal-Weighted Index (EWI) 

In this method, weightage is distributed equally on all layers. This tool applies a similar percentage 

to each feature while operating the Weighted Overlay Analysis Tool at Tier 1, where EWI was 

perceived as well. From these maps, those depicting exposure, sensitivity, and adaptive capacity 

are generated. Though on tier 2, the weighted overlay analysis tool is again utilized to generate 

HVI, but this time around, weights are not distributed among the three variables in any manner.  

3. Comparative Analysis 

A detailed comparative analysis of both PCA and EWI has been conducted, considering various 

qualitative and quantitative parameters that influence the understanding of heat vulnerability 

about urban development of the population characteristics of Klang Valley, as well as the 

architectural design of the buildings in the region under study. The qualitative analysis combines 

the findings of the two approaches. In contrast, the quantitative analysis determines an increase 

in geographic spatial extent across varying degrees of vulnerability using GIS, as detailed 

procedures in investigating knowledge-based outcomes. The attributes, advantages, and 

disadvantages of all these methods were also investigated in order to find out the differences and 

similarities. However, quantitatively, she only compares and contrasts the numbers, and all the 

rest of the qualitative analysis deals with how the results are related to the information and 

circumstances surrounding the outcomes. 

4. Results and Discussion 

The PCA-derived HVI revealed distinct spatial patterns compared to the EWI-based index. PCA 

captured nuanced relationships among indicators and highlighted high-vulnerability zones not 

evident in the EWI map. The Klang Valley’s urban core showed consistent high vulnerability, but 

PCA identified peripheral areas with latent risks due to socio-economic fragility.  

4.1. Exposure Variable of the Heat Vulnerability Index of Klang Valley 

In this section, the Exposure Variables of the Heat Vulnerability Index (HVI) Specific to Klang 

Valley are focused on. Land Surface Temperature (LST) is one of the most important exposure 

determinants, and its distribution over the valley is shown in Figure 3. Temperatures range from 

15°C to 33.2°C, with the middle section experiencing the highest temperatures due to 

urbanization, while the northwest, with less urbanization, sees lower temperatures.  

 

Figure 3. Exposure Variable. a) LST, b) The reclass of the LST. 
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Using the Natural Jenks classification technique, five groups are developed for parameters after 

LST calculation. It is designed to enhance both internal and external heterogeneity of data 

partitioning. These classes are Very Low, Low, Moderate, High, and Very High with specific 

temperature ranges as shown in Figure 4. This figure visualizes this classification, while Table 2 

presents temperatures for each category in detail. This classification will be useful in creating an 

exposure map. 

Table 2. The classification of the Land Surface Temperature. 

No Classification Classification Method Land Surface Temperature (LST) 

1 Very Low 

Natural Jenks 

< 16.2 °C 

2 Low 16.3 – 19.6 °C 

3 Moderate 19.7 – 21.8 °C 

4 High 21.9 – 24.2 °C 

5 Very High 24.3– 33.2 °C 

4.2. Sensitivity Variable of the Heat Vulnerability Index  

The section begins by examining the variation in population density across various age groups, 

including the elderly, 15-64-year-olds, and 0-14-year-olds. Moreover, it discusses gendered 

population densities, revealing differences among districts. In particular, female population 

density mirrors overall population density patterns, whereby higher concentration rates appear in 

central areas. Male population density follows a similar pattern but with some variations, 

especially within the southern parts. Moreover, spatial distributions are explained by contrasting 

the densities of Malaysian citizens against those of non-citizens. For instance, non-citizen 

residents are mainly concentrated in central places, while Malaysian citizenry varies from one 

district to another. Figure 5 and Table 3 present categorization based on population density levels; 

thus, they are necessary for generating the Sensitivity Map of the Klang Valley, which provides 

an overview of demographic landscapes and socio-economic dynamics across various regions 

 

Figure 4. The Sensitivity Variables criterion maps. a) population density, b) elderly population density, c) 

median age population density, d) very young population density, e) female population density, f) male 

population density, g) non-citizen population density, and h) citizen population density. 



Forum Geografi, 39(2), 2025; DOI: 10.23917/forgeo.v39i2.8633  

Samsuddin, et al.                            Page 197   

Table 3. The Classification of the Parameters of the Sensitivity Variable. 

Parameters Classification Classification Method Ranges 

Population Density 1 - Very Low  109 – 245 

2 - Low  246 – 600 

3 - Moderate Natural Jenks 601 – 1448 

4 - High  1449 – 2418 

5 - Very High  2419 - 8045 

Elderly Population 

Density 

1 - Very Low  8 - 16 

2 - Low  17 - 31 

3 - Moderate Natural Jenks 32 - 41 

4 - High  42 – 135 

5 - Very High  136 - 486 

Median Age Population 

Density 

1 - Very Low  77 - 171 

2 - Low  172 - 435 

3 - Moderate Natural Jenks 436 - 1058 

4 - High  1059 - 1269 

5 - Very High  1270 - 5306 

Very Young Population 

Density 

1 - Very Low  28 - 58 

2 – Low  59 – 139 

3 – Moderate Natural Jenks 140 - 363 

4 – High  364 - 1013 

5 - Very High  1014 - 1359 

Female Population Density 1 - Very Low  54 - 120 

2 - Low  121 - 287 

3 - Moderate Natural Jenks 288 - 719 

4 - High  720 - 985 

5 - Very High  986 - 3361 

Male Population Density 1 - Very Low  58 - 126 

2 - Low  127 - 327 

3 - Moderate Natural Jenks 328 - 777 

4 - High  778 - 957 

5 - Very High  958 - 3791 

Citizen Population Density 

 

1 - Very Low  107 - 234 

2 - Low  235 - 562 

3 - Moderate Natural Jenks 563 - 1407 

4 - High  1408 - 1882 

5 - Very High  1883 - 6501 

Non-Citizen Population 

Density 

1 - Very Low  5 - 20 

2 - Low  21 - 58 

3 - Moderate Natural Jenks 59 - 89 

4 - High  90 - 147 

5 - Very High  148 - 651 

4.3. Adaptive Capacity Variable of the Heat Vulnerability Index 

Slope analysis reveals differences in topography, with steeper elevations and slope angles in the 

northeastern part compared to other sections. It is important to understand these differences and 

their impact on topological factors and associated vulnerabilities. Also, local road density 

distribution and types of prevalence show other characteristics of the development network, 

highlighting greater densities within the dominant areas than in the border regions.  

This is also important in the event of very high temperatures when movement and accessibility 

are a concern. Finally, Land Surface Albedo shows some important features of the surface that 

affect its ability to absorb heat. In this case, the central region has different ranges of albedo, 

which signifies different materials with different thermal properties, which will also alter the heat 

vulnerability in this region (Figure 6).  

The parameters employ The Natural Jenks method over NDVI, Slope, and Road Density. 

Classification errors will be reduced owing to the strong classification within the example. As for 

NDWI and Land Surface Albedo, class intervals are applied that are constructed by the known 

literature how to increase their precision and relevance.  

Thereby, a variety of classifications is created (Table 4), which will classify the Adaptive Capacity 

of Klang Valley as Very Low to Very High. Discussion of each parameter supported with visual 

aids promotes understanding of the region's overall adaptivity by classifying the outcomes of each 

parameter at a finer level, facilitating overall analysis (see Figure 6). 
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Figure 5. Variables of the Heat Vulnerability Index. a) NDVI, b) NDWI, c) road density, d) slope, and e) 

land surface albedo. 
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Figure 6. Classified variables of the Heat Vulnerability Index. a) NDVI, b) NDWI, c) road density, d) slope, 

and e) land surface albedo. 
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Table 4. The Classification of the Parameters of the Adaptive Capacity Variable. 

Parameters Classification Classification Method Ranges 

Normalized Difference Vegetation 

Index (NDVI) 

1 - Very Low Natural Jenks -0.26 – 0.14 

2 - Low 0.14 – 0.25 

3 - Moderate 0.25 – 0.36 

4 - High 0.36 – 0.45 

5 - Very High 0.45 – 0.63 

Normalised Difference Water Index 

(NDWI) 

1 - Very Low Manual Interval (Szabó 

et al., 2016) 

-0.60 - -0.40 (Drought) 

2 - Low -0.40 – 0.00 (Moderate 

Drought) 

3 - Moderate 0.00 – 0.20 (Water) 

4 - High 0.20 – 0.30 (Water) 

5 - Very High 0.30 – 0.40 (Water) 

Slope 1 - Very Low Natural Jenks 0.00 – 4.21 

2 - Low 4.22 – 10.01 

3 - Moderate 10.01 – 17.38 

4 - High 17.38 – 25.81 

5 - Very High 25.81 – 67.16 

Road Density 1 - Very Low Natural Jenks 0.001 – 133.766 km2 

2 – Low 133.77 – 414.673 km2 

3 – Moderate 414.65 – 769.15 km2 

4 – High 769.13 – 1130.32 km2 

5 - Very High 1130.32 – 1705.51 km2 

Land Surface Albedo 1 - Very Low Manual Interval  

 

0 – 0.10 

2 - Low 0.10 – 0.20 

3 - Moderate 0.20 - 0.40 

4 - High 0.40 – 0.70 

5 - Very High 0.70 – 1.00 

4.4. Heat Vulnerability Index (HVI): Principal Component Analysis (PCA) and 

Equal-Weighted Index (EWI) 

1. Principal Component Analysis (PCA): HVI-PCA 

The Heat Vulnerability Index (HVI) for the Klang Valley is calculated using Principal Component 

Analysis (PCA). The computation has two tiers: the first-tier PCA examines exposure, sensitivity, 

and adaptive capacity parameters. To produce maps showing the regional exposure, sensitivity, 

and adaptive ability, each parameter's weightage is determined.  

The weight of 100% is given to the Land Surface Temperature (LST) as the only parameter that 

determines exposure. Various parameters related to sensitivity, such as population density, are 

analyzed using PCA. Most heavily weighted among these is Population Density at 98.172% 

(Table 5). 

Table 5. The Results of the Parameters of the Sensitivity Variables. 

Parameters Weight (%) 

Population Density 98.17 

Elderly Population Density 0.86 

Very Young Population Density 0.76 

Median Age Population Density 0.21 

Female Population Density 0.00 

Male Population Density 0.00 

Citizen Population Density 0.00 

Non-Citizen Population Density 0.00 

Factors like NDVI, NDWI, Slope, Road Density, and LSA are analyzed, with NDVI having the 

highest weightage at 49.607% (Table 6). 

Table 6. The Results of the Parameters of the Adaptive Capacity Variables. 

Parameters Weight (%) 

Normalized Difference Vegetation Index (NDVI) 49.61 

Normalized Difference Water Index (NDWI) 29.14 

Slope 13.62 

Road Density 24.75 

Land Surface Albedo (LSA) 2.88 

A complicated analysis shows how variables are weighted in the HVI, namely exposure, 

sensitivity, and adaptive capacity. Every variable carries a different percentage that reflects its 

importance in vulnerability (Table 7). 
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Table 7. The Results of the PCA of the Variables. 

Parameters Weight (%) 

Exposure Variable 68.70 

Sensitivity Variable 23.40 

Adaptive Capacity Variable 7.90 

The resulting HVI map is an exhaustive representation of the susceptibility of heat-related issues 

in Klang Valley. It indicates diverse levels of susceptibility distributed across multiple locations, 

which offer critical insights into spatial vulnerability patterns (Figure 7). 

 

Figure 7. The Heat Vulnerability Index (HVI) of Klang Valley using the PCA Method. 

1. Principal Equal-Weighted Index (EWI: HVI-EWI) 

In this method, all parameters within the Exposure, Sensitivity, and Adaptive Capacity Variables 

receive equal weight under EWI. This approach aims to achieve balance by considering all factors 

involved in heat vulnerability. Land Surface Temperature weighs and occupies 100%. This map 

is further partitioned into five divisions, which explicitly demonstrates the extent of heat exposure 

within the Klang Valley region, which serves as an excellent reference for the vulnerability 

assessment (Figure 8). 
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Figure 8. The Heat Vulnerability Index (HVI) of Klang Valley using the Equal-Weighted Index (EWI) 

Method. 

In this uniformity of weighting of the demographic parameters, the Sensitivity Map provides a 

global view of the sensitivity levels prevailing in that area (Table 9). 

Table 8. The Weightage Distribution for Sensitivity Variable. 

Parameters Weight (%) 

Population Density 12.50 

Elderly Population Density 12.50 

Very Young Population Density 12.50 

Median Age Population Density 12.50 

Female Population Density 12.50 

Male Population Density 12.50 

Citizen Population Density 12.50 

Non-Citizen Population Density 12.50 
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The following variable shall now be presented under the caption of Adaptive Capacity Variables. 

This variable coincides with the allocation of assistance known as equal-weightage and details 

how well it adapts to heat stressors within a particular district or subdistricts, if any exist (Table 

9). 

Table 9. The Weightage Distribution for the Adaptive Capacity Variable. 

Parameters Weight (%) 

Normalised Difference Vegetation Index (NDVI) 20 

Normalised Difference Water Index (NDWI) 20 

Slope 20 

Road Density 20 

Land Surface Albedo (LSA) 20 

HVI-EWI is arrived at through the proportionate allocation of weight among Exposure, 

Sensitivity, and Adaptive Capacity Variables (Table 10). The HVI map resulting from the overlay 

classification only allows to distinguish six categories of potential vulnerabilities of the 

Quelimane urban area, depicting not only the focal hot spots of Kuala Lumpur Himalayan 

Peninsular Geosites in Petaling and Klang but other regions such as Sabak Bernam, Hulu Selangor 

low in vulnerability levels; this integrative assessment underlined while extenuation of climate 

change vulnerability is the exposure, sensitivity and adaptive capacity aspect risk towards climate 

change (Figure 8). 

Table 10. The Weightage Distribution of the Heat Vulnerability Index Component. 

Parameters Weight (%) 

Exposure Variable 33.33 

Sensitivity Variable 33.33 

Adaptive Capacity Variable 33.34 

4.5. Heat Vulnerability Index (HVI): Comparative Analysis of Principal 

Component Analysis (PCA) and Equal-Weighted Index (EWI) 

Figure 9 presents a comparison between the Heat Vulnerability Index (HVI) as calculated using 

Principal Component Analysis (PCA) and the Equal-Weighted Index (EWI). The percentage area 

covered by each methodology for the five vulnerability categories is illustrated in Table 11. 

 

Figure 9. Comparison of EWI and PCA for HVI Analysis. a) HVI-EWI b) HVI-PCA. 



Forum Geografi, 39(2), 2025; DOI: 10.23917/forgeo.v39i2.8633  

Samsuddin, et al.                            Page 204   

Table 11. The Area Percentage Covered by Each Methodology. 

Method Value Percentage Area Covered (%) 

HVI-PCA 1 - Very Low 7.07 

2 - Low 12.87 

3 - Moderate 54.82 

4 - High 14.99 

5 - Very High 10.26 

HVI-EWI 1 - Very Low 6.62 

2 - Low 51.29 

3 - Moderate 26.85 

4 - High 15.22 

5 - Very High 0.024 

The resulting HVI map is a detailed representation of Klang Valley’s heat-related vulnerability 

landscape. The illustration of different levels of susceptibility spread across several places in order 

to provide useful indicators for understanding spatial vulnerability patterns is what makes this 

figure important. The paper provides an overview of the process and outcomes that go into 

calculating the Heat Vulnerability Index for Klang Valley, which include exposure, sensitivity, 

adaptive capacity, among others, and finally the HVI overall. 

Principal Component Analysis (PCA) and Equal-Weighted Index are two different methods used 

to assess heat vulnerability, with each being unique. In Table 12, we bring out the differences 

between PCA and EWI based on their methodological approach, impact on the estimation of heat 

vulnerabilities, as well as data characteristics. 

Table 12. The Reason for the Differences between PCA and EWI. 

Aspect Principal Component Analysis (PCA) Equal-Weighted Index (EWI) 

Approach Dimensionality reduction, identifying 

integrated variables from multiple 

indicators. 

Measures the distribution of variables, 

distinguishes the direction of influence, and 

adds variations with equal weights for the 

index. 

Impact on Heat 

Vulnerability 

Estimation 

The absolute values of the coefficients 

may differ due to incorporating many 

variables into the model for 

dimensionality reduction. 

Equal weighting of variables may influence 

results. 

In addition, it also brings out other factors when discussing how to choose between PCA or EWI, 

including considerations such as data characteristics influencing the choice of PCA or EWI and 

its use in the development of an HVI (Table 13). 

Table 13. The Dependence of Choices between Both Approaches. 

Aspect Principal Component Analysis (PCA) Equal Weighted Index (EWI) 

Data characteristics This is particularly useful when dealing with a 

large number of variables, aiming to identify the 

most critical components and explain variance. 

Gives equal importance to all variables in the 

index without emphasizing statistical 

characteristics. 

Application in the Heat 

Vulnerability Index 

Identifying key factors contributing to heat 

vulnerability by reducing dimensionality and 

identifying common factors. 

Creating an index that gives equal weight to all 

contributing factors without emphasizing 

statistical characteristics. 

Decision Factors Depends on the need to reduce dimensionality and 

identify integrated variables. 

Depends on the need to create an index with 

equal weight. 

Considerations Useful for large datasets and identifying key 

components. 

Appropriate for cases where equal weight to all 

variables is desired. 

Overall dependence The choice between PCA and EWI depends on specific analysis objectives and the nature of the data 

being assessed. 

The dual method approach demonstrates the value of both simplicity (EWI) and statistical rigor 

(PCA). EWI offers ease of interpretation and policy communication, while PCA enhances the 

accuracy and analytical strength of the index. The application of PCA in the Klang Valley 

provides a novel contribution by empirically identifying weight structures aligned with regional 

variability. This study contributes to the literature by: 

a. Introducing a comparative methodological analysis in a Southeast Asian context. 

b. Integrating triadic vulnerability components into a spatially explicit HVI. 
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c. Demonstrating the relevance of PCA for detailed and refined urban climate risk profiling. 

Both PCA and EWI offer complementary strengths for HVI development. PCA is best when data 

quality and availability are high, allowing for detailed and refined data-driven insights. EWI 

excels in settings requiring simplicity, stakeholder inclusiveness, or when data limitations exist. 

Choosing the appropriate method depends on your goals, audience, data availability, and context 

of application. In addition, the PCA technique also has the advantage of managing large datasets 

efficiently, which is crucial in handling complex data involving the Klang Valley. Apart from 

this, it enables the identification and prioritization of essential indicators by assigning unique 

weights based on their contribution to variance, thereby ensuring that major factors are duly 

stressed. Hence, the PCA method is aligned with the purposes of this study and serves as a strong 

one, backed up by an evidence-based approach to depicting vulnerability levels, rightly comparing 

them across various locations. 

On the contrary, the EWI Method is more straightforward compared to PCA; nonetheless, it 

cannot determine which indicator is more important. This will lead to an over-simplification of 

results, hence not capturing the varying degrees of impact each factor has on HVI. Given the 

uniform distribution of weights used in developing such an index, it may yield less accurate 

results. Therefore, this research will prefer PCA as its most suitable method. 

5. Discussion 

This study presents a context specific Heat Vulnerability Index for the Klang Valley using EWI 

and PCA approaches. While EWI facilitates straightforward application, PCA offers a more 

refined analysis of regional vulnerability dynamics. The integration of exposure, sensitivity, and 

adaptive capacity provides a comprehensive understanding of heat risks, supporting targeted 

climate adaptation and urban planning strategies. To summarize, this study successfully assessed 

the Heat Vulnerability Index (HVI) in Malaysia's Klang Valley region using both Principal 

Component Analysis (PCA) and Equal Weighted Index (EWI) approaches. The findings showed 

the importance of variables such as Land Surface Temperature (LST), population density, NDVI 

and NDWI, slope analysis, road density maps, and land surface albedo in evaluating heat 

vulnerability for both HVI-PCA and HVI-EWI. Weighted Overlay Analysis comprehensively 

investigated regional variations in exposure, sensitivity, and adaptive capacity across the Klang 

Valley. 

This study has several limitations. First, the availability and resolution of data constrained the 

selection of indicators, particularly for adaptive capacity and real-time health outcomes. Some 

socioeconomic data were only available at aggregated levels, which may mask intraurban 

variability. Methodologically, while PCA effectively reduces dimensionality, its reliance on 

statistical variance may overlook the context-specific relevance of certain indicators. Similarly, 

EWI assumes equal importance of all variables, which might not reflect the actual weight of each 

factor in influencing heat vulnerability. 

To reiterate, the original objectives of this study were to construct a heat vulnerability index for 

the Klang Valley using both EWI and PCA, and to compare the spatial outputs to identify 

vulnerable populations and regions. These objectives have been addressed through a systematic 

evaluation of vulnerability indicators and comparative mapping, yielding insights into regional 

heat risk dynamics and the applicability of both methodologies in urban Malaysian contexts. 

Based on the Exposure Variables of the HVI in the Klang Valley Area, temperatures range from 

15°C to 33.2°C, with the middle section having the greatest temperatures due to urbanization, and 

the northwest experiencing lower temperatures due to less urbanization. In terms of population 

density, female population density generally follows overall population density patterns, with 

higher concentrations in central locations. Male population density, on the other hand, follows a 

similar trend, albeit with significant variances, especially in the south. Furthermore, noncitizen 

population density is particularly concentrated in central regions, whereas Malaysian citizen 

density varies by district. Other considerations can certainly be valued added to the study, like the 

inclusion of existing or recurrent natural disasters (Dewa et al., 2023), indoor thermal comfort 

and air quality (Muhamad et al., 2024). 

NDVI values indicate lower vegetation density in the center regions and higher density in the 

northern parts, while color-coded maps provide a more nuanced picture of greenery distribution. 

NDWI values demonstrate that center regions are represented in blue, indicating water presence, 

while the peripherals appear in red, indicating drier conditions, emphasizing vulnerability to 

water-related difficulties. Slope study reveals topographic differences, with the northeast having 

greater elevations and steeper slopes than other places. Road density maps provide insight into 
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the infrastructure network, with key sections having higher densities than outlying places. This 

understanding is critical for determining mobility and access during extreme heat occurrences. 

For Land Surface Albedo, the middle region demonstrates multiple albedo ranges, reflecting 

distinct surface materials and their thermal properties, thus influencing heat vulnerability. 

The weighting of the parameters for HVI-PCA and HVI-EWI differs; for HVI-PCA, LST is the 

only parameter that affects exposure, while population density has the highest weighting for 

sensitivity. NDVI is the factor with the most weight in adaptive capacity. All in all, it shows 

different degrees of vulnerability dispersed throughout different places in the Klang Valley, 

providing crucial information about patterns of spatial vulnerability. On the other hand, HVI-EWI 

prioritises land surface temperature, giving it a weight of 100%. It also provides a detailed picture 

of the sensitivity levels in the region and equally distributes the weight of adaptive capacity to 

explain how adaptable the region is to heat stressors. Based on the HVI-EWI computation, core 

regions like Klang, Petaling, and Kuala Lumpur become hotspots of susceptibility, whereas Sabak 

Bernam and Hulu Selangor show lower degrees of exposure. The comparison between the 

outcomes of PCA and EWI methods underscored the differences in vulnerability assessments and 

the factors influencing these variations. However, PCA is the most appropriate for the HVI in the 

Klang Valley because it can handle big datasets, find important indications, and assign unique 

weights to each indicator, all of which are in line with the assessment's goals. To progress, 

maximal representativeness of indicators, consideration of social and behavioral characteristics, 

utilization of advanced analytical techniques, and interaction with the society in order to improve 

accuracy and inclusivity of the Klang Valley heat vulnerability assessments are necessary. 

This research contributes to the emerging field of proactive planning for heat waves as well as 

enhancing urban resilience by unveiling complexities surrounding human health under 

urbanization and climate change. For future research endeavors in this area, there is need to 

continue exploring innovative ways (Cresswell, 2023; Bayomi & Fernandez, 2023), long term 

(Kasihairani et al, 2024) and strategies that can help mitigate the challenges from extreme heat 

events and climate change so that ultimately promotes sustainable and healthy cities (Akbari et 

al, 2024).  Future studies could also expand on this framework by incorporating real-time climate 

data and validating the HVI with health outcome records to further enhance policy relevance. This 

study lays the groundwork for future undertakings in relation to heat vulnerability assessment. It 

highlights the significance of interdisciplinary partnerships between researchers together with 

community members for countering negative impacts of global warming on public health in cities. 

6. Conclusion 

This study developed and compared Heat Vulnerability Indices (HVI) for Malaysia’s Klang 

Valley using Equal Weighted Index (EWI) and Principal Component Analysis (PCA) approaches, 

offering new insights into how urbanization shapes heat risk. Both methods consistently identified 

land surface temperature, population density, vegetation cover, water availability, slope, road 

networks, and surface albedo as key drivers of vulnerability. The results show that urbanized 

districts such as Klang, Petaling, and Kuala Lumpur experience heightened susceptibility to heat, 

while less urbanized areas like Sabak Bernam and Hulu Selangor are less exposed. Among the 

two methods, PCA proved particularly effective in handling complex datasets and assigning 

context-specific weights to indicators, producing a more nuanced understanding of spatial 

vulnerability patterns than the uniform weighting assumed by EWI. At the same time, the study 

acknowledges its limitations. Data availability and resolution constrained indicator selection, 

particularly for adaptive capacity and health outcomes, while methodological assumptions may 

have simplified real-world dynamics. These findings highlight the need for future research to 

integrate real-time climate and health data, apply more advanced analytical techniques, and 

engage directly with local communities to ensure assessments reflect lived experiences. By 

providing a robust, context-sensitive picture of heat vulnerability, this research contributes to 

proactive urban planning and climate adaptation in Malaysia. It underscores that addressing heat 

risk is not only a technical exercise but also a social and collaborative endeavor that one that 

benefits from interdisciplinary partnerships, policy relevance, and public engagement to build 

healthier, more resilient cities in the face of climate change.. 
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