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Abstract

The burgeoning population, coupled with the resource demand and alterations in the climatic regime, have
been posing serious challenges for the sustenance of natural resources. Natural Resource Rich Regions
(NRRRs) are areas endowed with abundant natural resources, which maintain ecological balance and eco-
nomic activities. These regions are pivotal for supporting the livelihoods of local communities by providing
essential ecosystem services and resources. However, land degradation leading to deforestation due to un-
planned developmental activities has escalated the carbon footprint, aggravated the vagaries of the climate,
and posed significant challenges, especially for communities reliant on fragile, arid, and semi-arid ecosys-
tems. The nexus of socio-economic disparity, persistent poverty, and unplanned developmental activities
often poses severe challenges for realizing full economic potential with environmental sustainability. Land
use (LU) changes with urbanization and agricultural expansion, leading to fragmentation, habitat loss, de-
cline of native species, and disruption of ecological processes with a potential decline of biodiversity. The
arid region in the northern part of Karnataka, located in Southern India, has been experiencing a sharp decline
in the groundwater table due to frequent droughts and excessive groundwater extraction. The current study
unveils actionable solutions for sustainable management of natural resource-rich regions by meticulously
analyzing the nexus between rapid development, LU modifications, and their subsequent environmental
ramifications. LU transitions are quantified using temporal-spatial data acquired through space-borne sen-
sors through supervised machine learning classifiers based on the non-parametric algorithm Random Forest
(RF). Land use dynamics assessment reveals that paved surfaces (area under buildings, roads) have increased
from 186.22 sq. km (in 1973) to 1085.12 sq. km (in 2022). The study area has degraded forest patches, and
the estimation through fragmentation metrics reveals that the intact forest has shown a decline from 3252.39
sg. km (1973) to 1508.12 sq. km (2022). The forests have continuously decreased from 2,154.20 sq. km
(1973) to 1,096.34 sg. km (2022). In Northern Karnataka, the prioritization of NRRRs highlights the status
of resource availability, with highly resource-rich zones represented by NRRR1 (67 grids) and NRRR2 (127
grids), followed by NRRR3 (304 grids) with moderate resource potential, and NRRR4 (522 grids) encom-
passing areas with comparatively scarcer resources. The prioritization of natural resource-rich regions em-
phasizes the need for prudent land management strategies, with holistic and integrated approaches consider-
ing social, economic, and environmental issues with degrees of sensitivity across arid regions.

Keywords: Natural Resource Rich Regions (NRRRs); arid regions, Land Use Land Cover (LULC); Machine
Learning (ML); Random Forest (RF); landscape modelling.

1. Introduction

Anthropogenic-induced unplanned land use (LU) changes have contributed to land degradation
and deforestation, which have impaired environmental quality and depletion of natural resources,
posing critical challenges necessitating immediate interventions with prudent LU policies. The
burgeoning demand of the swelling population has exerted pressure on the sustenance of natural
resources, raising concerns about the potential exhaustion of finite resources with accelerating
environmental degradation (Huo and Peng, 2023). Unrealistic pushes for economic development
for short-term gains have been altering the fragile ecosystem integrity, leading to cascaded envi-
ronmental consequences with land degradation, air and water pollution, deforestation, and soil
erosion (IPCC, 2007). These environmental burdens pose a significant risk of negating the pur-
ported benefits of increased production and output, potentially jeopardizing the long-term well-
being of future generations (World Bank, 2020) and necessitating a fundamental shift towards a
sustainable development path.

Land degradation refers to irreversible degradation with a decline in productivity due to the dete-
rioration of ecosystem functions (Bai et al., 2008; del Barrio et al., 2021). Alterations in the phys-
ical and chemical integrity of ecosystems due to direct and indirect anthropogenic influences have
affected the biotic integrity (Chalise et al., 2019; Olsson et al., 2019). The expansion in agriculture
and infrastructure, driven by the rapid increase in population, has accelerated the transitions in
land cover (LC), leading to degradation (Wassie, 2020). Primary land degradation processes have
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resulted in vegetation decline, soil salinization, soil erosion, aridity, and the decline in organic
carbon (Cherlet et al., 2018; Pravailie et al., 2021), which are widely acknowledged as significant
degradation forms in arable lands. Land degradation leading to vegetation decline indicates sig-
nificant biomass loss and the consequent erosion in carbon sequestration capability (Mirzabaev et
al., 2019; Olsson et al., 2019; Pravilie et al., 2023). LC refers to the physical characteristics of
the land surface, such as vegetation and non-vegetation. LU refers to the anthropogenic use of the
land for various activities, such as agriculture, etc. (Ramachandra et al., 2022, 2023a). LU assess-
ment helps in assessing the spatial extent of forests, agriculture, and other land use types. LU
changes leading to deforestation and land degradation that alter the landscape structure, affecting
ecosystem health, degrading ecosystems, shrinking habitats, and breaking them into smaller frag-
ments, which results in the loss of biodiversity (Haddad et al., 2015; UNCCD, 2016a and 2016b).
Human-dominated actions, especially for economic purposes, reshape the landscape and cause a
large-scale decline in biodiversity. LU changes are complex, triggering reactions in the system
and increasing the environmental challenges affecting livelihood (Lambin et al., 2003).

The transition from farmland to abandoned barren land is governed by macro and micronutrient
content alterations in soil with climatic conditions in arid regions (Evans and Belnap, 1999;
Kosmas et al., 2000). In arid areas, continuous monitoring of LU modifications with physical and
chemical attributes (of soil) helps to evaluate ecological risk at the regional scale. Monitoring
environmental factors provide insights into theoretical frameworks toward effective LU manage-
ment with mitigation strategies for lowering regional ecological risks (Zhang et al., 2019). Cli-
mate change predictions have shown a rise in extreme climate events like floods, droughts, trop-
ical storms, frosts, and heat waves (IPCC, 2013; Pontifes et al., 2018). The arid and semi-arid
regions with high temperatures and lower or scanty rainfall are vulnerable to these combined ef-
fects with the enhanced risk of desertification (Pontifes et al., 2018). The consequences of climate
change are a decline in ecosystem services, resulting in predominantly adverse effects on liveli-
hoods, human health, and overall well-being (van der Geest et al., 2019; Liu et al., 2022). This
effect is especially pronounced in semi-arid regions with limited adaptive capabilities (Mirzabaev
etal., 2022).

About 30% of the Earth's land surface has been identified as arid or semi-arid, and half of this
land is utilized for pastoral or agricultural purposes, contributing significantly to the regional
economy. In addition, these regions are endowed with minerals, which offer opportunities for the
utilization of minerals for economic well-being and social advancement. However, unplanned
extraction and exploration of these minerals would result in extensive environmental and societal
impacts with inadequate management of processes that may lead to enduring effects (Gratzfeld,
2003; Scholes, 2020). Considering the looming threat of changes in the climate, the focus now is
on the sustenance of ecosystem services, with an understanding of the dynamic interaction of
human societies with ecosystems at a local scale (Turner et al., 2016; Yang et al., 2020; Sun et
al., 2021).

Karnataka State consists of a vast expanse of arid and semi-arid landscapes highly susceptible to
climate change, which is evident from the recurring droughts over the past twenty years. In addi-
tion to these challenges, destructive floods, hailstorms, lightning, and thunderstorms during the
pre-monsoon season have significantly damaged agriculture, particularly horticultural crops.
These recurring calamities have contributed to food insecurity and illnesses, leading to chronic
and acute undernutrition among the population. The cumulative economic loss due to these natural
disasters is estimated at 1926.82 billion INR. Furthermore, the arid regions in the state, particu-
larly in the North Interior Karnataka region, experience regular heat waves, as temperatures during
the March-June period over the past two decades have shown a discernible upward trend, exacer-
bating stress-related health issues and fatalities (Economic Survey of Karnataka, 2022; 2023).

The significant progress in geoinformatics with the availability of temporal-spatial data (satellite
remote sensing data) and machine learning techniques prove invaluable with the availability of
LULC information, which is crucial for analyzing the status of natural resources and for formu-
lating policies aimed at conserving natural resources for the attainment of the sustainable devel-
opment goals (SDGs) related to food, nutrition, economic and environmental security (Rai et al.,
2022; Bell et al., 2023). Remote sensing data provide spatial, spectral, and temporal information
that is essential for monitoring natural resources through inventorying and mapping at a local and
regional scale (West et al., 2019) despite constraints of differing scales, a shortage of specific
spatial or temporal details, and inconsistent time series (Pongratz et al., 2018). Classification of
LULC can be very challenging in arid and semi-arid regions due to significant spectral similarities
between urban and non-urban features (Lasanta and Vicente-Serrano, 2012; Drusch et al., 2012;
Wambugu et al., 2021; Ali and Johnson, 2022). Different classification techniques for LU map-
ping include traditional parametric classifiers such as ISO Clustering, Bayesian, and Maximum
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Likelihood (Strahler, 1980; Otukei and Blaschke, 2010). Compared to this, non-parametric meth-
ods do not rely on either parameters or associated data distribution, making them increasingly
adapted techniques (Evans et al., 2011; Ahmadi et al., 2020; Mancino et al., 2023). Machine
Learning (ML) is pivotal in assessing landscape dynamics and is most applied to pattern recogni-
tion (Talukdar et al., 2021). ML techniques include Support Vector Machine (SVM), Decision
Tree (DT), Random Forest (RF), Light Gradient Boosting Machine methods, and K-Nearest
Neighbor (KNN) to analyze spatial data, derive information for acquiring knowledge to make
well-informed decisions (Wang et al., 2022).

An ensemble learning algorithm-based classifier, RF, is one of the widely used ML algorithms
for LU classification (Breiman, 2001) and has overcome the problem of overfitting and instability
in classification (Nguyen et al., 2020; Adugna et al., 2022). RF does process multi-dimensional
data classification with minimal generalization errors (Belgiu and Dragut, 2016) and achieves
higher accuracy even when applied to data with noise (Rodriguez-Galiano et al., 2012; Tian et
al., 2016; Ramachandra et al., 2022, 2023a). Prediction and geovisualization of likely LU changes
are crucial in effective landscape management. Dynamic representations of the LU and LC based
on different scenarios and data sources can be created through this method, and it can provide
valuable insights and guidance for landscape managers and decision-makers to formulate proac-
tive strategies for conservation, urban planning, and sustainable resource management (Rama-
chandra et al., 2023b). The CA integrated Markov chain model has outperformed all prediction
models. The CA-Markov model is used extensively in modeling LULC dynamics and prediction
(Beroho et al., 2023). The CA-Markov method can predict multidirectional LU changes encom-
passing all available LU categories (Pontius and Malanson, 2005).

Natural resource-rich regions (NRRRs), especially in developing countries, despite harboring the
potential for economic growth, encounter challenges of the inequitable distribution of develop-
ment benefits and over-exploitation. NRRRs are endowed with abundant natural assets that sig-
nificantly influence ecological balance and economic activities. These regions are pivotal for sup-
porting the livelihoods of local communities by providing essential ecosystem services and re-
sources (Wassie, 2020; Ramachandra et al., 2024; Ramachandra and Negi, 2025). The nexus of
socio-economic disparity, persistent poverty, and unplanned developmental activities for realizing
full economic potential (Sugiri, 2009) often poses severe challenges to environmental sustaina-
bility. The growing understanding of the complex linkages of effective natural resource manage-
ment and environmental sustainability necessitates robust prioritization frameworks for LU allo-
cation. The traditional models employing economic models, trend analysis, and scenario building
have served a purpose, but the lack of reliability underscores the need for more advanced ap-
proaches. Therefore, developing and implementing refined tools that leverage comprehensive and
accurate data is crucial for identifying NRRRs considering ecological, bio-geoclimatic, and social
factors, ensuring equitable and sustainable LU decision-making.

The current study identifies the NRRRs in arid and semi-arid regions of Karnataka, considering
social, biological, geo-climatic, and ecological factors. Prioritization of NRRRs in arid regions
through environmental, economic, and social considerations would aid in unlocking NRRRs’ po-
tential for sustainable development, improving livelihoods, and building resilient communities.

This research aims to: a) assess the spatiotemporal patterns of LU and LC in arid and semi-arid
landscapes using temporal remote sensing data, b) evaluate the extent and condition of forest
ecosystems from 1973 to 2022, c) predict likely LU changes by 2030 and 2038, and d) identify
NRRRs at disaggregated levels by considering geo-climatic, ecological, biological, and social
factors.

2. Research Methods
2.1. Study Area

The study was carried out in arid and semi-arid landscapes of Northern Karnataka, located be-
tween 13° 34" and 18° 28' N and 74° 59' and 77° 41' E across districts Vijayapura, Chitradurga,
Bagalkot, Koppal, Bellary, Raichur, Kalaburagi, Yadgir, and Bidar covering an area of 71149.04
km? (Figure 1). The study area is a part of the Krishna Basin, situated on the Deccan Plateau at an
elevation between 300 and 730 meters. The landscape is predominantly black and red soils, cate-
gorized as shallow, medium-deep, and deep, which supports the cultivation of key crops like green
gram, pearl millet, sunflower, pigeon pea, sorghum, chickpea, and rabi sorghum. LU in the region
is dominated by agriculture, fallow areas, wastelands, and degraded forests, with most of the ter-
rain exhibiting slopes of less than 5%.
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North Karnataka's hydrological network consists of the Krishna River Basin (Krishna River and
tributaries, Bhima, Ghataprabha, Malaprabha, Vedavathi, and Tungabhadra), and the Godavari
River Basin (Manjira and Karanja). These rivers serve as vital water resources for agriculture and
support riparian ecosystems throughout the region.

This ecoregion extends northward into eastern Maharashtra, highlighting the ecological intercon-
nectedness of the area. The region receives most rainfall during the monsoon season from June to
September, ranging from 370 to 4200 mm annually. The region is also characterized by high
temperatures, with summers often exceeding 40°C. Rising temperatures during March-June, es-
pecially in recent decades, have exposed North Karnataka to increasingly frequent heatwaves,
posing a significant challenge to human and animal health. This region is prone to severe floods
in the Krishna River basin.

The region possesses a rich historical legacy, evidenced by powerful dynasties (Kadamba, Rash-
trakuta, Chalukya) and flourishing literary figures (Pampa, Ponna, Ranna). Extreme climatic
events, high rates of anemia (50% in women, 65.5% in children), and malnutrition, particularly in
districts like Kalburgi, Raichur, Yadgir, Koppala, Ballari, Bidar, and Gadag, further exacerbate
the challenges. It is divided into two distinct sub-regions, Hyderabad-Karnataka (Bidar, Kala-
buragi, Raichur, Yadgir, Bellary, and Koppal) and Mumbai-Karnataka (Vijayapura, Bagalkote),
with lower socio-economic development.
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Figure 1. Study Area— Northern Karnataka arid regions, India.
2.2. Data

Spatial analyses were carried out using remote sensing (RS) data and collateral data. Temporal
remote sensing data of Landsat MSS, TM, OLI-1, and OLI-2 were acquired from the spatial data
portal of the United States Geological Survey (USGS - https://earthexplorer.usgs.gov/) for the
1970s, 1980s, 1990s, 2000s, 2010s, and 2020s, detailed in Supplementary Table 1. The Landsat
program has been operational since 1972 and offers the most extensive medium spatial resolution
satellite data collection. It has been extensively used in the assessment of LULC. The datasets
were carefully chosen to ensure minimal cloud coverage (<10%). The data were pre-processed to
rectify geometrical and radiometric discrepancies in the Google Earth Engine (GEE) Platform
(https://earthengine.google.com/). Region-specific taluk and district administrative boundary
maps were obtained from the K-GIS portal (https://kgis.gok.in).

Training data for LU classification were gathered from various locations within the study area
using a handheld pre-calibrated global positioning system (GPS), online spatial portals (Google
Earth - https://earth.google.com), and Bhuvan (https://bhuvan.nrsc.gov.in) with high-resolution
remote sensing data. All these datasets corresponding to the study area were reprojected to a com-
mon geodetic datum, the World Geodetic System 1984 (WGS84), and Universal Transverse Mer-
cator (UTM) within 43N zones, ensuring consistency in mapping. Road networks were extracted
from Survey of India topographic maps at scales of 1:50,000 and 1:250,000
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(https:/iwww.surveyofindia.gov.in). The study considered Virtual online spatial maps such as
Bhuvan (http://bhuvan.nrsc.gov.in) and high-resolution Google Earth (http://earth.google.com) to
validate classified thematic maps.

Ecological, biological, geo-climatic, and resource data were compiled through field investiga-
tions, review of published literature, and reports. Elevation and slope maps were derived from the
Shuttle Radar Topography Mission (SRTM) data with a 30-meter resolution
(https://earthdata.nasa.gov).

2.3. Method

Figure 2 outlines the protocol for delineating NRRRs at disaggregated levels across the arid re-
gions of North Karnataka. This entails (i) division of the study region into grids of 5°%x 5” (or 9
km x 9 km), (ii) land cover and land use analyses, (iii) assessment of the condition of forests
through fragmentation metrics, (iv) prediction of likely LUs, (iv) delineation of NRRRs at dis-
aggregated levels (grids).

Field data collection Remote Sensing data Collateral Data Area divided into
Using handheld GPS LandsatMSS, TM, ETM+, OLI Vegetation map of French Institute 2 ls(t'n 5,9 kr_T; oF
< 5’ grids
Goggle Earth data
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Figure 2. Method adopted for data analysis.

2.4. Land cover and Land use
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The Normalized Difference Vegetation Index (NDVI) characterizes vegetation cover by assessing
the difference in reflectance in the visible and near-infrared spectrum (land cover). It is widely
employed for monitoring vegetation dynamics on various scales (Tucker, 1979; Ashok et al.,
2021). NDVI is exceptionally responsive to red reflectance, strongly influenced by density and
green cover, whereas NIR reflectance is impacted by density alone, not green cover (Bremer et
al., 2011). Utilizing the red and NIR bands of Landsat data, NDVI values are computed, ranging
from -1 to 1; values below zero signify dormant seasons (e.g., bare land, open land, cloud cover,
snow, water bodies), while values above zero indicate vegetation cover during the growing sea-
son. Equation 1, detailed below, is used for the computation of NDVI.

NDVI = ((NIR — RED))/ (NIR + RED)) 1)

NIR and RED denote the electromagnetic spectrum corresponding to near-infrared and red wave-
lengths. The vegetation and non-vegetation have been categorized based on a threshold value
(Supplementary Table 2). LU analysis involves generating FCC (false color composites) from
remotely acquired data bands (NIR, Red, and Green) to identify heterogeneous landscape patches.
The current study collected training polygons from the field using pre-calibrated handheld global
positioning systems (GPS) and high spatial resolution data from Google Earth. Chosen training
polygons represent all LU classes, covering 15% of the study, and are uniformly distributed
throughout the study area. The attribute information for these training polygons was collected
from the field using precalibrated handheld GPS devices and high spatial resolution data from
Google Earth.

70% of training polygons are used for supervised classification, while the remaining (30%) are
used for testing (Nguyen et al., 2021). Spatial data (RS) were classified using a supervised ma-
chine learning algorithm, RF (Supplementary Figure 1a). RF is a novel technique employing a set
of classifiers or a collection of multiple decision tree predictors. Each tree is constructed based on
the randomly sampled feature vectors with replacement. It is independently generated with a uni-
form distribution shared across all decision trees to acquire high training data accuracy and en-
hance generalization accuracy as their complexity increases (Supplementary Figure 1b). These
multiple classifiers are typically aggregated through a plurality voting scheme known as bagging
(Breiman 1996).

RF can effectively handle multi-dimensional data while employing a substantial number of trees
within the ensemble (Ramachandra et al., 2022, 2023a). RF requires a significant amount of
memory due to the storage of an N by ntree matrix in memory, and it is not computationally
intensive; the trees are constructed without pruning (Gislason et al., 2006; Rodriguez-Galiano et
al., 2012). The computational time for RF is computed as per Equation 2.

¢ * ntreeMN log(N) (2)

Where c is the constant, ntree represents the number of trees, M is the number of features, and
N is the number of samples. A majority vote among the trees is employed in the prediction of the
class of observation in the RF model. As ntree and M are two main hyperparameters in random
forest, optimization of these parameters’ aids in an increase in model accuracy. Increasing these
parameters generally improves model performance but also increases computation time. The cur-
rent study considered the ntree based on the iterative method, ranging from 50 to 500 with an
interval of 50, and prioritized 300 trees for best performance. M was considered as its default
value (VM). Classified LU is validated using training data (30%) through computation of overall
accuracy, producer accuracy, user accuracy, and kappa statistics.

2.5. Land Use Modelling

Markov chain (MC) analysis represents a heuristic modeling approach, which has been exten-
sively used to examine LU change dynamics across various spatial scales (Halmy et al., 2015). A
Markov chain operates based on the principles of the probability of a system assuming a particular
state at a given time can be ascertained based on its known prior state (Rimal et al., 2018). Markov
chain analysis involves the development of a transition probability matrix that accounts for LU
change between two distinct periods (Fu et al., 2018). The Markov chain model does not account
for changes in spatial distribution. The cellular automata model, which is a spatially explicit
model, can overcome these shortcomings by representing spatial attributes in mapping LU change
compared to non-spatial models (Guan et al., 2011). An integration of CA and Markov Chain
(CA-Markov) model aids in predicting likely LU changes (Rimal et al., 2017), based on the tran-
sition probability. A Markov chain determines the distribution of the LU class to another from
time t to t+1 (Setturu and Ramachandra, 2021). The CA model detects changes in the spatial
distribution at the cell level and captures interactions with neighboring cells. The Markov chain
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model enables the prediction of future spatiotemporal modifications (Equation 3) (Tariq et al.,
2023; Wang et al., 2022).

St+1) = [P]_ij =S(t) 3

Where S represents the LU status at time t, S(t+1) denotes the LU status at time t+1, P;; stands for
the transition probability matrix within a specific state.

This matrix (Equation 4) is computed as described in previous studies (Singh et al., 2021).

Pll P12 P13 s en Pln
P21 P22 P23 nn nn Pzn

Pij =1 .. (4)
Py Py Pus . .. Py

Where P represents the transition probability, where P;; signifies the probability of transitioning
from state i to another state j in the subsequent period. B, denotes the state probability at any
given time. In this context, states with a low transition rate tend to have a probability close to 0O,
whereas high-growth states tend to have probabilities approaching 1 (Mumtaz et al., 2020). Model
validation: The accuracy of the model was validated by comparing current LU map of 2022 (ref-
erence map) with the simulated map of 2022. This validation process utilized an integrated VAL-
IDATE module within IDRISI Selva 17.02 software (https://idrisi-selva.software.informer.com/)
to assess the level of agreement between the classified and the simulated maps. The agreement
metrics are based on the widely recognized Kappa Index of Agreement (KIA), which includes
various metrics such as Kappa for location Strata (Kjycationstrata), Kappa for location (Kjocation)
and Kappa for no information (K,,). K,, Was employed to assess the overall agreement between
the proportions of the reference and modeled maps, which evaluated the precision of the spatial
attributes, quantity, and locations of grid cells within specific LULC class categories (Ozturk,
2015).

2.6. Forest Fragmentation

An analysis of forest fragmentation quantifies the condition of forests, which determines the ex-
tent of structural and compositional changes in the forest ecosystem. The condition of forests in
the study region is assessed through the computation of fragmentation indices, Py, representing
the proportion of forest pixels to non-water pixels (P;) and P, represents the proportion of car-
dinal pixel pairs (both forest pixels) to pairs with at least one forest pixel (Riitters et al., 2000;
Riitters et al., 2004; Ramachandra et al., 2016).

This aided in assessing the condition of forests through pixel categorization based on the type of
fragmentation (details are provided in Supplementary Table 3), as interior forest (Pr = Psf =1),
transition (pertaining to pixels with Py <0.6 and P, >0.4), patch forest (for pixels with Pr < 0.4),
perforated forest (applicable to pixels with P¢> 0.6 and (P — Pf ) < 0), edge forest (relevant for
pixels with P, > 0.6 and (Pr— P ) > 0), non-forest pixels encompass all pixels not classified as
forest cover. This classification scheme serves as a structured framework for analyzing different
types of forest fragmentation, providing a nuanced understanding of the diverse spatial patterns
within the study area.

2.7. Prioritization of Natural Resource Rich Regions (NRRRS)

Analyzed hydrological, biological, geo-climatic, and socio-economic details at disaggregated lev-
els in the arid region of Northern Karnataka for identifying Natural Resource Rich Regions
(NRRRs). The region was divided into grids of 5’ x 5" equivalent to approximately (9 x 9) km?
(Ramachandra et al., 2018), comparable to grids in the 1:50000 scale topographic maps (the Sur-
vey of India, Government of India). The spatial extent and occurrence of features for each variable
have been assessed at the grid level, and the variable is assigned a weight based on the relative
worth. This approach aided in combining multiple datasets and their significance in the landscape
details in Supplementary Table 1. Weights for variables were assigned as per Supplementary Fig-
ure 2 and aggregated for each grid, as per Equation 5. The study area was grouped into four zones
considering aggregated weights, which also highlights the ecosystem condition based on the avail-
ability and vulnerability of natural resources:

n
Weightage = z wW;V; )

i=1
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where n is the number of factors or variables, W; is the weight associated with criterion i, V; is the

associated value with that criterion.

Based on the aggregate weightage matrix, the study region is classified into four zones (NRRR 1
to 4). NRRR 1 represents natural resources rich region, requiring strict conservation and protec-
tion measures, NRRR 2 is less sensitive than NRRR 1, except for the degradation of some natural
resource patches. NRRR 3 represents a moderate resource region, and NRRR 4 represents lower
sensitivity with erosions in the ecosystem conditions.

3. Results and Discussion

3.1. Land Cover Analyses

The long-term analyses of LC changes using NDV1 of the northern arid regions of Karnataka have
been done to delineate the spatial extent of vegetation. The area under vegetation has shown an
increasing trend, as depicted in Figure 3, increasing from 32.79% (in 1973) to 53.35% (in 2022),
which suggests the intensification of agricultural and horticultural practices with increased water
availability due to the construction of multiple reservoirs. The area under non-vegetation has
shown a consistent decrease over the decades, from 67.21% (in 1973) to 46.65% (in 2022), as
open spaces, including fallow land, were converted into croplands, horticultural lands, agrofor-
estry, and forest plantations. The area under non-vegetation would decrease as detailed in Supple-

mentary Table 4.
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Figure 3. The spatial extent of vegetation (LC) was assessed through NDVI in Northern Karnataka's arid

region (1973 to 2022).
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3.2. Land Use Analyses

Temporal LUs (1973 to 2022) of the Northern arid regions of Karnataka illustrate that a predom-
inant agrarian landscape has undergone intense anthropogenic changes since 1996 due to global-
ization and liberalization. The overall accuracy of the remote sensing analysis is 96% and the
kappa coefficient is 0.91 (Supplementary Table 5). Highly elevated hills and plateaus are covered
with dry deciduous forest and scrub forest in the lower regions of Chitradurga, Bellary, Koppal,
and Bagalkote districts. Dry deciduous forest extent has shown a continuous trend of decrease
(depicted in Figure 4), from 2,154.20 sg. km (1973) to 1,096.34 sq. km (2022), and details are
provided in Supplementary Table 6. Scrub land, prevalent in semi-arid ecosystems, has shown a
similar reduction, declining from 5,650.74 sq. km (7.94%) in 1973 to 2,260.19 sq. km (3.18%) in
2022. Bellary district has a reasonable spatial extent of dry deciduous forests in the Sandur forest
range of Sandur taluk, and rampant iron ore mining in the Sandur taluk has impaired the integrity
of forest ecosystems. These declines are attributed to land conversion for agriculture (witnessed
in the Yadgir Reserved Forest area) and urban development. Some areas of degraded deciduous
forest have been converted into scrubland.
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Figure 4. Land use analysis in Northern Karnataka's arid region (1973 to 2022).

The study region is principally agrarian, and Bellary, Raichur, and Koppal districts are popularly
known as the “rice bowl of Karnataka”. The extent of agricultural land increased from 78 % (in
1973) to 83.11% in 2022. The study area is enriched with the Krishna, Tungabhadra, Bhima, and
Godavari rivers. The study region has witnessed a shift toward wet cultivation with enhanced
water security due to multiple irrigation projects with the implementation of reservoirs like Al-
matti Reservoir, Basava Sagar Reservoir (Narayanpura), Karanja Reservoir, Jurala Reservoir,
Vani Vilas Sagar in this region. The spatial extent of water bodies has increased markedly from
494.93 (1973) to 1,397.68 (2022) sq. km. The increased water security has expanded horticultural
land from 1,089.35 sq. km (1.53%) in 1973 to 4,198.58 sq. km (5.90%) in 2022. The expansion
of paved surfaces (built-up) from 186.22 sg. km (in 1973) to 1085.12 sq. km (in 2022) in the
district reflects urbanization and infrastructure development. Cities are expanding due to
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urbanization in the core area and sprawl in the peri-urban area, with good connectivity of road
networks. The growth of various industrial layouts in the core area aided as a catalyst for the
expansion of the urban centers. Paved surfaces (built-up) in rural areas have been increasing at a
constant rate.

Mining of iron ore is rampant in the Sandur-Hospet region of Bellary district, which is rich in iron
ore reserves, and has increased post-2005, covering around 27.31 sg. km (in 2022). Plantation of
exotic species like Acacia auriculiformis, Acacia catechu, Tectona grandis, Eucalyptus globulus,
Casuarina equisetifolia L., and others have been increasing, reaching 131.08 sg. km (in 2022).

3.3. Forest Fragmentation Analyses

Forest ecosystems in the arid region of North Karnataka are undergoing fragmentation due to
anthropogenic activity, with LU changes leading to land degradation. Fragmentation analysis em-
phasizes the loss of intact forest cover. The study area comprises degraded forest patches, and the
results of fragmentation metrics also reveal that the interior/intact forest has declined from
3,252.39 (in 1973) to 1,508.29 sq. km (in 2022), and details are provided in Supplementary Table
7. Figure 5 highlights that the spatial extent of non-forests has increased from 63,819 (1973) to
66,543 sg. km (2022).
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Figure 5. Forest Fragmentation in the arid region of North Karnataka (1973 to 2022).

3.4. Prediction of Land Uses for 2030 and 2038

Predictions of likely LU indicate the impact of the current rate of LU transitions in the next two
decades with the help of CA-Markov techniques. Modeling is validated by comparing the simu-
lated LU with the actual LU of 2022 and the computation of Kappa statistics. Kappa of 0.9 to 0.95
suggests agreement between the predicted and actual LU with high efficiency. The simulated LU
showed a very minimal overestimation of water bodies in 2022.

The predicted LUs depicted in Figure 6 and details given in Supplementary Table 8 show a likely
increase in built-up to the extent of 6.23% (in 2030) and 7.17% (in 2038). The likely built-up
increase will be due to the rise in food processing, the food and beverage sector, and the expansion
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of roads or highways. The decline of scrubland to 11.63% and dry deciduous to 1.04% (in 2038)
in a business-as-usual scenario highlights the likely continuation of forests and scrublands.
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Figure 6. Land use simulation of 2022, 2030, and 2038.

3.5. Prioritization of NRRRs

Prioritization of NRRRs in the northern arid regions of Karnataka at disaggregated levels (grids
and villages) was done through integrated assessment considering bio-geo-climatic, land, ecol-
ogy, energy, environmental, and social variables compiled through field investigations and sup-
plemented with the review of published literature. Weights were assigned to these variables at
grid levels based on the relative significance at disaggregated levels.

Dry deciduous forests and scrubland in the hills of Chitradurga, Bellary, Bagalkolte, and Raichur
account to 15% to 60% (Supplementary Figure 3a). Forest degradation in Vijaypura, Kalaburgi,
and Yadgir is due to anthropogenic pressures with agricultural expansion. The intact/interior for-
ests (Supplementary Figure 3b) are confined to higher-elevation regions and protected areas.

The ecological variables like endemic flora, fauna, forest biomass, species abundance, species
diversity (Shannon diversity), and the presence of conservation reserves in the Northern Arid
Karnataka were assessed, and Supplementary Figures 4a and 4b give the spatial distribution of
flora and fauna, respectively. Shannon’s diversity ranges from 1 to 2.5 (Supplementary Figure
4c), and Supplementary Figure 4d depicts species that range from 50 to 200. The region has dense,
dry deciduous forests with a carbon sequestration potential up to 300 Gg (Supplementary Figure
4e). The protected areas in the study area are Malaksamudra Bird Sanctuary (Koppal), Yadahalli
Chinkara Wild Life Sanctuary (Bagalkote), Bonal Bird Sanctuary (Yadgir), Yadgir reserved forest
(YYadgir), Gudekote and Daroji Sloth Bear Sanctuary (Bellary), Ankasamudra Bird Sanctuary
(Bellary), and Chincholi Wildlife Sanctuary (Kalaburagi) depicted in Supplementary Figure 4f.

The study area has the highest elevation of 750 m in Chitradurga and Bellary; Elevation in Koppal,
Bagalkote, Vijaypura, and Bidar ranges from 500 to 750m, and elevation in Raichur, Yadgir, and
Kalaburagi is at 250 to 500 m (Supplementary Figure 5a). The slope is less than 15% in the study
region (Supplementary Figure 5b). The northern part of the study area (Bidar, Kalaburagi, Vijay-
pura, Yadgir, Bagalkote, Raichur, Koppal and partly Bellary) receives 1200 to 600 mm of rainfall,
whereas part of Bellary and Chitradurga receives <600 mm of rainfall (Supplementary Figure 5c).
Supplementary Figure 5d shows that Bidar, Kalaburagi, Vijaypura, Yadgir, Bagalkote, and Kop-
pal have coarse loamy soil; Bidar, Kalaburagi, Vijaypura, Yadgir, and Bagalkote have sandy or
sandy skeletal soil; Bagalkote, Raichur, Bellary, and Chitradurga have rocky outcrops or Frag-
mental soil; Kalaburagi, Vijaypura, Yadgir, and Bagalkote have clayey loamy or clayey skeletal
soil; Koppal, Raichur, and Chitradurga have loamy or clayey soil. The middle part of Bagalkote
is composed of Charnokities; Chitradurga, Bellary, Koppal, Raichur, and Yadgir are primarily
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composed of Peninsular Gneiss; the hills of the study area are composed of Dharwars or Granite;
Bagalkote, Vijaypura, Kalaburagi, and Bidar are part of the Deccan trap (Supplementary Figure
5e). Bidar, Kalaburag, and Yadgir are in the arid zone; Vijaypura, Yadgir, Bagalkote, Raichur,
and Chitradurga are majorly in the hot-dry semi-arid zone; and part of Vijaypura, Raichur, Kop-
pal, Bellary, and north Chitradurga are in the hot-dry arid zone (Supplementary Figure 5f).

Krishna, Tungabhadra, Bhima, and Godavari Rivers flow, and the duration of water flow in
streams (Supplementary Figure 6a) varies from 3 to 6 months in this region. The drainage density
is higher (>2.5) in Raichur and Bellary (Supplementary Figure 6b). The major reservoirs of this
district are Almatti, Basava Sagar (Narayanpura), Karanja, Jurala, and Vani Vilas Sagar (Supple-
mentary Figure 6c).

Northern Arid Karnataka has the potential of more than 6 kWh/sg. m of solar energy (Supplemen-
tary Figure 7a). Multiple solar parks have been established in Chitradurga, Bellary, Bagalkote,
and other districts. Kalaburagi, Raichur, and Yadgir have a high potential for wind energy with
wind speeds of more than 3.5 to 4 m/sec throughout the year, and windmills are present in the
hills of the districts (Supplementary Figure 7b). Also, there is scope for bioenergy (Supplementary
Figure 7c) of 200-400 MKcal in Bidar, Kalaburagi, Vijaypura, Yadgir, Bagalkote, Raichur, Kop-
pal, and Bellary; 200-600 MKcal in Chitradurga and Kalaburagi.

The population density is presented grid-wise in Supplementary Figure 8a, and livestock density
is in Supplementary Figure 8b. The forest dwellers' settlements are mapped in Supplementary
Figure 8c. in all districts of Northern arid Karnataka except Vijayapura.

The aggregated weightage metric score is computed for each grid, considering bio-geo-climatic,
ecological, hydrological, energy, and social factors. Grids are grouped into four levels and pre-
sented in Figure 7 depending on the frequency of occurrences of aggregated scores. The NRRR1
(67 grids) and NRRR 2 (127 grids) are considered highly rich regions of natural resources,
NRRR3 (304 grids) is moderate, and NRRR4 (522 grids) is less sensitive. Figure 7 shows, grid-
wise and at village levels, NRRRs in the northern arid regions (districts) of Karnataka state, India.
Policy recommendations are:

Natural Resource Rich Regions

Grid wise

Natural Resource Rich Regions |
Village wise

@ \rRrRR1 @ NRRR3
@ "rRR2 @ NRRR4

NRRR4, 51%

NRRR2, 12%  NRRRI, 7%

50 km 50 km

Figure 7. Natural Resource-Rich Regions of Northern Arid Karnataka (Grid level-left and Village level-
right).
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NRRR1 zones include the protected forest areas and interior forests, where the integrity of forests
must be maintained without large-scale development projects such as mining. This region is
highly fragile, and prudent management of natural resources through monitoring by regulatory
authorities is required by including Village Forest Committees (VFCs) and Biodiversity Manage-
ment Committee (BMC) at village Panchayath. NRRR1 regions are to be protected without any
alterations in topography due to the linear projects (new / expansion) such as roads, and railway
lines. Degraded forest patches to be revitalized with native species and regulation of monoculture
plantations. Existing exotics and non-endemic plantations are to be replaced with native species.
Needs to promote locally available renewable energy sources such as bioresources, solar, and
wind. NRRR2 characterizes a zone of higher conservation as being a transition zone between
NRRR1 and NRRR3, moderate conservation regions.

A regulated sustainable development path may be allowed in NRRR3 with stringent environmen-
tal norms and location-specific environmental management plans (EMP) to mitigate the impacts.
Small-scale industries, like agro-based industries, are permitted to stimulate the rural economy.
Incentives should be provided to youth and women self-help groups to encourage rural entrepre-
neurship and establishing agro-processing industries based on local resources.

NRRRA4 represents the least diverse areas, where moderate developmental activities are allowed
as per the requirement with the stringent regulatory norms.

3.6. Discussion
3.6.1. Landscape Dynamics in Northern Karnataka

The northern arid zones of Karnataka represent an agrarian landscape characterized by low rain-
fall, high temperature, and high evaporation. The implementation of water projects has escalated
agricultural and horticultural practices during the past two decades. LU dynamics assessment us-
ing temporal RS data reveals a decline in the dry deciduous forests during post-1990 due to ac-
celerated industrial developments and intense agricultural practices in response to globalization
and liberalization of the economy. Agricultural (croplands and horticulture) expansion has re-
sulted in declining forest ecosystems and fragmented contiguous forests. The forest cover of the
state has declined from 32,875 ha (in 1985) to 27,968 ha (in 2019), mainly due to the conversion
of forest land for non-forest purposes such as mining, irrigation, power projects, roads, railways
(Ramachandra et al., 2024).

The reduction in forest cover has resulted in the loss of biodiversity with the erosion in ecosystem
services, such as carbon sequestration, soil nutrient retention, water regulation, and wildlife hab-
itat (Ramchandra et al., 2022; Mugari and Masundire, 2022). The principal agro-climatic zones
are the (i) Northeastern dry zone (Kalburgi/Gulbarga, Yadgiri, and parts of Raichur); (ii) Northern
dry zone (Bellary, Vijayapura, Raichur, Dharwad); and (iii) Central dry zone (Chitradurga). Con-
struction of reservoirs such as Narayanpura Dam, Karanja Dam, Jurala Reservoir, Vani Vilas
Sagar, Almatti Dam on Krishna River (Bagalkote), Tungabhadra Dam on Tungabhadra River
(Koppal) has increased water availability in the districts prospering the irrigation system of the
Karnataka Plateau region. The Upper Krishna Project was executed in distinct stages to address
the irrigation needs of drought-prone districts in Northern Karnataka, including Kalaburagi, Rai-
chur, Vijayapura, Yadgir, and Bagalkot.

The government has implemented various schemes and programs to improve the agricultural
productivity and livelihood of the farmers in this region, such as watershed development, micro-
irrigation, crop insurance, and soil health cards. However, these large-scale water projects have
also caused some impacts on the ecosystem and the people. Moreover, the over-exploitation of
water resources for irrigation has led to the problem of waterlogging and salinization of soils,
reducing the agricultural productivity and quality of crops. Farmers have faced challenges of soil
erosion, salinity, drought, and pest infestation in arid conditions. An evaluation of agricultural
sustainability in Karnataka using the Sustainable Livelihood Security Index (SLSI) identified Bel-
lary as moderately sustainable, while Bidar, Kalaburagi, Vijayapura, Bagalkote, Raichur, Chitra-
durga, and Koppal were classified as less sustainable for agricultural production (Sridhara et al.,
2022).

Burgeoning populations and haphazard development projects have spurred rapid urbanization
marked by a critical lack of basic infrastructure in major cities, mainly district headquarters such
as Bellary, Raichur, Bidar, Kalaburagi, Bagalkote, Vijayapura. A similar LULC change trend was
reported earlier in major cities like Bidar, Kalaburagi, and Raichur in Northern Karnataka (Rama-
chandra and Aithal, 2013a, 2013b; Manna et al., 2023; Ramachandra and Negi, 2025). Industrial
corridors in Kalburagi-Bidar and Raichur industrial area, Special Economic Zones (SEZs) in
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Kalaburagi, Bidar, Koppal, Vijayapura, and Bagalkote had attracted investments in engineering,
automobiles, renewable energy, targets food processing, textiles, cement, and leather industries
in response of State’s Industrial policy, which spurred economic activity and job creation, drawing
migrants seeking better livelihoods. The National Highway (NH) network in Karnataka has un-
dergone a remarkable transformation with 100% increase in length and the addition of 372 km of
new highways. However, NH development saw a sudden rise, from 6,750 km (in 2014) to 13,565
km (in 2018), including in-principle NHs (Ministry of Road Transport and Highways).

3.6.2. Change in the climatic regime of Northern Karnataka

Shifts in climate regimes were noticed due to the large-scale LU changes, across the diverse land-
scapes of Karnataka. South Vijayapura, Bagalkot, Koppal, and Chitradurga transitioned from arid
to semi-arid (dry), potentially linked to irrigation projects and their effect on groundwater levels.
Conversely, some parts of Chitradurga moved towards a drier semi-arid climate, with fewer rainy
days, higher temperatures, and increased potential evapotranspiration (Sahu et al., 2021). Factors
such as limited agricultural opportunities and lack of amenities, coupled with the attraction of
better education, healthcare, and employment prospects, are driving rural-urban migration. Farm-
ers lack access to location-specific climate forecasts and reliable information on climate change,
hindering their ability to adapt to changing climatic conditions or to climate-resilient cultivation
practices. Additionally, they face challenges in obtaining critical inputs and fair prices for their
produce. Improving field extension services, timely assistance, and updated climate information
is crucial (Shanabhoga et al., 2023).

3.6.3. Significance of Identification of NRRRs, Its Limitations, and Recommendations

Modelling and geo-visualization would aid in identifying areas of probable changes and their
effect on the environment while delineating NRRRs. The delineation of NRRRs provides the
quantitative and qualitative status of the environmental condition of the region, which is essential
for restoration and management. Preventing NRRRs from degradation would ensure to attain
higher productivity (Ramachandra and Negi, 2025). The management of the NRRRs should focus
on permissible activities in agriculture, tourism, forestry, and urbanization. Unplanned develop-
mental activities leading to unregulated resource use should be regulated to sustain natural re-
sources, specifically NRRR1 and 2 (Ramachandra et al., 2022; Uralovich et al., 2023).

Insights into soil health and nutrient availability will empower farmers to make informed agricul-
tural decisions, significantly improving productivity and sustainability through efficient water and
nutrient management practices. Landsat’s 30-meter spatial resolution may inadequately capture
small-scale land use changes or fragmented ecosystems, particularly in heterogeneous arid land-
scapes where fine-grained features (e.g. sparse vegetation) are critical. Agent-based modelling
that integrates socio-hydrological factors—such as farmer decision-making, groundwater man-
agement policies, and strategies for adapting to drought could more effectively simulate the dy-
namics of land-use transitions in the Northern Karnataka region. Additionally, engaging in par-
ticipatory mapping with local communities can enhance this understanding.

Several key strategies to ensure sustainable management of natural resources can stimulate local
economies through responsible extraction and use of resources, including (i) restrictions on large-
scale LULC changes to preserve ecological and hydrological integrity, (ii) prohibition of large-
scale mining, particularly of iron ore, (iii) restriction on monoculture plantations of exotic species
like Eucalyptus and Acacia due to their high water consumption, which can lead to reduced
groundwater recharge and lower water availability for local communities and agriculture in arid
regions, resulting in desertification, (iv) restoration focussing on catchment area treatment plans
to reduce silt yield, nutrient retention, etc., (v) promoting the cultivation of drought-resistant crops
can significantly reduce crop failure risks and enhance agricultural resilience in these arid regions
of Karnataka, (vi) implementing agroforestry techniques would improve soil health and biodiver-
sity, which are essential for sustainable land management, (vii) participation of local communities
in resource management and promoting diversified livelihoods.

Identifying NRRRs can enhance well-being, creating job opportunities and environmental aware-
ness among local populations. Furthermore, encouraging non-agricultural activities and entrepre-
neurship can help diversify local economies, reducing dependence on a single sector and fostering
economic stability. Setting up agro-processing and cottage industries can support local liveli-
hoods, and adopting clustering approaches can enhance economic efficiency and sustainability.
Providing comprehensive training and support to local populations is essential for equipping them
with the skills needed to manage resources sustainably and adapt to climate change. Strengthening
community organizations and social networks is equally vital for supporting economic develop-
ment and resilience.
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4. Conclusion

The spatiotemporal analyses of LU and LC of the arid region of Northern Karnataka have been
done from 1973 to 2022 using RS data. The long-term analyses of LC changes provided invalua-
ble insights into the dynamic interactions between human activities and the environment. The
observed increase in areas under vegetation, particularly in agricultural and horticultural lands,
reflects the positive impact of water resource development through reservoirs and dams. The tem-
poral land-use analyses were done using a supervised non-parametric machine learning algorithm,
the RF, highlighting the transformation of the predominantly agrarian landscape attributed to
globalization and liberalization. Forest ecosystems, particularly dry deciduous and scrub lands,
have faced degradation due to anthropogenic pressures, contributing to the decline in interior for-
est cover. The study identifies the impact of mining, plantation, and urbanization on LU patterns.
Paved surfaces (built-up) have increased from 186.22 (in 1973) to 1085.12 sqg. km (in 2022). The
study area has degraded forest patches, and the results of fragmentation analyses reveal that the
intact/interior forest has reduced from 3252.39 (1973) to 1508.12 (in 2022) sq. km. The prediction
of likely LUs highlights an increase in paved surfaces (built-up) from 6.23% (in 2030) to 7.17%
(in 2038). The LU modeling projections for 2038 highlight potential challenges, with a notable
increase in built-up areas and continued encroachment on scrub and forest lands. The study has
identified that NRRR1 (67 grids) and NRRR 2 (127 grids) are considered natural resources rich
regions, NRRR3 (304 grids) moderate, and NRRR4 (522 grids) less sensitive. The prioritization
of NRRRs emphasizes the need for conservation strategies with varying degrees of sensitivity
across grids and villages. Strategic planning with regulatory measures is essential to ensure sus-
tainable development, conservation of biodiversity, and the preservation of NRRRs (natural re-
sources-rich regions). The study provides valuable insights for policymakers, environmentalists,
and local communities to make informed decisions for the future well-being of the northern arid
regions of Karnataka.
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Supplementary Table 1. Data used for assessing the extent and condition of.

Remote sensing data

Data Source Bands Spatial resolution Temporal resolution  Year
. U.S. Geological Sur-
Is_zggsft(,\l\//llglst)lspectral vey https://earthex- Band 4, 5, 6 30m 16 days 1973
plorer.usgs.gov/
. U.S. Geological Sur-
Landsat Thematic Mapper vey https://earthex- Band 1, 2,3, 30m 16 days 1996, 2005
(TM) 457
plorer.usgs.gov/
. U.S. Geological Sur-
Il_rzgdzz:t (()OpeLrI(;\tlonal Land vey https://earthex- ZB %ng 56.7 30m 16 days 2014, 2022
gery plorer.usgs.gov/ e
Shuttle Radar Topography  U.S. Geological Sur-
Mission Digital Elevation  vey https://earthex- 30m 2014
Model (SRTM DEM) plorer.usgs.gov/
Collateral Data
Data Source Spatial resolution Year
KGIS K-GIS Portal https://kgis.gok.in
Survey of India Toposheet  surveyofindia.gov.in 1:50000 2005-06
Survey of India Toposheet  surveyofindia.gov.in 1:250000 1964-66
Google Satellite Google Earth https://earth.google.com/ 0.1-5m 1985-2023
National Remote Sensing (ool e index 1:50,000 2005-06, 2011-12, 2015-16
Centre (NRSC) Land Use hpp ' NrSC.gov. P ~ ' '
Data used for identification of NRRRs
Variable Source of Data Data Description
Land Use classification map Spatial quantification of forested
Forest Cover Author (2022) areas within the defined grid
Interior Forest Author Forest class derived from land use  Spatial quantification of interior
map (2022) forest within the defined grid

Biomass (Total Carbon)

Shannon's Diversity

Number of Species

Flora

Fauna

Elevation (m)

Rainfall (mm)

Agro-Climatic Zone

Lithology

Soil

Stream Density

Stream Flow

https://wgbis.ces.iisc.ac.in

https://wgbis.ces.iisc.ac.in

https://wgbis.ces.iisc.ac.in

https://wgbis.ces.iisc.ac.in

https://wgbis.ces.iisc.ac.in

https://www.nrsc.gov.in/

Indian Meteorological Data (IMD)

https://e-krishiuasb.karnataka.gov.in/

https://nbsslup.icar.gov.in/

https://nbsslup.icar.gov.in/

https://www.nrsc.gov.in

https://www.nrsc.gov.in

Empirical field data and synthesis
of literature

Empirical field data and synthesis
of literature

Empirical field data and synthesis
of literature

Empirical field data and synthesis
of literature

Empirical field data and synthesis
of literature

Cartosat DEM data (1 arc second
= 30m resolution)

Historical daily rainfall records
(1901-2010) from rain gauge sta-
tions

Karnataka Agriculture Portal

National Bureau of Soil Survey
and Land Use Planning
(NBSS&LUP)

National Bureau of Soil Survey
and Land Use Planning
(NBSS&LUP)

Cartosat DEM data (1 arc second
= 30m resolution)

Cartosat DEM data (1 arc second
= 30m resolution)

Estimation of total carbon stored
in biomass across the grid
Calculation of Shannon diversity
index based on species abundance
and distribution within the grid
Enumeration and spatial mapping
of species diversity within the
grid

Spatial representation of endemic
plant species distributed across
the grid

Spatial representation of endemic
animal species distributed across
the grid

Extraction of elevation profiles
and contour features from DEM
data within the grid

Conversion of point-based rainfall
observations into spatially inter-
polated datasets for the grid
Classification and spatial delinea-
tion of agro-climatic zones spe-
cific to the grid area

Geological characterization of
lithological units based on parent
rock material within the grid
Identification, classification, and
spatial mapping of soil types
within the grid

Quantitative analysis of stream
network density using hydrologi-
cal modeling in the grid
Temporal assessment of water
flow duration in streams present
within the grid
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https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://kgis.gok.in/
https://surveyofindia.gov.in/
https://surveyofindia.gov.in/
https://bhuvan.nrsc.gov.in/home/index.php
https://bhuvan.nrsc.gov.in/home/index.php
https://bhuvan.nrsc.gov.in/home/index.php
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Land Use classification map

Identification and spatial mapping

Reservoir Author (2022) of.reservows present within the
grid
Supplementary Table 1. Continued.
Data used for identification of NRRRs
Variable Source of Data Data Description
. .. . _ Quantification of solar radiation potential
Solar Energy (kWh) Ramachandra et al., 2011, Empirical field data and synthe based on global solar energy measurements in

Wind Velocity (m/sec)

Bioenergy (Mkcal)

Population Density (per-
sons per sg. km)
Livestock Density (ani-
mals/ha)

Forest dwellers

Ramachandra, T.V., 2006

Ramachandra, T.V., & Shruthi,
B.V., 2005

Ramachandra, T.V., 2007

Census of 2011 (http://cen-
susindia.gov.in)

Animal Husbandry Departments
of the states and union territories
Census of 2011 (http://cen-
susindia.gov.in)

sis of literature

Empirical field data and synthe-
sis of literature
Empirical field data and synthe-
sis of literature

Census of India 2011
20th Livestock Census of India

Census of India 2011

the grid

Measurement and spatial analysis of wind

speed dynamics across the grid

Estimation of bioenergy potential derived
from fuelwood availability in the grid area
Spatial analysis of human population density
per square kilometer within the grid area
Spatial distribution and density of livestock

within the grid area

Spatial distribution and statistics of forest

dwellers within the grid area

Supplementary Table 2. Quantification of area under vegetation and non-vegetation through NDVI thresh-

olding.
Bagalkote
Year Scene Minimum value Threshold value Maximum value
2022 -1 0.4 1
2014 -1 0.3 0.88
Scene 1 -0.89 0.25 0.87
2005
Scene 2 -1 0.25 0.87
1998 -1 0.11 1
1973 -0.63 0.09 0.7
Bellary
Scene 1 -0.73 0.27 0.84
2022 Scene 2 -0.27 0.24 0.66
Scene 3 -0.29 0.24 0.74
Scene 1 -0.38 0.23 0.77
2014 Scene 2 -0.34 0.22 0.76
Scene 3 -0.31 0.19 0.74
Scene 1 -0.1 0.13 0.74
2007 Scene 2 -0.19 0.11 0.63
Scene 3 0.06 0.13 0.69
Scene 1 -0.5 0.16 1
2000 Scene 2 -0.52 0.19 0.78
Scene 3 -0.73 0.2 0.8
Scene 1 -0.54 0.13 0.69
Scene 2 -0.42 0.11 0.61
1973
Scene 3 -1 0.8 0.61
Scene 4 -1 0.8 0.66
Bidar
Scene 1 -0.24 0.12 0.52
2022
Scene 2 -0.24 0.1 0.52
Scene 1 -0.13 0.13 0.36
2014
Scene 2 -0.21 0.12 0.5
Scene 1 -0.1 0.13 0.44
2007
Scene 2 -0.13 0.13 0.41
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Scene 3 -0.1

Scene 1 -0.3
1999

Scene 2 -0.4

0.15
0.23
0.27

0.44
0.71
0.77

Supplementary Table 2. Continued.

Bidar
Year Scene Minimum value  Threshold value Maximum value
Scene 1 -1 0.07 0.57
Scene 2 -0.87 0.1 0.73
1973
Scene 3 -1 0.1 0.74
Scene 4 -1 0.06 0.64
Chitradurga
2021 -0.1 0.4 0.48
2013 -0.25 0.3 0.54
1998 -0.44 0.25 0.58
1991 -0.14 0.11 0.47
1973 -0.93 0.09 0.68
Kalaburagi
Scene 1 -0.2 0.21 0.51
2022
Scene 2 -0.15 0.19 0.47
Scene 1 -0.12 0.17 0.48
2014
Scene 2 -0.14 0.21 0.48
Scene 1 -0.64 0.06 0.73
2005
Scene 2 -0.46 0.01 0.72
Scene 1 -1 0.05 1
1996
Scene 2 -0.33 0.01 0.2
Scene 1 -1 0.08 0.65
1973
Scene 2 -0.58 0.06 0.8
Koppal
2021 -1 0.4 0.66
2013 -0.27 0.4 0.52
2006 -0.17 0.4 0.46
1998 -0.33 0.4 0.58
1973 -1 0.4 0.66
Raichur
Scene 1 -0.19 0.16 0.49
2022
Scene 2 -1 0.31 1
Scene 1 -0.17 0.16 0.52
2014
Scene 2 -0.48 0.32 0.88
Scene 1 -0.66 0.15 0.82
2009
Scene 2 -0.09 0.1 0.45
Scene 1 -0.29 0.12 0.48
1999
Scene 2 -0.37 0.12 0.58
Scene 1 -0.47 0.14 0.79
1973
Scene 2 -1 0.13 0.66
Vijayapura
Scene 1 -1 0.31 0.87
2022
Scene 2 -0.57 0.29 0.85
Scene 1 -1 0.33 0.88
2014
Scene 2 -0.7 0.24 0.88
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Vijayapura
2005 Scene 1 -0.81 0.2 0.89
Scene 2 -0.38 0.21 0.79

Supplementary Table 2. Continued.

Vijayapura
Year Scene Minimum value  Threshold value ~ Maximum value
Scene 3 -0.25 0.19 0.77
1996 Scene 1 -0.45 0.22 0.77
Scene 2 -1 0.17 0.81
Scene 3 -0.49 0.19 0.81
1973 -0.26 0.11 0.52
Yadgir
2022 -0.62 0.34 1
2014 -0.47 0.34 0.86
2005 -1 0.25 1
1996 -0.54 0.3 0.81
1973 Scene 1 -0.86 0.08 0.61
Scene 2 -1 0.14 0.67

Supplementary Table 3. Forest fragmentation analysis by computation of Py and P

Fragmentation Classes

Computation Description

Forest pixels that are surrounded by non-forested pixels and are located far from the

Interior PI=1 boundaries of both forested and non-forested areas.
Perforated Pf> 0.6 and PE-PFf> 0 ;c;raesst pixels that serve as boundaries between interior forest pixels and perforated
Edge Pf> 0.6 and PF-Pf < 0 ;c;:sst pixels that act as boundaries between interior forest pixels and non-forested
Transitional 04<Pf<0.6 Pixels that lie between edge pixels and non-forested pixels.
Patch Pf<0.4 Forested pixels that are surrounded by non-forested pixels.
b proportion of number of forest pixels 6
I~ total number of non — water pixels in the window (6)
P = proportion of number of forest pixel pairs 7
IT ™ total number of adjacent pairs of at least one forest pixel ™
Supplementary Table 4. Land cover in arid regions of Northern Karnataka from 1973 to 2022.
1973 1996 2005 2014 2022
Land Cover (NDVI)
sq. km % sg. km % sg. km % sg. km % sq. km %
Non-vegetation 47815.19  67.21 42441.14  59.66 40428.81  56.83 36050.38  50.67 33187.19  46.65
Vegetation 23328.22  32.79 28702.27  40.34 30714.60  43.17 35093.03  49.33 37956.22  53.35
Supplementary Table 5. Accuracy assessment of land use classification of 2022.
Reference (Google)
Dry_ Scrub  Open Agricul- Horticul-  Water- Built- Mine Plantation "°W UA
Deciduous ture ture body up sum
Dry Deciduous 50 4 0 2 1 0 0 0 0 57 0.88
Scrub 6 86 0 1 1 0 0 0 1 95 0.91
Open 0 1 42 6 0 0 2 1 0 52 0.81
Agriculture 2 14 6 1452 2 0 1 0 0 1477 0.98
Horticulture 2 2 0 6 114 0 0 0 0 124 0.92
Waterbody 0 0 0 0 0 56 0 0 0 56 1.00
Built-up 0 0 5 1 0 0 61 0 0 67 0.91
Mine 0 1 1 0 0 0 0 8 0 10 0.80
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Plantation 1 0 0 0 0 0 0 0 7 8 0.88
column sum 61 108 54 1468 118 56 64 9 8 1876
PA 0.82 0.80 0.78 0.99 0.97 1.00 095 0.89 0.88 0.96

Supplementary Table 6. Change in LU from 1973 to 2022 in arid region of Northern Karnataka.

1973 1996 2005 2014 2022
Land Use
sq. km % sg. km % sq. km % sq. km % sq. km %
Dry deciduous 2154.2 3.03 1755.9 2.47  1583.29 2.23 1416.63 1.99 1096.34 1.54
Scrub land 5650.74 7.94 3773.37 53  3093.85 4.35 2817.06 3.96 2260.19 3.18
Open land 6159.02 8.66 3830.62 5.38  2815.79 3.96 2215.26 311 1822.05 2.56
Agriculture 55399.64 77.87  59082.51 83.05 59040.72 82.99  58709.19 8252  59125.07 83.11
Horticulture 1089.35 1.53 1569.86 221  3054.14 4.29 4033.5 5.67 4198.58 5.9
Water 494.93 0.7 693.82 0.98 910.46 1.28 1053.27 1.48 1397.68 1.96
Built-up 186.22 0.26 402.42 0.57 606.24 0.85 804.78 1.13 1085.12 1.53
Mining 0 0 0.89 0 3.42 0 16.3 0.02 27.31 0.04
Plantation 9.3 0.01 34.02 0.05 355 0.05 77.44 0.11 131.08 0.18
Total 71143.41 100 7114341 100 71143.41 100 7114341 100  71143.41 100
Supplementary Table 7. Forest Fragmentation Indices from 1973 to 2022 in the arid region of North Kar-
nataka.
. 1973 1996 2005 2014 2022
Forest fragmentation
sq. km sg. km sg. km sq. km sq. km
Patch 520.81 790.34 565.35 507.58 365.87
Transitional 1357 714.41 549.73 506.68 419
Edge 883.32 263.34 217.47 200.71 163.73
Perforated 1596.3 1180.5 1043.8 956.64 868.86
Interior 3447.6 2580.7 2300.8 2062.1 1539.1
Total forest area 7804.9 5529.3 4677.1 4233.7 3356.5
Supplementary Table 8. Land use change simulation from 2022 to 2038.
Land use 2022 actual 2022 sim 2030 sim 2038 sim
Modelling sg. km % sg. km % sq. km % sg. km %
Dry deciduous 1096.34 1.54 1081.51 1.52 798.01 1.12 736.71 1.04
Scrub land 2260.19 3.18 2376.56 3.34 1469.71 2.07 1157.46 1.63
Open land 1822.05 2.56 1856.62 2.61 2232.61 3.14 1873.37 2.63
Agriculture 59125.07 83.11 58626.39 82.41 54648.15 76.81 54758.82 76.97
Horticulture 4198.58 5.90 4192.18 5.89 5522.32 7.76 5221.57 7.34
Water 1397.68 1.96 1600.42 2.25 1678.19 2.36 1819.60 2.56
Built-up 1085.12 1.53 1111.39 1.56 4432.20 6.23 5098.30 7.17
Mining 27.31 0.04 118.15 0.17 120.92 0.17 152.86 0.21
Plantation 131.08 0.18 180.19 0.25 241.29 0.34 324.71 0.46
Total 71143.41 100.00 71143.41 100.00 71143.41 100.00 71143.41 100.00

Ramachandra, et al. Page 162



