
Ramachandra, et al.  Page 136   

 
 

HTTPS://JOURNALS.UMS.AC.ID/INDEX.PHP/FG/ 
ISSN: 0852-0682 | E-ISSN: 2460-3945 

Research article 

Sustainable Management of Natural Resources at Disaggregated Levels with 

Insights from Landscape Dynamics 

T V Ramachandra1,2,3*, Paras Negi1, Tulika Mondal1, Bharath Setturu1,4 

1 Energy & Wetlands Research Group, CES TE 15, Environmental Information System, Center for Ecological Sciences 

(CES) Indian Institute of Science, New Bioscience Building, Third Floor, E-Wing, (Near D-Gate), Bangalore 560012, 

India; 2 Centre for Sustainable Technologies (Astra), Indian Institute of Science, Bangalore 560012, India; 3 Centre for 

Infrastructure, Sustainable Transportation and Urban Planning (CiSTUP), Indian Institute of Science, Bangalore, Karna-

taka 560012, India; 4 School of Mathematics and Natural Sciences, Chanakya University, Bengaluru, Karnataka, India. 

*) Correspondence: tvr@iisc.ac.in 

Abstract 

The burgeoning population, coupled with the resource demand and alterations in the climatic regime, have 

been posing serious challenges for the sustenance of natural resources. Natural Resource Rich Regions 

(NRRRs) are areas endowed with abundant natural resources, which maintain ecological balance and eco-

nomic activities. These regions are pivotal for supporting the livelihoods of local communities by providing 

essential ecosystem services and resources. However, land degradation leading to deforestation due to un-

planned developmental activities has escalated the carbon footprint, aggravated the vagaries of the climate, 

and posed significant challenges, especially for communities reliant on fragile, arid, and semi-arid ecosys-

tems. The nexus of socio-economic disparity, persistent poverty, and unplanned developmental activities 

often poses severe challenges for realizing full economic potential with environmental sustainability. Land 

use (LU) changes with urbanization and agricultural expansion, leading to fragmentation, habitat loss, de-

cline of native species, and disruption of ecological processes with a potential decline of biodiversity. The 

arid region in the northern part of Karnataka, located in Southern India, has been experiencing a sharp decline 

in the groundwater table due to frequent droughts and excessive groundwater extraction. The current study 

unveils actionable solutions for sustainable management of natural resource-rich regions by meticulously 

analyzing the nexus between rapid development, LU modifications, and their subsequent environmental 

ramifications. LU transitions are quantified using temporal-spatial data acquired through space-borne sen-

sors through supervised machine learning classifiers based on the non-parametric algorithm Random Forest 

(RF). Land use dynamics assessment reveals that paved surfaces (area under buildings, roads) have increased 

from 186.22 sq. km (in 1973) to 1085.12 sq. km (in 2022). The study area has degraded forest patches, and 

the estimation through fragmentation metrics reveals that the intact forest has shown a decline from 3252.39 

sq. km (1973) to 1508.12 sq. km (2022). The forests have continuously decreased from 2,154.20 sq. km 

(1973) to 1,096.34 sq. km (2022). In Northern Karnataka, the prioritization of NRRRs highlights the status 

of resource availability, with highly resource-rich zones represented by NRRR1 (67 grids) and NRRR2 (127 

grids), followed by NRRR3 (304 grids) with moderate resource potential, and NRRR4 (522 grids) encom-

passing areas with comparatively scarcer resources. The prioritization of natural resource-rich regions em-

phasizes the need for prudent land management strategies, with holistic and integrated approaches consider-

ing social, economic, and environmental issues with degrees of sensitivity across arid regions. 

Keywords: Natural Resource Rich Regions (NRRRs); arid regions, Land Use Land Cover (LULC); Machine 

Learning (ML); Random Forest (RF); landscape modelling. 

1. Introduction 

Anthropogenic-induced unplanned land use (LU) changes have contributed to land degradation 

and deforestation, which have impaired environmental quality and depletion of natural resources, 

posing critical challenges necessitating immediate interventions with prudent LU policies. The 

burgeoning demand of the swelling population has exerted pressure on the sustenance of natural 

resources, raising concerns about the potential exhaustion of finite resources with accelerating 

environmental degradation (Huo and Peng, 2023). Unrealistic pushes for economic development 

for short-term gains have been altering the fragile ecosystem integrity, leading to cascaded envi-

ronmental consequences with land degradation, air and water pollution, deforestation, and soil 

erosion (IPCC, 2007). These environmental burdens pose a significant risk of negating the pur-

ported benefits of increased production and output, potentially jeopardizing the long-term well-

being of future generations (World Bank, 2020) and necessitating a fundamental shift towards a 

sustainable development path. 

Land degradation refers to irreversible degradation with a decline in productivity due to the dete-

rioration of ecosystem functions (Bai et al., 2008; del Barrio et al., 2021). Alterations in the phys-

ical and chemical integrity of ecosystems due to direct and indirect anthropogenic influences have 

affected the biotic integrity (Chalise et al., 2019; Olsson et al., 2019). The expansion in agriculture 

and infrastructure, driven by the rapid increase in population, has accelerated the transitions in 

land cover (LC), leading to degradation (Wassie, 2020). Primary land degradation processes have 
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resulted in vegetation decline, soil salinization, soil erosion, aridity, and the decline in organic 

carbon (Cherlet et al., 2018; Prăvălie et al., 2021), which are widely acknowledged as significant 

degradation forms in arable lands. Land degradation leading to vegetation decline indicates sig-

nificant biomass loss and the consequent erosion in carbon sequestration capability (Mirzabaev et 

al., 2019; Olsson et al., 2019; Prăvălie et al., 2023). LC refers to the physical characteristics of 

the land surface, such as vegetation and non-vegetation. LU refers to the anthropogenic use of the 

land for various activities, such as agriculture, etc. (Ramachandra et al., 2022, 2023a). LU assess-

ment helps in assessing the spatial extent of forests, agriculture, and other land use types. LU 

changes leading to deforestation and land degradation that alter the landscape structure, affecting 

ecosystem health, degrading ecosystems, shrinking habitats, and breaking them into smaller frag-

ments, which results in the loss of biodiversity (Haddad et al., 2015; UNCCD, 2016a and 2016b). 

Human-dominated actions, especially for economic purposes, reshape the landscape and cause a 

large-scale decline in biodiversity. LU changes are complex, triggering reactions in the system 

and increasing the environmental challenges affecting livelihood (Lambin et al., 2003). 

The transition from farmland to abandoned barren land is governed by macro and micronutrient 

content alterations in soil with climatic conditions in arid regions (Evans and Belnap, 1999; 

Kosmas et al., 2000). In arid areas, continuous monitoring of LU modifications with physical and 

chemical attributes (of soil) helps to evaluate ecological risk at the regional scale. Monitoring 

environmental factors provide insights into theoretical frameworks toward effective LU manage-

ment with mitigation strategies for lowering regional ecological risks (Zhang et al., 2019). Cli-

mate change predictions have shown a rise in extreme climate events like floods, droughts, trop-

ical storms, frosts, and heat waves (IPCC, 2013; Pontifes et al., 2018). The arid and semi-arid 

regions with high temperatures and lower or scanty rainfall are vulnerable to these combined ef-

fects with the enhanced risk of desertification (Pontifes et al., 2018). The consequences of climate 

change are a decline in ecosystem services, resulting in predominantly adverse effects on liveli-

hoods, human health, and overall well-being (van der Geest et al., 2019; Liu et al., 2022). This 

effect is especially pronounced in semi-arid regions with limited adaptive capabilities (Mirzabaev 

et al., 2022).  

About 30% of the Earth's land surface has been identified as arid or semi-arid, and half of this 

land is utilized for pastoral or agricultural purposes, contributing significantly to the regional 

economy. In addition, these regions are endowed with minerals, which offer opportunities for the 

utilization of minerals for economic well-being and social advancement. However, unplanned 

extraction and exploration of these minerals would result in extensive environmental and societal 

impacts with inadequate management of processes that may lead to enduring effects (Gratzfeld, 

2003; Scholes, 2020). Considering the looming threat of changes in the climate, the focus now is 

on the sustenance of ecosystem services, with an understanding of the dynamic interaction of 

human societies with ecosystems at a local scale (Turner et al., 2016; Yang et al., 2020; Sun et 

al., 2021). 

Karnataka State consists of a vast expanse of arid and semi-arid landscapes highly susceptible to 

climate change, which is evident from the recurring droughts over the past twenty years. In addi-

tion to these challenges, destructive floods, hailstorms, lightning, and thunderstorms during the 

pre-monsoon season have significantly damaged agriculture, particularly horticultural crops. 

These recurring calamities have contributed to food insecurity and illnesses, leading to chronic 

and acute undernutrition among the population. The cumulative economic loss due to these natural 

disasters is estimated at 1926.82 billion INR. Furthermore, the arid regions in the state, particu-

larly in the North Interior Karnataka region, experience regular heat waves, as temperatures during 

the March-June period over the past two decades have shown a discernible upward trend, exacer-

bating stress-related health issues and fatalities (Economic Survey of Karnataka, 2022; 2023).  

The significant progress in geoinformatics with the availability of temporal-spatial data (satellite 

remote sensing data) and machine learning techniques prove invaluable with the availability of 

LULC information, which is crucial for analyzing the status of natural resources and for formu-

lating policies aimed at conserving natural resources for the attainment of the sustainable devel-

opment goals (SDGs) related to food, nutrition, economic and environmental security (Rai et al., 

2022; Bell et al., 2023). Remote sensing data provide spatial, spectral, and temporal information 

that is essential for monitoring natural resources through inventorying and mapping at a local and 

regional scale (West et al., 2019) despite constraints of differing scales, a shortage of specific 

spatial or temporal details, and inconsistent time series (Pongratz et al., 2018). Classification of 

LULC can be very challenging in arid and semi-arid regions due to significant spectral similarities 

between urban and non-urban features (Lasanta and Vicente-Serrano, 2012; Drusch et al., 2012; 

Wambugu et al., 2021; Ali and Johnson, 2022). Different classification techniques for LU map-

ping include traditional parametric classifiers such as ISO Clustering, Bayesian, and Maximum 
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Likelihood (Strahler, 1980; Otukei and Blaschke, 2010). Compared to this, non-parametric meth-

ods do not rely on either parameters or associated data distribution, making them increasingly 

adapted techniques (Evans et al., 2011; Ahmadi et al., 2020; Mancino et al., 2023). Machine 

Learning (ML) is pivotal in assessing landscape dynamics and is most applied to pattern recogni-

tion (Talukdar et al., 2021). ML techniques include Support Vector Machine (SVM), Decision 

Tree (DT), Random Forest (RF), Light Gradient Boosting Machine methods, and K-Nearest 

Neighbor (KNN) to analyze spatial data, derive information for acquiring knowledge to make 

well-informed decisions (Wang et al., 2022). 

An ensemble learning algorithm-based classifier, RF, is one of the widely used ML algorithms 

for LU classification (Breiman, 2001) and has overcome the problem of overfitting and instability 

in classification (Nguyen et al., 2020; Adugna et al., 2022). RF does process multi-dimensional 

data classification with minimal generalization errors (Belgiu and Drăguţ, 2016) and achieves 

higher accuracy even when applied to data with noise (Rodriguez-Galiano et al., 2012; Tian et 

al., 2016; Ramachandra et al., 2022, 2023a). Prediction and geovisualization of likely LU changes 

are crucial in effective landscape management. Dynamic representations of the LU and LC based 

on different scenarios and data sources can be created through this method, and it can provide 

valuable insights and guidance for landscape managers and decision-makers to formulate proac-

tive strategies for conservation, urban planning, and sustainable resource management (Rama-

chandra et al., 2023b). The CA integrated Markov chain model has outperformed all prediction 

models. The CA–Markov model is used extensively in modeling LULC dynamics and prediction 

(Beroho et al., 2023). The CA-Markov method can predict multidirectional LU changes encom-

passing all available LU categories (Pontius and Malanson, 2005).  

Natural resource-rich regions (NRRRs), especially in developing countries, despite harboring the 

potential for economic growth, encounter challenges of the inequitable distribution of develop-

ment benefits and over-exploitation. NRRRs are endowed with abundant natural assets that sig-

nificantly influence ecological balance and economic activities. These regions are pivotal for sup-

porting the livelihoods of local communities by providing essential ecosystem services and re-

sources (Wassie, 2020; Ramachandra et al., 2024; Ramachandra and Negi, 2025). The nexus of 

socio-economic disparity, persistent poverty, and unplanned developmental activities for realizing 

full economic potential (Sugiri, 2009) often poses severe challenges to environmental sustaina-

bility. The growing understanding of the complex linkages of effective natural resource manage-

ment and environmental sustainability necessitates robust prioritization frameworks for LU allo-

cation. The traditional models employing economic models, trend analysis, and scenario building 

have served a purpose, but the lack of reliability underscores the need for more advanced ap-

proaches. Therefore, developing and implementing refined tools that leverage comprehensive and 

accurate data is crucial for identifying NRRRs considering ecological, bio-geoclimatic, and social 

factors, ensuring equitable and sustainable LU decision-making.  

The current study identifies the NRRRs in arid and semi-arid regions of Karnataka, considering 

social, biological, geo-climatic, and ecological factors. Prioritization of NRRRs in arid regions 

through environmental, economic, and social considerations would aid in unlocking NRRRs’ po-

tential for sustainable development, improving livelihoods, and building resilient communities. 

This research aims to: a) assess the spatiotemporal patterns of LU and LC in arid and semi-arid 

landscapes using temporal remote sensing data, b) evaluate the extent and condition of forest 

ecosystems from 1973 to 2022, c) predict likely LU changes by 2030 and 2038, and d) identify 

NRRRs at disaggregated levels by considering geo-climatic, ecological, biological, and social 

factors. 

2. Research Methods  

2.1. Study Area 

The study was carried out in arid and semi-arid landscapes of Northern Karnataka, located be-

tween 13° 34' and 18° 28' N and 74° 59' and 77° 41' E across districts Vijayapura, Chitradurga, 

Bagalkot, Koppal, Bellary, Raichur, Kalaburagi, Yadgir, and Bidar covering an area of 71149.04 

km2 (Figure 1). The study area is a part of the Krishna Basin, situated on the Deccan Plateau at an 

elevation between 300 and 730 meters. The landscape is predominantly black and red soils, cate-

gorized as shallow, medium-deep, and deep, which supports the cultivation of key crops like green 

gram, pearl millet, sunflower, pigeon pea, sorghum, chickpea, and rabi sorghum. LU in the region 

is dominated by agriculture, fallow areas, wastelands, and degraded forests, with most of the ter-

rain exhibiting slopes of less than 5%.  
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North Karnataka's hydrological network consists of the Krishna River Basin (Krishna River and 

tributaries, Bhima, Ghataprabha, Malaprabha, Vedavathi, and Tungabhadra), and the Godavari 

River Basin (Manjira and Karanja). These rivers serve as vital water resources for agriculture and 

support riparian ecosystems throughout the region.  

This ecoregion extends northward into eastern Maharashtra, highlighting the ecological intercon-

nectedness of the area. The region receives most rainfall during the monsoon season from June to 

September, ranging from 370 to 4200 mm annually. The region is also characterized by high 

temperatures, with summers often exceeding 40°C. Rising temperatures during March-June, es-

pecially in recent decades, have exposed North Karnataka to increasingly frequent heatwaves, 

posing a significant challenge to human and animal health. This region is prone to severe floods 

in the Krishna River basin.  

The region possesses a rich historical legacy, evidenced by powerful dynasties (Kadamba, Rash-

trakuta, Chalukya) and flourishing literary figures (Pampa, Ponna, Ranna). Extreme climatic 

events, high rates of anemia (50% in women, 65.5% in children), and malnutrition, particularly in 

districts like Kalburgi, Raichur, Yadgir, Koppala, Ballari, Bidar, and Gadag, further exacerbate 

the challenges. It is divided into two distinct sub-regions, Hyderabad-Karnataka (Bidar, Kala-

buragi, Raichur, Yadgir, Bellary, and Koppal) and Mumbai-Karnataka (Vijayapura, Bagalkote), 

with lower socio-economic development.  

 

Figure 1. Study Area– Northern Karnataka arid regions, India. 

2.2. Data 

Spatial analyses were carried out using remote sensing (RS) data and collateral data. Temporal 

remote sensing data of Landsat MSS, TM, OLI-1, and OLI-2 were acquired from the spatial data 

portal of the United States Geological Survey (USGS - https://earthexplorer.usgs.gov/) for the 

1970s, 1980s, 1990s, 2000s, 2010s, and 2020s, detailed in Supplementary Table 1. The Landsat 

program has been operational since 1972 and offers the most extensive medium spatial resolution 

satellite data collection. It has been extensively used in the assessment of LULC. The datasets 

were carefully chosen to ensure minimal cloud coverage (<10%). The data were pre-processed to 

rectify geometrical and radiometric discrepancies in the Google Earth Engine (GEE) Platform 

(https://earthengine.google.com/). Region-specific taluk and district administrative boundary 

maps were obtained from the K-GIS portal (https://kgis.gok.in).  

Training data for LU classification were gathered from various locations within the study area 

using a handheld pre-calibrated global positioning system (GPS), online spatial portals (Google 

Earth - https://earth.google.com), and Bhuvan (https://bhuvan.nrsc.gov.in) with high-resolution 

remote sensing data. All these datasets corresponding to the study area were reprojected to a com-

mon geodetic datum, the World Geodetic System 1984 (WGS84), and Universal Transverse Mer-

cator (UTM) within 43N zones, ensuring consistency in mapping. Road networks were extracted 

from Survey of India topographic maps at scales of 1:50,000 and 1:250,000 
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(https://www.surveyofindia.gov.in). The study considered Virtual online spatial maps such as 

Bhuvan (http://bhuvan.nrsc.gov.in) and high-resolution Google Earth (http://earth.google.com) to 

validate classified thematic maps.  

Ecological, biological, geo-climatic, and resource data were compiled through field investiga-

tions, review of published literature, and reports. Elevation and slope maps were derived from the 

Shuttle Radar Topography Mission (SRTM) data with a 30-meter resolution 

(https://earthdata.nasa.gov). 

2.3. Method 

Figure 2 outlines the protocol for delineating NRRRs at disaggregated levels across the arid re-

gions of North Karnataka. This entails (i) division of the study region into grids of 5’× 5’ (or 9 

km × 9 km), (ii) land cover and land use analyses, (iii) assessment of the condition of forests 

through fragmentation metrics, (iv) prediction of likely LUs, (iv) delineation of NRRRs at dis-

aggregated levels (grids). 

 

Figure 2. Method adopted for data analysis. 

2.4. Land cover and Land use 
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The Normalized Difference Vegetation Index (NDVI) characterizes vegetation cover by assessing 

the difference in reflectance in the visible and near-infrared spectrum (land cover). It is widely 

employed for monitoring vegetation dynamics on various scales (Tucker, 1979; Ashok et al., 

2021). NDVI is exceptionally responsive to red reflectance, strongly influenced by density and 

green cover, whereas NIR reflectance is impacted by density alone, not green cover (Bremer et 

al., 2011). Utilizing the red and NIR bands of Landsat data, NDVI values are computed, ranging 

from -1 to 1; values below zero signify dormant seasons (e.g., bare land, open land, cloud cover, 

snow, water bodies), while values above zero indicate vegetation cover during the growing sea-

son. Equation 1, detailed below, is used for the computation of NDVI. 

𝑁𝐷𝑉𝐼 =   ((𝑁𝐼𝑅 −  𝑅𝐸𝐷)) ⁄ ((𝑁𝐼𝑅 +  𝑅𝐸𝐷)) (1) 

NIR and RED denote the electromagnetic spectrum corresponding to near-infrared and red wave-

lengths. The vegetation and non-vegetation have been categorized based on a threshold value 

(Supplementary Table 2). LU analysis involves generating FCC (false color composites) from 

remotely acquired data bands (NIR, Red, and Green) to identify heterogeneous landscape patches. 

The current study collected training polygons from the field using pre-calibrated handheld global 

positioning systems (GPS) and high spatial resolution data from Google Earth. Chosen training 

polygons represent all LU classes, covering 15% of the study, and are uniformly distributed 

throughout the study area. The attribute information for these training polygons was collected 

from the field using precalibrated handheld GPS devices and high spatial resolution data from 

Google Earth. 

70% of training polygons are used for supervised classification, while the remaining (30%) are 

used for testing (Nguyen et al., 2021). Spatial data (RS) were classified using a supervised ma-

chine learning algorithm, RF (Supplementary Figure 1a). RF is a novel technique employing a set 

of classifiers or a collection of multiple decision tree predictors. Each tree is constructed based on 

the randomly sampled feature vectors with replacement. It is independently generated with a uni-

form distribution shared across all decision trees to acquire high training data accuracy and en-

hance generalization accuracy as their complexity increases (Supplementary Figure 1b). These 

multiple classifiers are typically aggregated through a plurality voting scheme known as bagging 

(Breiman 1996). 

RF can effectively handle multi-dimensional data while employing a substantial number of trees 

within the ensemble (Ramachandra et al., 2022, 2023a). RF requires a significant amount of 

memory due to the storage of an N by ntree matrix in memory, and it is not computationally 

intensive; the trees are constructed without pruning (Gislason et al., 2006; Rodriguez-Galiano et 

al., 2012). The computational time for RF is computed as per Equation 2. 

𝑐 ∗ 𝑛𝑡𝑟𝑒𝑒𝑀𝑁 𝑙𝑜𝑔(𝑁) (2) 

Where c is the constant, 𝑛𝑡𝑟𝑒𝑒 represents the number of trees, M is the number of features, and 

N is the number of samples. A majority vote among the trees is employed in the prediction of the 

class of observation in the RF model. As ntree and M are two main hyperparameters in random 

forest, optimization of these parameters’ aids in an increase in model accuracy. Increasing these 

parameters generally improves model performance but also increases computation time. The cur-

rent study considered the 𝑛𝑡𝑟𝑒𝑒 based on the iterative method, ranging from 50 to 500 with an 

interval of 50, and prioritized 300 trees for best performance. M was considered as its default 

value (√M). Classified LU is validated using training data (30%) through computation of overall 

accuracy, producer accuracy, user accuracy, and kappa statistics. 

2.5. Land Use Modelling 

Markov chain (MC) analysis represents a heuristic modeling approach, which has been exten-

sively used to examine LU change dynamics across various spatial scales (Halmy et al., 2015). A 

Markov chain operates based on the principles of the probability of a system assuming a particular 

state at a given time can be ascertained based on its known prior state (Rimal et al., 2018). Markov 

chain analysis involves the development of a transition probability matrix that accounts for LU 

change between two distinct periods (Fu et al., 2018). The Markov chain model does not account 

for changes in spatial distribution. The cellular automata model, which is a spatially explicit 

model, can overcome these shortcomings by representing spatial attributes in mapping LU change 

compared to non-spatial models (Guan et al., 2011). An integration of CA and Markov Chain 

(CA-Markov) model aids in predicting likely LU changes (Rimal et al., 2017), based on the tran-

sition probability. A Markov chain determines the distribution of the LU class to another from 

time t to t+1 (Setturu and Ramachandra, 2021). The CA model detects changes in the spatial 

distribution at the cell level and captures interactions with neighboring cells. The Markov chain 
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model enables the prediction of future spatiotemporal modifications (Equation 3) (Tariq et al., 

2023; Wang et al., 2022). 

𝑆(𝑡 + 1) =〖 𝑃〗_𝑖𝑗  ∗ 𝑆(𝑡) (3) 

Where S represents the LU status at time t, S(t+1) denotes the LU status at time t+1, 𝑃𝑖𝑗 stands for 

the transition probability matrix within a specific state.  

This matrix (Equation 4) is computed as described in previous studies (Singh et al., 2021). 

𝑃𝑖𝑗 =

[
 
 
 
 
𝑃11 𝑃12 𝑃13 … … 𝑃1𝑛

𝑃21 𝑃22 𝑃23 … … 𝑃2𝑛

… … … … … …
… … … … … …
𝑃𝑛1 𝑃𝑛2 𝑃𝑛3 … … 𝑃𝑛𝑛]

 
 
 
 

 (4) 

Where P represents the transition probability, where  𝑃𝑖𝑗  signifies the probability of transitioning 

from state i to another state j in the subsequent period.  𝑃𝑛  denotes the state probability at any 

given time. In this context, states with a low transition rate tend to have a probability close to 0, 

whereas high-growth states tend to have probabilities approaching 1 (Mumtaz et al., 2020). Model 

validation: The accuracy of the model was validated by comparing current LU map of 2022 (ref-

erence map) with the simulated map of 2022. This validation process utilized an integrated VAL-

IDATE module within IDRISI Selva 17.02 software (https://idrisi-selva.software.informer.com/)  

to assess the level of agreement between the classified and the simulated maps. The agreement 

metrics are based on the widely recognized Kappa Index of Agreement (KIA), which includes 

various metrics such as Kappa for location Strata (𝐾locationStrata), Kappa for location (𝐾location), 

and Kappa for no information (𝐾no). 𝐾no was employed to assess the overall agreement between 

the proportions of the reference and modeled maps, which evaluated the precision of the spatial 

attributes, quantity, and locations of grid cells within specific LULC class categories (Ozturk, 

2015).  

2.6. Forest Fragmentation 

An analysis of forest fragmentation quantifies the condition of forests, which determines the ex-

tent of structural and compositional changes in the forest ecosystem. The condition of forests in 

the study region is assessed through the computation of fragmentation indices, 𝑃𝑓 , representing 

the proportion of forest pixels to non-water pixels (𝑃𝑓 ) and 𝑃𝑓𝑓  represents the proportion of car-

dinal pixel pairs (both forest pixels) to pairs with at least one forest pixel (Riitters et al., 2000; 

Riitters et al., 2004; Ramachandra et al., 2016).  

This aided in assessing the condition of forests through pixel categorization based on the type of 

fragmentation (details are provided in Supplementary Table 3), as interior forest (𝑃𝑓 = 𝑃𝑓𝑓  =1), 

transition (pertaining to pixels with 𝑃𝑓 <0.6 and 𝑃𝑓 >0.4), patch forest (for pixels with 𝑃𝑓 < 0.4), 

perforated forest (applicable to pixels with 𝑃𝑓 > 0.6 and (𝑃𝑓 – 𝑃𝑓𝑓 ) < 0), edge forest (relevant for 

pixels with 𝑃𝑓 > 0.6 and (𝑃𝑓 – 𝑃𝑓𝑓 ) > 0), non-forest pixels encompass all pixels not classified as 

forest cover. This classification scheme serves as a structured framework for analyzing different 

types of forest fragmentation, providing a nuanced understanding of the diverse spatial patterns 

within the study area.  

2.7. Prioritization of Natural Resource Rich Regions (NRRRs) 

Analyzed hydrological, biological, geo-climatic, and socio-economic details at disaggregated lev-

els in the arid region of Northern Karnataka for identifying Natural Resource Rich Regions 

(NRRRs). The region was divided into grids of 5′ × 5′ equivalent to approximately (9 × 9) km2 

(Ramachandra et al., 2018), comparable to grids in the 1:50000 scale topographic maps (the Sur-

vey of India, Government of India). The spatial extent and occurrence of features for each variable 

have been assessed at the grid level, and the variable is assigned a weight based on the relative 

worth. This approach aided in combining multiple datasets and their significance in the landscape 

details in Supplementary Table 1. Weights for variables were assigned as per Supplementary Fig-

ure 2 and aggregated for each grid, as per Equation 5. The study area was grouped into four zones 

considering aggregated weights, which also highlights the ecosystem condition based on the avail-

ability and vulnerability of natural resources: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑎𝑔𝑒 = ∑ 𝑊𝑖𝑉𝑖

𝑛

𝑖=1

 (5) 
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where n is the number of factors or variables, 𝑊𝑖 is the weight associated with criterion i, 𝑉𝑖 is the 

associated value with that criterion. 

Based on the aggregate weightage matrix, the study region is classified into four zones (NRRR 1 

to 4). NRRR 1 represents natural resources rich region, requiring strict conservation and protec-

tion measures, NRRR 2 is less sensitive than NRRR 1, except for the degradation of some natural 

resource patches. NRRR 3 represents a moderate resource region, and NRRR 4 represents lower 

sensitivity with erosions in the ecosystem conditions. 

3. Results and Discussion 

3.1. Land Cover Analyses  

The long-term analyses of LC changes using NDVI of the northern arid regions of Karnataka have 

been done to delineate the spatial extent of vegetation. The area under vegetation has shown an 

increasing trend, as depicted in Figure 3, increasing from 32.79% (in 1973) to 53.35% (in 2022), 

which suggests the intensification of agricultural and horticultural practices with increased water 

availability due to the construction of multiple reservoirs. The area under non-vegetation has 

shown a consistent decrease over the decades, from 67.21% (in 1973) to 46.65% (in 2022), as 

open spaces, including fallow land, were converted into croplands, horticultural lands, agrofor-

estry, and forest plantations. The area under non-vegetation would decrease as detailed in Supple-

mentary Table 4.  

 

Figure 3. The spatial extent of vegetation (LC) was assessed through NDVI in Northern Karnataka's arid 

region (1973 to 2022). 
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3.2. Land Use Analyses 

Temporal LUs (1973 to 2022) of the Northern arid regions of Karnataka illustrate that a predom-

inant agrarian landscape has undergone intense anthropogenic changes since 1996 due to global-

ization and liberalization. The overall accuracy of the remote sensing analysis is 96% and the 

kappa coefficient is 0.91 (Supplementary Table 5). Highly elevated hills and plateaus are covered 

with dry deciduous forest and scrub forest in the lower regions of Chitradurga, Bellary, Koppal, 

and Bagalkote districts. Dry deciduous forest extent has shown a continuous trend of decrease 

(depicted in Figure 4), from 2,154.20 sq. km (1973) to 1,096.34 sq. km (2022), and details are 

provided in Supplementary Table 6. Scrub land, prevalent in semi-arid ecosystems, has shown a 

similar reduction, declining from 5,650.74 sq. km (7.94%) in 1973 to 2,260.19 sq. km (3.18%) in 

2022. Bellary district has a reasonable spatial extent of dry deciduous forests in the Sandur forest 

range of Sandur taluk, and rampant iron ore mining in the Sandur taluk has impaired the integrity 

of forest ecosystems. These declines are attributed to land conversion for agriculture (witnessed 

in the Yadgir Reserved Forest area) and urban development. Some areas of degraded deciduous 

forest have been converted into scrubland. 

 

Figure 4. Land use analysis in Northern Karnataka's arid region (1973 to 2022). 

The study region is principally agrarian, and Bellary, Raichur, and Koppal districts are popularly 

known as the “rice bowl of Karnataka”. The extent of agricultural land increased from 78 % (in 

1973) to 83.11% in 2022. The study area is enriched with the Krishna, Tungabhadra, Bhima, and 

Godavari rivers. The study region has witnessed a shift toward wet cultivation with enhanced 

water security due to multiple irrigation projects with the implementation of reservoirs like Al-

matti Reservoir, Basava Sagar Reservoir (Narayanpura), Karanja Reservoir, Jurala Reservoir, 

Vani Vilas Sagar in this region. The spatial extent of water bodies has increased markedly from 

494.93 (1973) to 1,397.68 (2022) sq. km. The increased water security has expanded horticultural 

land from 1,089.35 sq. km (1.53%) in 1973 to 4,198.58 sq. km (5.90%) in 2022.  The expansion 

of paved surfaces (built-up) from 186.22 sq. km (in 1973) to 1085.12 sq. km (in 2022) in the 

district reflects urbanization and infrastructure development. Cities are expanding due to 
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urbanization in the core area and sprawl in the peri-urban area, with good connectivity of road 

networks. The growth of various industrial layouts in the core area aided as a catalyst for the 

expansion of the urban centers. Paved surfaces (built-up) in rural areas have been increasing at a 

constant rate. 

Mining of iron ore is rampant in the Sandur-Hospet region of Bellary district, which is rich in iron 

ore reserves, and has increased post-2005, covering around 27.31 sq. km (in 2022). Plantation of 

exotic species like Acacia auriculiformis, Acacia catechu, Tectona grandis, Eucalyptus globulus, 

Casuarina equisetifolia L., and others have been increasing, reaching 131.08 sq. km (in 2022). 

3.3. Forest Fragmentation Analyses 

Forest ecosystems in the arid region of North Karnataka are undergoing fragmentation due to 

anthropogenic activity, with LU changes leading to land degradation. Fragmentation analysis em-

phasizes the loss of intact forest cover. The study area comprises degraded forest patches, and the 

results of fragmentation metrics also reveal that the interior/intact forest has declined from 

3,252.39 (in 1973) to 1,508.29 sq. km (in 2022), and details are provided in Supplementary Table 

7. Figure 5 highlights that the spatial extent of non-forests has increased from 63,819 (1973) to 

66,543 sq. km (2022). 

 

Figure 5. Forest Fragmentation in the arid region of North Karnataka (1973 to 2022). 

3.4. Prediction of Land Uses for 2030 and 2038  

Predictions of likely LU indicate the impact of the current rate of LU transitions in the next two 

decades with the help of CA-Markov techniques. Modeling is validated by comparing the simu-

lated LU with the actual LU of 2022 and the computation of Kappa statistics. Kappa of 0.9 to 0.95 

suggests agreement between the predicted and actual LU with high efficiency. The simulated LU 

showed a very minimal overestimation of water bodies in 2022.  

The predicted LUs depicted in Figure 6 and details given in Supplementary Table 8 show a likely 

increase in built-up to the extent of 6.23% (in 2030) and 7.17% (in 2038). The likely built-up 

increase will be due to the rise in food processing, the food and beverage sector, and the expansion 
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of roads or highways. The decline of scrubland to 11.63% and dry deciduous to 1.04% (in 2038) 

in a business-as-usual scenario highlights the likely continuation of forests and scrublands. 

 

Figure 6. Land use simulation of 2022, 2030, and 2038. 

3.5. Prioritization of NRRRs  

Prioritization of NRRRs in the northern arid regions of Karnataka at disaggregated levels (grids 

and villages) was done through integrated assessment considering bio-geo-climatic, land, ecol-

ogy, energy, environmental, and social variables compiled through field investigations and sup-

plemented with the review of published literature. Weights were assigned to these variables at 

grid levels based on the relative significance at disaggregated levels.  

Dry deciduous forests and scrubland in the hills of Chitradurga, Bellary, Bagalkolte, and Raichur 

account to 15% to 60% (Supplementary Figure 3a). Forest degradation in Vijaypura, Kalaburgi, 

and Yadgir is due to anthropogenic pressures with agricultural expansion. The intact/interior for-

ests (Supplementary Figure 3b) are confined to higher-elevation regions and protected areas. 

The ecological variables like endemic flora, fauna, forest biomass, species abundance, species 

diversity (Shannon diversity), and the presence of conservation reserves in the Northern Arid 

Karnataka were assessed, and Supplementary Figures 4a and 4b give the spatial distribution of 

flora and fauna, respectively. Shannon’s diversity ranges from 1 to 2.5 (Supplementary Figure 

4c), and Supplementary Figure 4d depicts species that range from 50 to 200. The region has dense, 

dry deciduous forests with a carbon sequestration potential up to 300 Gg (Supplementary Figure 

4e). The protected areas in the study area are Malaksamudra Bird Sanctuary (Koppal), Yadahalli 

Chinkara Wild Life Sanctuary (Bagalkote), Bonal Bird Sanctuary (Yadgir), Yadgir reserved forest 

(Yadgir), Gudekote and Daroji Sloth Bear Sanctuary (Bellary), Ankasamudra Bird Sanctuary 

(Bellary), and Chincholi Wildlife Sanctuary (Kalaburagi) depicted in Supplementary Figure 4f. 

The study area has the highest elevation of 750 m in Chitradurga and Bellary; Elevation in Koppal, 

Bagalkote, Vijaypura, and Bidar ranges from 500 to 750m, and elevation in Raichur, Yadgir, and 

Kalaburagi is at 250 to 500 m (Supplementary Figure 5a). The slope is less than 15% in the study 

region (Supplementary Figure 5b). The northern part of the study area (Bidar, Kalaburagi, Vijay-

pura, Yadgir, Bagalkote, Raichur, Koppal and partly Bellary) receives 1200 to 600 mm of rainfall, 

whereas part of Bellary and Chitradurga receives <600 mm of rainfall (Supplementary Figure 5c). 

Supplementary Figure 5d shows that Bidar, Kalaburagi, Vijaypura, Yadgir, Bagalkote, and Kop-

pal have coarse loamy soil; Bidar, Kalaburagi, Vijaypura, Yadgir, and Bagalkote have sandy or 

sandy skeletal soil; Bagalkote, Raichur, Bellary, and Chitradurga have rocky outcrops or Frag-

mental soil; Kalaburagi, Vijaypura, Yadgir, and Bagalkote have clayey loamy or clayey skeletal 

soil; Koppal, Raichur, and Chitradurga have loamy or clayey soil. The middle part of Bagalkote 

is composed of Charnokities; Chitradurga, Bellary, Koppal, Raichur, and Yadgir are primarily 
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composed of Peninsular Gneiss; the hills of the study area are composed of Dharwars or Granite; 

Bagalkote, Vijaypura, Kalaburagi, and Bidar are part of the Deccan trap (Supplementary Figure 

5e). Bidar, Kalaburag, and Yadgir are in the arid zone; Vijaypura, Yadgir, Bagalkote, Raichur, 

and Chitradurga are majorly in the hot-dry semi-arid zone; and part of Vijaypura, Raichur, Kop-

pal, Bellary, and north Chitradurga are in the hot-dry arid zone (Supplementary Figure 5f).  

Krishna, Tungabhadra, Bhima, and Godavari Rivers flow, and the duration of water flow in 

streams (Supplementary Figure 6a) varies from 3 to 6 months in this region. The drainage density 

is higher (>2.5) in Raichur and Bellary (Supplementary Figure 6b). The major reservoirs of this 

district are Almatti, Basava Sagar (Narayanpura), Karanja, Jurala, and Vani Vilas Sagar (Supple-

mentary Figure 6c). 

Northern Arid Karnataka has the potential of more than 6 kWh/sq. m of solar energy (Supplemen-

tary Figure 7a). Multiple solar parks have been established in Chitradurga, Bellary, Bagalkote, 

and other districts. Kalaburagi, Raichur, and Yadgir have a high potential for wind energy with 

wind speeds of more than 3.5 to 4 m/sec throughout the year, and windmills are present in the 

hills of the districts (Supplementary Figure 7b). Also, there is scope for bioenergy (Supplementary 

Figure 7c) of 200-400 MKcal in Bidar, Kalaburagi, Vijaypura, Yadgir, Bagalkote, Raichur, Kop-

pal, and Bellary; 200-600 MKcal in Chitradurga and Kalaburagi. 

The population density is presented grid-wise in Supplementary Figure 8a, and livestock density 

is in Supplementary Figure 8b. The forest dwellers' settlements are mapped in Supplementary 

Figure 8c. in all districts of Northern arid Karnataka except Vijayapura. 

The aggregated weightage metric score is computed for each grid, considering bio-geo-climatic, 

ecological, hydrological, energy, and social factors. Grids are grouped into four levels and pre-

sented in Figure 7 depending on the frequency of occurrences of aggregated scores. The NRRR1 

(67 grids) and NRRR 2 (127 grids) are considered highly rich regions of natural resources, 

NRRR3 (304 grids) is moderate, and NRRR4 (522 grids) is less sensitive. Figure 7 shows, grid-

wise and at village levels, NRRRs in the northern arid regions (districts) of Karnataka state, India. 

Policy recommendations are:  

 

Figure 7. Natural Resource-Rich Regions of Northern Arid Karnataka (Grid level-left and Village level-

right). 
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NRRR1 zones include the protected forest areas and interior forests, where the integrity of forests 

must be maintained without large-scale development projects such as mining. This region is 

highly fragile, and prudent management of natural resources through monitoring by regulatory 

authorities is required by including Village Forest Committees (VFCs) and Biodiversity Manage-

ment Committee (BMC) at village Panchayath. NRRR1 regions are to be protected without any 

alterations in topography due to the linear projects (new / expansion) such as roads, and railway 

lines. Degraded forest patches to be revitalized with native species and regulation of monoculture 

plantations. Existing exotics and non-endemic plantations are to be replaced with native species. 

Needs to promote locally available renewable energy sources such as bioresources, solar, and 

wind. NRRR2 characterizes a zone of higher conservation as being a transition zone between 

NRRR1 and NRRR3, moderate conservation regions. 

A regulated sustainable development path may be allowed in NRRR3 with stringent environmen-

tal norms and location-specific environmental management plans (EMP) to mitigate the impacts. 

Small-scale industries, like agro-based industries, are permitted to stimulate the rural economy. 

Incentives should be provided to youth and women self-help groups to encourage rural entrepre-

neurship and establishing agro-processing industries based on local resources. 

NRRR4 represents the least diverse areas, where moderate developmental activities are allowed 

as per the requirement with the stringent regulatory norms. 

3.6. Discussion 

3.6.1. Landscape Dynamics in Northern Karnataka 

The northern arid zones of Karnataka represent an agrarian landscape characterized by low rain-

fall, high temperature, and high evaporation. The implementation of water projects has escalated 

agricultural and horticultural practices during the past two decades. LU dynamics assessment us-

ing temporal RS data reveals a decline in the dry deciduous forests during post-1990 due to ac-

celerated industrial developments and intense agricultural practices in response to globalization 

and liberalization of the economy. Agricultural (croplands and horticulture) expansion has re-

sulted in declining forest ecosystems and fragmented contiguous forests. The forest cover of the 

state has declined from 32,875 ha (in 1985) to 27,968 ha (in 2019), mainly due to the conversion 

of forest land for non-forest purposes such as mining, irrigation, power projects, roads, railways 

(Ramachandra et al., 2024).  

The reduction in forest cover has resulted in the loss of biodiversity with the erosion in ecosystem 

services, such as carbon sequestration, soil nutrient retention, water regulation, and wildlife hab-

itat (Ramchandra et al., 2022; Mugari and Masundire, 2022). The principal agro-climatic zones 

are the (i) Northeastern dry zone (Kalburgi/Gulbarga, Yadgiri, and parts of Raichur); (ii) Northern 

dry zone (Bellary, Vijayapura, Raichur, Dharwad); and (iii) Central dry zone (Chitradurga). Con-

struction of reservoirs such as Narayanpura Dam, Karanja Dam, Jurala Reservoir, Vani Vilas 

Sagar, Almatti Dam on Krishna River (Bagalkote), Tungabhadra Dam on Tungabhadra River 

(Koppal) has increased water availability in the districts prospering the irrigation system of the 

Karnataka Plateau region. The Upper Krishna Project was executed in distinct stages to address 

the irrigation needs of drought-prone districts in Northern Karnataka, including Kalaburagi, Rai-

chur, Vijayapura, Yadgir, and Bagalkot.  

The government has implemented various schemes and programs to improve the agricultural 

productivity and livelihood of the farmers in this region, such as watershed development, micro-

irrigation, crop insurance, and soil health cards. However, these large-scale water projects have 

also caused some impacts on the ecosystem and the people. Moreover, the over-exploitation of 

water resources for irrigation has led to the problem of waterlogging and salinization of soils, 

reducing the agricultural productivity and quality of crops. Farmers have faced challenges of soil 

erosion, salinity, drought, and pest infestation in arid conditions. An evaluation of agricultural 

sustainability in Karnataka using the Sustainable Livelihood Security Index (SLSI) identified Bel-

lary as moderately sustainable, while Bidar, Kalaburagi, Vijayapura, Bagalkote, Raichur, Chitra-

durga, and Koppal were classified as less sustainable for agricultural production (Sridhara et al., 

2022).  

Burgeoning populations and haphazard development projects have spurred rapid urbanization 

marked by a critical lack of basic infrastructure in major cities, mainly district headquarters such 

as Bellary, Raichur, Bidar, Kalaburagi, Bagalkote, Vijayapura. A similar LULC change trend was 

reported earlier in major cities like Bidar, Kalaburagi, and Raichur in Northern Karnataka (Rama-

chandra and Aithal, 2013a, 2013b; Manna et al., 2023; Ramachandra and Negi, 2025). Industrial 

corridors in Kalburagi-Bidar and Raichur industrial area, Special Economic Zones (SEZs) in 
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Kalaburagi, Bidar, Koppal, Vijayapura, and Bagalkote had attracted investments in engineering, 

automobiles, renewable energy, targets food processing, textiles, cement, and leather industries 

in response of State’s Industrial policy, which spurred economic activity and job creation, drawing 

migrants seeking better livelihoods. The National Highway (NH) network in Karnataka has un-

dergone a remarkable transformation with 100% increase in length and the addition of 372 km of 

new highways. However, NH development saw a sudden rise, from 6,750 km (in 2014) to 13,565 

km (in 2018), including in-principle NHs (Ministry of Road Transport and Highways).  

3.6.2. Change in the climatic regime of Northern Karnataka 

Shifts in climate regimes were noticed due to the large-scale LU changes, across the diverse land-

scapes of Karnataka. South Vijayapura, Bagalkot, Koppal, and Chitradurga transitioned from arid 

to semi-arid (dry), potentially linked to irrigation projects and their effect on groundwater levels. 

Conversely, some parts of Chitradurga moved towards a drier semi-arid climate, with fewer rainy 

days, higher temperatures, and increased potential evapotranspiration (Sahu et al., 2021). Factors 

such as limited agricultural opportunities and lack of amenities, coupled with the attraction of 

better education, healthcare, and employment prospects, are driving rural-urban migration. Farm-

ers lack access to location-specific climate forecasts and reliable information on climate change, 

hindering their ability to adapt to changing climatic conditions or to climate-resilient cultivation 

practices. Additionally, they face challenges in obtaining critical inputs and fair prices for their 

produce. Improving field extension services, timely assistance, and updated climate information 

is crucial (Shanabhoga et al., 2023).  

3.6.3. Significance of Identification of NRRRs, Its Limitations, and Recommendations 

Modelling and geo-visualization would aid in identifying areas of probable changes and their 

effect on the environment while delineating NRRRs. The delineation of NRRRs provides the 

quantitative and qualitative status of the environmental condition of the region, which is essential 

for restoration and management. Preventing NRRRs from degradation would ensure to attain 

higher productivity (Ramachandra and Negi, 2025). The management of the NRRRs should focus 

on permissible activities in agriculture, tourism, forestry, and urbanization. Unplanned develop-

mental activities leading to unregulated resource use should be regulated to sustain natural re-

sources, specifically NRRR1 and 2 (Ramachandra et al., 2022; Uralovich et al., 2023).  

Insights into soil health and nutrient availability will empower farmers to make informed agricul-

tural decisions, significantly improving productivity and sustainability through efficient water and 

nutrient management practices. Landsat’s 30-meter spatial resolution may inadequately capture 

small-scale land use changes or fragmented ecosystems, particularly in heterogeneous arid land-

scapes where fine-grained features (e.g. sparse vegetation) are critical. Agent-based modelling 

that integrates socio-hydrological factors—such as farmer decision-making, groundwater man-

agement policies, and strategies for adapting to drought could more effectively simulate the dy-

namics of land-use transitions in the Northern Karnataka region. Additionally, engaging in par-

ticipatory mapping with local communities can enhance this understanding. 

Several key strategies to ensure sustainable management of natural resources can stimulate local 

economies through responsible extraction and use of resources, including (i) restrictions on large-

scale LULC changes to preserve ecological and hydrological integrity, (ii) prohibition of  large-

scale mining, particularly of iron ore, (iii) restriction on monoculture plantations of exotic species 

like Eucalyptus and Acacia due to their high water consumption, which can lead to reduced 

groundwater recharge and lower water availability for local communities and agriculture in arid 

regions, resulting in desertification, (iv) restoration focussing on catchment area treatment plans 

to reduce silt yield, nutrient retention, etc., (v) promoting the cultivation of drought-resistant crops 

can significantly reduce crop failure risks and enhance agricultural resilience in these arid regions 

of Karnataka, (vi) implementing agroforestry techniques would improve soil health and biodiver-

sity, which are essential for sustainable land management, (vii) participation of local communities 

in resource management and promoting diversified livelihoods.  

Identifying NRRRs can enhance well-being, creating job opportunities and environmental aware-

ness among local populations. Furthermore, encouraging non-agricultural activities and entrepre-

neurship can help diversify local economies, reducing dependence on a single sector and fostering 

economic stability. Setting up agro-processing and cottage industries can support local liveli-

hoods, and adopting clustering approaches can enhance economic efficiency and sustainability. 

Providing comprehensive training and support to local populations is essential for equipping them 

with the skills needed to manage resources sustainably and adapt to climate change. Strengthening 

community organizations and social networks is equally vital for supporting economic develop-

ment and resilience. 
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4. Conclusion 

The spatiotemporal analyses of LU and LC of the arid region of Northern Karnataka have been 

done from 1973 to 2022 using RS data. The long-term analyses of LC changes provided invalua-

ble insights into the dynamic interactions between human activities and the environment. The 

observed increase in areas under vegetation, particularly in agricultural and horticultural lands, 

reflects the positive impact of water resource development through reservoirs and dams. The tem-

poral land-use analyses were done using a supervised non-parametric machine learning algorithm, 

the RF, highlighting the transformation of the predominantly agrarian landscape attributed to 

globalization and liberalization. Forest ecosystems, particularly dry deciduous and scrub lands, 

have faced degradation due to anthropogenic pressures, contributing to the decline in interior for-

est cover. The study identifies the impact of mining, plantation, and urbanization on LU patterns. 

Paved surfaces (built-up) have increased from 186.22 (in 1973) to 1085.12 sq. km (in 2022). The 

study area has degraded forest patches, and the results of fragmentation analyses reveal that the 

intact/interior forest has reduced from 3252.39 (1973) to 1508.12 (in 2022) sq. km. The prediction 

of likely LUs highlights an increase in paved surfaces (built-up) from 6.23% (in 2030) to 7.17% 

(in 2038). The LU modeling projections for 2038 highlight potential challenges, with a notable 

increase in built-up areas and continued encroachment on scrub and forest lands. The study has 

identified that NRRR1 (67 grids) and NRRR 2 (127 grids) are considered natural resources rich 

regions, NRRR3 (304 grids) moderate, and NRRR4 (522 grids) less sensitive. The prioritization 

of NRRRs emphasizes the need for conservation strategies with varying degrees of sensitivity 

across grids and villages. Strategic planning with regulatory measures is essential to ensure sus-

tainable development, conservation of biodiversity, and the preservation of NRRRs (natural re-

sources-rich regions). The study provides valuable insights for policymakers, environmentalists, 

and local communities to make informed decisions for the future well-being of the northern arid 

regions of Karnataka. 
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Supplementary Figure 1b. Bagging in Random Forest. 

 

Supplementary Figure 2. Weights assigned to bio-geo climatic, social and environmental parameters based 

on the significance / relevance. 
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Supplementary Figure 3. Spatial extent of forest and interior forest 

 

Supplementary Figure 4. Distribution of ecological variables. 
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Supplementary Figure 5. Spatial extent of geo-climatic variables 

 

Supplementary Figure 6. Spatial extent of hydrological variables 
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Supplementary Figure 7. Potential of renewable energy variables 

 

Supplementary Figure 8. Distribution of social variables. 
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Supplementary Table 1. Data used for assessing the extent and condition of. 

Remote sensing data 

Data Source  Bands  Spatial resolution Temporal resolution Year  

      

Landsat Multispectral 

Sensor (MSS) 

U.S. Geological Sur-

vey https://earthex-

plorer.usgs.gov/ 

Band 4, 5, 6 30 m 16 days 1973 

Landsat Thematic Mapper 

(TM) 

U.S. Geological Sur-

vey https://earthex-

plorer.usgs.gov/ 

Band 1, 2, 3, 

4,5,7 
30 m 16 days 1996, 2005 

Landsat Operational Land 

Imagery (OLI) 

U.S. Geological Sur-

vey https://earthex-

plorer.usgs.gov/ 

Band 

2,3,4,5,6,7 
30 m 16 days 2014, 2022 

Shuttle Radar Topography 

Mission Digital Elevation 

Model (SRTM DEM) 

U.S. Geological Sur-

vey https://earthex-

plorer.usgs.gov/ 

  30 m   2014 

Collateral Data 

Data Source  Spatial resolution Year  

KGIS K-GIS Portal https://kgis.gok.in      

Survey of India Toposheet  surveyofindia.gov.in 1:50000 2005-06 

Survey of India Toposheet  surveyofindia.gov.in 1:250000  1964-66  

Google Satellite Google Earth https://earth.google.com/ 0.1-5 m 1985-2023 

National Remote Sensing 

Centre (NRSC) Land Use 

Bhuvan 

https://bhuvan.nrsc.gov.in/home/index.p

hp  

1:50,000 2005-06, 2011-12, 2015-16 

Data used for identification of NRRRs 

Variable Source of Data Data   Description 

Forest Cover Author  
Land Use classification map 

(2022)  

Spatial quantification of forested 

areas within the defined grid 

Interior Forest Author 
Forest class derived from land use 

map (2022)  

Spatial quantification of interior 

forest within the defined grid 

Biomass (Total Carbon) https://wgbis.ces.iisc.ac.in 
Empirical field data and synthesis 

of literature 

Estimation of total carbon stored 

in biomass across the grid 

Shannon's Diversity https://wgbis.ces.iisc.ac.in 
Empirical field data and synthesis 

of literature 

Calculation of Shannon diversity 

index based on species abundance 

and distribution within the grid 

Number of Species 
https://wgbis.ces.iisc.ac.in 

  

Empirical field data and synthesis 

of literature 

Enumeration and spatial mapping 

of species diversity within the 

grid 

Flora https://wgbis.ces.iisc.ac.in 
Empirical field data and synthesis 

of literature 

Spatial representation of endemic 

plant species distributed across 

the grid 

Fauna https://wgbis.ces.iisc.ac.in 
Empirical field data and synthesis 

of literature  

Spatial representation of endemic 

animal species distributed across 

the grid 

Elevation (m) https://www.nrsc.gov.in/ 
Cartosat DEM data (1 arc second 

= 30m resolution)  

Extraction of elevation profiles 

and contour features from DEM 

data within the grid 

Rainfall (mm) Indian Meteorological Data (IMD) 

Historical daily rainfall records 

(1901-2010) from rain gauge sta-

tions 

Conversion of point-based rainfall 

observations into spatially inter-

polated datasets for the grid 

Agro-Climatic Zone https://e-krishiuasb.karnataka.gov.in/ Karnataka Agriculture Portal  

Classification and spatial delinea-

tion of agro-climatic zones spe-

cific to the grid area 

Lithology https://nbsslup.icar.gov.in/ 

National Bureau of Soil Survey 

and Land Use Planning 

(NBSS&LUP)  

Geological characterization of 

lithological units based on parent 

rock material within the grid 

Soil https://nbsslup.icar.gov.in/ 

National Bureau of Soil Survey 

and Land Use Planning 

(NBSS&LUP)  

Identification, classification, and 

spatial mapping of soil types 

within the grid 

Stream Density https://www.nrsc.gov.in 
Cartosat DEM data (1 arc second 

= 30m resolution)  

Quantitative analysis of stream 

network density using hydrologi-

cal modeling in the grid 

Stream Flow https://www.nrsc.gov.in 
Cartosat DEM data (1 arc second 

= 30m resolution)  

Temporal assessment of water 

flow duration in streams present 

within the grid 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://kgis.gok.in/
https://surveyofindia.gov.in/
https://surveyofindia.gov.in/
https://bhuvan.nrsc.gov.in/home/index.php
https://bhuvan.nrsc.gov.in/home/index.php
https://bhuvan.nrsc.gov.in/home/index.php
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Reservoir Author 
Land Use classification map 

(2022)  

Identification and spatial mapping 

of reservoirs present within the 

grid 

Supplementary Table 1. Continued. 

Data used for identification of NRRRs 

Variable Source of Data Data   Description 

Solar Energy (kWh) 
Ramachandra et al., 2011; 

Ramachandra, T.V., 2006 

Empirical field data and synthe-

sis of literature  

Quantification of solar radiation potential 

based on global solar energy measurements in 

the grid 

Wind Velocity (m/sec) 
Ramachandra, T.V., & Shruthi, 

B.V., 2005 

Empirical field data and synthe-

sis of literature  

Measurement and spatial analysis of wind 

speed dynamics across the grid 

Bioenergy (Mkcal) Ramachandra, T.V., 2007 
Empirical field data and synthe-

sis of literature  

Estimation of bioenergy potential derived 

from fuelwood availability in the grid area 

Population Density (per-

sons per sq. km) 

Census of 2011 (http://cen-

susindia.gov.in) 
Census of India 2011 

Spatial analysis of human population density 

per square kilometer within the grid area 

Livestock Density (ani-

mals/ha) 

Animal Husbandry Departments 

of the states and union territories 
20th Livestock Census of India   

Spatial distribution and density of livestock 

within the grid area 

Forest dwellers 
Census of 2011 (http://cen-

susindia.gov.in) 
Census of India 2011  

Spatial distribution and statistics of forest 

dwellers within the grid area 

Supplementary Table 2. Quantification of area under vegetation and non-vegetation through NDVI thresh-

olding. 

Bagalkote 

Year Scene Minimum value Threshold value Maximum value 

2022  -1 0.4 1 

2014  -1 0.3 0.88 

2005 
Scene 1 -0.89 0.25 0.87 

Scene 2 -1 0.25 0.87 

1998  -1 0.11 1 

1973  -0.63 0.09 0.7 

Bellary 

2022 

Scene 1 -0.73 0.27 0.84 

Scene 2 -0.27 0.24 0.66 

Scene 3 -0.29 0.24 0.74 

2014 

Scene 1 -0.38 0.23 0.77 

Scene 2 -0.34 0.22 0.76 

Scene 3 -0.31 0.19 0.74 

2007 

Scene 1 -0.1 0.13 0.74 

Scene 2 -0.19 0.11 0.63 

Scene 3 0.06 0.13 0.69 

2000 

Scene 1 -0.5 0.16 1 

Scene 2 -0.52 0.19 0.78 

Scene 3 -0.73 0.2 0.8 

1973 

Scene 1 -0.54 0.13 0.69 

Scene 2 -0.42 0.11 0.61 

Scene 3 -1 0.8 0.61 

Scene 4 -1 0.8 0.66 

Bidar 

2022 
Scene 1 -0.24 0.12 0.52 

Scene 2 -0.24 0.1 0.52 

2014 
Scene 1 -0.13 0.13 0.36 

Scene 2 -0.21 0.12 0.5 

2007 
Scene 1 -0.1 0.13 0.44 

Scene 2 -0.13 0.13 0.41 
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Scene 3 -0.1 0.15 0.44 

1999 
Scene 1 -0.3 0.23 0.71 

Scene 2 -0.4 0.27 0.77 

Supplementary Table 2. Continued. 

Bidar 

Year Scene Minimum value Threshold value Maximum value 

1973 

Scene 1 -1 0.07 0.57 

Scene 2 -0.87 0.1 0.73 

Scene 3 -1 0.1 0.74 

Scene 4 -1 0.06 0.64 

Chitradurga 

2021 -0.1 0.4 0.48 

2013 -0.25 0.3 0.54 

1998 -0.44 0.25 0.58 

1991 -0.14 0.11 0.47 

1973 -0.93 0.09 0.68 

Kalaburagi 

2022 
Scene 1 -0.2 0.21 0.51 

Scene 2 -0.15 0.19 0.47 

2014 
Scene 1 -0.12 0.17 0.48 

Scene 2 -0.14 0.21 0.48 

2005 
Scene 1 -0.64 0.06 0.73 

Scene 2 -0.46 0.01 0.72 

1996 
Scene 1 -1 0.05 1 

Scene 2 -0.33 0.01 0.2 

1973 
Scene 1 -1 0.08 0.65 

Scene 2 -0.58 0.06 0.8 

Koppal 

2021  -1 0.4 0.66 

2013  -0.27 0.4 0.52 

2006  -0.17 0.4 0.46 

1998  -0.33 0.4 0.58 

1973  -1 0.4 0.66 

Raichur 

2022 
Scene 1 -0.19 0.16 0.49 

Scene 2 -1 0.31 1 

2014 
Scene 1 -0.17 0.16 0.52 

Scene 2 -0.48 0.32 0.88 

2009 
Scene 1 -0.66 0.15 0.82 

Scene 2 -0.09 0.1 0.45 

1999 
Scene 1 -0.29 0.12 0.48 

Scene 2 -0.37 0.12 0.58 

1973 
Scene 1 -0.47 0.14 0.79 

Scene 2 -1 0.13 0.66 

Vijayapura 

2022 
Scene 1 -1 0.31 0.87 

Scene 2 -0.57 0.29 0.85 

2014 
Scene 1 -1 0.33 0.88 

Scene 2 -0.7 0.24 0.88 
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Vijayapura     

2005 Scene 1 -0.81 0.2 0.89 

 Scene 2 -0.38 0.21 0.79 

Supplementary Table 2. Continued. 

Vijayapura 

Year Scene Minimum value Threshold value Maximum value 

 Scene 3 -0.25 0.19 0.77 

1996 Scene 1 -0.45 0.22 0.77 

 Scene 2 -1 0.17 0.81 

 Scene 3 -0.49 0.19 0.81 

1973  -0.26 0.11 0.52 

Yadgir     

2022  -0.62 0.34 1 

2014  -0.47 0.34 0.86 

2005  -1 0.25 1 

1996  -0.54 0.3 0.81 

1973 Scene 1 -0.86 0.08 0.61 

 Scene 2 -1 0.14 0.67 

Supplementary Table 3. Forest fragmentation analysis by computation of 𝑷𝒇 and 𝑷𝒇𝒇 

Fragmentation Classes Computation Description 

Interior Pf = 1 
Forest pixels that are surrounded by non-forested pixels and are located far from the 

boundaries of both forested and non-forested areas. 

Perforated Pf > 0.6 and Pf-Pff > 0 
Forest pixels that serve as boundaries between interior forest pixels and perforated 

areas. 

Edge Pf > 0.6 and Pf-Pff < 0 
Forest pixels that act as boundaries between interior forest pixels and non-forested 

areas. 

Transitional 0.4 < Pf < 0.6 Pixels that lie between edge pixels and non-forested pixels. 

Patch Pf < 0.4 Forested pixels that are surrounded by non-forested pixels. 

 

𝑃𝑓  =  
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑒𝑠𝑡 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑤𝑎𝑡𝑒𝑟 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
 (6) 

𝑃𝑓𝑓 = 
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑒𝑠𝑡 𝑝𝑖𝑥𝑒𝑙 𝑝𝑎𝑖𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑜𝑟𝑒𝑠𝑡 𝑝𝑖𝑥𝑒𝑙
 (7) 

Supplementary Table 4. Land cover in arid regions of Northern Karnataka from 1973 to 2022. 

Land Cover (NDVI) 
1973 1996 2005 2014 2022 

sq. km % sq. km % sq. km % sq. km % sq. km % 

Non-vegetation 47815.19 67.21 42441.14 59.66 40428.81 56.83 36050.38 50.67 33187.19 46.65 

Vegetation 23328.22 32.79 28702.27 40.34 30714.60 43.17 35093.03 49.33 37956.22 53.35 

Supplementary Table 5. Accuracy assessment of land use classification of 2022. 

 

Reference (Google) 

 

 

Dry 

Deciduous 
Scrub Open 

Agricul-

ture 

Horticul-

ture 

Water-

body 

Built-

up 
Mine Plantation 

row 

sum 
UA 

Dry Deciduous 50 4 0 2 1 0 0 0 0 57 0.88 

Scrub 6 86 0 1 1 0 0 0 1 95 0.91 

Open 0 1 42 6 0 0 2 1 0 52 0.81 

Agriculture 2 14 6 1452 2 0 1 0 0 1477 0.98 

Horticulture 2 2 0 6 114 0 0 0 0 124 0.92 

Waterbody 0 0 0 0 0 56 0 0 0 56 1.00 

Built-up 0 0 5 1 0 0 61 0 0 67 0.91 

Mine 0 1 1 0 0 0 0 8 0 10 0.80 
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Plantation 1 0 0 0 0 0 0 0 7 8 0.88 

column sum 61 108 54 1468 118 56 64 9 8 1876 
 

PA 0.82 0.80 0.78 0.99 0.97 1.00 0.95 0.89 0.88 
 

0.96 

 

Supplementary Table 6. Change in LU from 1973 to 2022 in arid region of Northern Karnataka. 

Land Use  
1973 1996 2005 2014 2022 

sq. km % sq. km % sq. km % sq. km % sq. km % 

Dry deciduous 2154.2 3.03 1755.9 2.47 1583.29 2.23 1416.63 1.99 1096.34 1.54 

Scrub land 5650.74 7.94 3773.37 5.3 3093.85 4.35 2817.06 3.96 2260.19 3.18 

Open land 6159.02 8.66 3830.62 5.38 2815.79 3.96 2215.26 3.11 1822.05 2.56 

Agriculture 55399.64 77.87 59082.51 83.05 59040.72 82.99 58709.19 82.52 59125.07 83.11 

Horticulture 1089.35 1.53 1569.86 2.21 3054.14 4.29 4033.5 5.67 4198.58 5.9 

Water 494.93 0.7 693.82 0.98 910.46 1.28 1053.27 1.48 1397.68 1.96 

Built-up 186.22 0.26 402.42 0.57 606.24 0.85 804.78 1.13 1085.12 1.53 

Mining 0 0 0.89 0 3.42 0 16.3 0.02 27.31 0.04 

Plantation 9.3 0.01 34.02 0.05 35.5 0.05 77.44 0.11 131.08 0.18 

Total 71143.41 100 71143.41 100 71143.41 100 71143.41 100 71143.41 100 

Supplementary Table 7. Forest Fragmentation Indices from 1973 to 2022 in the arid region of North Kar-

nataka. 

Forest fragmentation 
1973 1996 2005 2014 2022 

sq. km sq. km sq. km sq. km sq. km 

Patch 520.81 790.34 565.35 507.58 365.87 

Transitional 1357 714.41 549.73 506.68 419 

Edge 883.32 263.34 217.47 200.71 163.73 

Perforated 1596.3 1180.5 1043.8 956.64 868.86 

Interior 3447.6 2580.7 2300.8 2062.1 1539.1 

Total forest area 7804.9 5529.3 4677.1 4233.7 3356.5 

Supplementary Table 8. Land use change simulation from 2022 to 2038. 

Land use  

Modelling 

2022 actual 2022 sim 2030 sim 2038 sim 

sq. km % sq. km % sq. km % sq. km % 

Dry deciduous 1096.34 1.54 1081.51 1.52 798.01 1.12 736.71 1.04 

Scrub land 2260.19 3.18 2376.56 3.34 1469.71 2.07 1157.46 1.63 

Open land 1822.05 2.56 1856.62 2.61 2232.61 3.14 1873.37 2.63 

Agriculture 59125.07 83.11 58626.39 82.41 54648.15 76.81 54758.82 76.97 

Horticulture 4198.58 5.90 4192.18 5.89 5522.32 7.76 5221.57 7.34 

Water 1397.68 1.96 1600.42 2.25 1678.19 2.36 1819.60 2.56 

Built-up 1085.12 1.53 1111.39 1.56 4432.20 6.23 5098.30 7.17 

Mining 27.31 0.04 118.15 0.17 120.92 0.17 152.86 0.21 

Plantation 131.08 0.18 180.19 0.25 241.29 0.34 324.71 0.46 

Total  71143.41 100.00 71143.41 100.00 71143.41 100.00 71143.41 100.00 

 

 

 

 

 


