

Research article

Exploring the Role of Population Dynamics in Surface Urban Heat Island Hotspots in Peri-Urban Dhaka

Riffat Mahmood^{1*}, Fuad Hassan¹, Umme Kulsum²

- ¹ Department of Geography and Environment, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh; ² Program in Geospatial Information Sciences, School of Economic, Political and Policy Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
- *) Correspondence: riffat.mahmood@geography.jnu.ac.bd

Citation:

Mahmood, R., Hassan, F., & Kulsum, U. (2025). Exploring the Role of Population Dynamics in Surface Urban Heat Island Hotspots in Peri-Urban Dhaka. Forum Geografi. 39(1), 20-37.

Article history:

Received: 16 November 2024 Revised: 5 January 2025 Accepted: 7 January 2025 Published: 10 March 2025

Abstract

This study investigates the hotspots of surface urban heat island (SUHI) in the peri-urban areas of Dhaka based on the nexus of population dynamics, urban expansion, and land surface temperature. The respective land use land cover (LULC) classification and land surface temperature (LST) estimation were derived for 2000 and 2022 using images from Landsat-5 and Landsat-8, respectively, by applying established equations. Urban growth and its relation to LST were estimated using the classification based on the random forest and normalised difference built-up index (NDBI). The latter are directly associated with economic activities. The results indicated increased LST over time with urban sprawl and population increase, and hotspots were typical in high male-dominated migration rates and highly dense industrial activity. This study gives insight into the sustainable approach to urban planning and managing populations through clarity on the prevailing relationships among population growth and urbanisation with changing temperature.

Keywords: Land surface temperature; Land use land cover; population dynamics; Surface urban heat island; Urban expansion.

1. Introduction

Growth in Dhaka Megacity was explosive from 1 million in 1972 to over 17 million in 2015. It ranks 8th among the most populous cities and 7th among the densest cities in the world, growing at an annual growth rate of 3.48% (UNFPA, 2016). This has been a very unplanned trend in nature, contributing to habitat transformation (Asgarian et al., 2014), ecosystem degradation (Su et al., 2012), and loss of agricultural lands (Lambin et al, 2011), besides disturbing the hydrologic cycle (Brown et al., 2011). Rapid growth of urbanisation with an imbalanced pattern has put Dhaka into a critical situation, placing the eco-sensitive environment and land resource at risk. For instance, the natural waterbodies and wetlands within the periphery of Dhaka are undergoing severe transformation into built-up areas through landfilling and multi-storeyed concrete establishments in different modalities, especially the real estate developments (Hassan et al., 2017). So, the expansion of Dhaka megacity is occurring at the expense of critical environmental, ecology and natural land resources by adding impervious surfaces such as rooftops, buildings, and paving. Thus, urban sprawl has substituted natural waterbodies and wetlands with built-up areas with low albedo and high heat storage. It changes energy balance of the entire existing environment by altering the transfer and storage of energy due to urbanisation (Streutker, 2017). Also, urban activities like vehicular traffic, fossil fuel burning, energy generation, etc. generate heat as a by-product which becomes a cause of heat pollution and a responsible factor of SUHI (Haashemi et al. 2016). So, the crowding in the city centre would, in all likelihood, lead to the intensification of the SUHI, in areas of dense urban development (Shah and Ghauri, 2015). Haashemi et al. (2016) support the finding that the core city gets considerably hotter compared to its peri-urban surroundings through amplification by heat generation from urban activities.

While there is no evidence yet to connect these changes with spatiotemporal phenomena, the rate of increase has been growing enormously. Worldwide many studies concentrated about the surface urban heat island (SUHI) on different cities (Li *et al.*, 2020; Manoli *et al.*, 2019; Raj *et al.*, 2020; Shastri *et al.*, 2017; Zhou *et al.*, 2017; Yao *et al.*, 2017; Hu *et al.*, 2019; Chun & Guldmann, 2018; Huang *et al.*, 2016). Despite rapid urban expansion with high population growth and their impacts on the environment of Dhaka, the volume of scientific research linking urbanisation with other spatio-temporal phenomena is still nominal and yet to yield a conclusion. Most of the prior studies on Bangladesh cities focuses on the urban land use land cover (LULC), land surface temperature (LST) and the urban heat island (UHI) separately (Kant *et al.*, 2018; Roy *et al.*, 2016; Uddin *et al.*, 2022; Tabassum *et al.*, 2024) or to assess LULC linking with LST (Roy *et al.*, 2016; Ahmed *et al.*, 2013; Xiong *et al.*, 2012). Also, some limited studies have been conducted about the SUHI (Itzhak-Ben-Shalom *et al.*, 2017; Kant *et al.*, 2018; Roy *et al.*, 2016; Dewan *et al.*, 2021b), but the peri-urban areas of Dhaka city are still unseen.

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

However, this study extends its objective compared to the earlier works. It aims to identify SUHI hotspots in a peri-urban area of Dhaka mega urban region linking both LULC change, and commensurate population dynamics triggered by urbanisation. It is important for health risk mitigation due to SUHI and sustainable urban development. Therefore, such a study potentially benefits in foreseeing and identifying the potential location of SUHI hotspots and their physical direction in response to the population dynamics evolved by socio-economic factors. This would serve the needs of the city planners and the authorities in managing SUHI and thus encouraging the people towards sustainable growth.

2. Material and Method

2.1. Study Area

This area falls into the polycentric zone connecting Dhaka with the neighbouring cities and periphery areas according to RAJUK's Structure Plan for Dhaka 2016-2035 and updated Dhaka (Figure 1). Metropolitan Development Plan (DMDP). The area in short comprises the Dhaka Metropolitan Area (DMA) and the extra eight municipalities and 51 unions falling within central Bangladesh (Rajuk, 2006). It belongs to hot and humid tropical climate classes (Rabbani *et al.*, 2019). According to estimation, many researchers rank Dhaka city as one of the fastest-growing cities in the world.

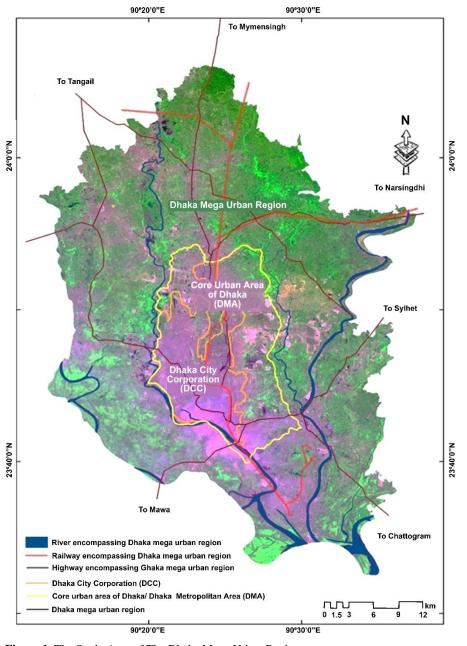


Figure 1. The Study Area of The Dhaka Mega Urban Region.

Mahmood, et al.

Geomorphologically, it features alluvial terraces and low-lying areas near the Meghna and Shita-lakkhya rivers (Hassan and Southworth, <u>2017</u>). The area benefits from extensive regional and national highways, enhancing its connectivity and attractiveness for investment and labour (Hassan and Southworth, <u>2015</u>). The tropical monsoon climate results in heavy rains from May to September, with summer temperatures exceeding 30°C and January being the driest month.

2.2. Data Requirement and Preparation

This study utilised multi-temporal Landsat images, census data, GIS databases, and field data. Four cloud-free post-monsoon Landsat scenes from USGS (http://earthexplorer.usgs.gov/) were analysed, including Landsat-5 TM and Landsat-8 OLI, both geometrically corrected to UTM projection. Focusing on the dry season for minimal cloud interference, we applied the FLAASH atmospheric correction method in ENVI 5.3 for high accuracy (Matthew *et al.*, 2002). Digital numbers were converted to top-of-atmosphere (TOA) radiance and then to surface reflectance. GIS data on administrative boundaries, road networks, and other features were sourced from the Urban Development Directorate, Dhaka City Corporation, and RAJUK. Additionally, LULC maps from the Survey of Bangladesh were used for classification accuracy assessment.

Table 1. Data Sources	of the Satellite	Images.
------------------------------	------------------	---------

Temporal Year	Date	Sensor	Path/ Row	Spatial Reso- lution	Spectral resolution	Cloud cover (%)
2020	2022-02-11	LANDSAT 8 OLI/TIRS	137/43	30 m	RGB and NIR bands (30 m) and Thermal infrared bands (100 m	0
	2022-02-11		137/44	30 m	resampled to 30 m)	0
2000	2000-02-20	LANDSAT 5 TM	137/43	30 m	RGB and infrared bands (30 m) and Thermal infrared band (120	0
	2000-02-20		137/44	30 m	m resampled to 30 m)	0

2.3. LST Calculation and SUHI Identification

To assess the impact of urban growth on SUHI, this study analysed variations in Land Surface Temperature (LST), which are influenced by Earth's energy balance, surface properties, sunlight exposure, and cloud cover (Ahmed *et al.*, 2013). We extracted LST from Landsat images, comparing different periods and contrasting Dhaka's core urban area with its surroundings. Atmospheric temperatures for these dates were sourced from NOAA, WMO, and BMD.

LST calculations involved first deriving the Normalized Difference Vegetation Index (NDVI) from near-infrared and red band reflectance (Roy *et al.*, 2016). Land surface emissivity, crucial for accurate LST calculation, was estimated using a modified NDVI threshold method (Sobrino *et al.*, 2004) based on vegetation proportion (PV) with threshold values set accordingly (Sobrino and Raissouni, 2004) (see Table 2).

Table 2. NDVI Threshold Values for Different Surface Characteristics.

Surface characteristics	NDVI threshold	Estimation of emissivity
Bare land, impervious surface	0 < NDVI <0.2	ε = ai pred + bi (Roy <i>et al.</i> , 2016) pred is the red band's reflectivity
Vegetation	NDVI >0.5	εv + Ci, Ci is cavity effect by the surface roughness of mixed sur-
Mixed of bare land and vegetation	$0.2 \le NDVI \le 0.5$	face area (Sobrino <i>et al.</i> , 2004) $\varepsilon = m PV + n$ (Sobrino <i>et al.</i> , 2004) PV is vegetation proportion.

Finally, LST calculation was done from Landsat-5 TM for the year 2000 by the well-established single-channel method used and explained in detail in several studies (Roy *et al.*, 2016). For Landsat-8 TIRS images for the year of 2022, LST was calculated using the split-window algorithm used in several studies (Roy *et al.*, 2016). Generally, temperature increases from rural to urban areas, indicating a positive linear relationship (Schatz and Kucharik, 2015). SUHI is determined by comparing surface temperatures between a city's core and its surrounding area (Voogt and Oke, 2003). SUHI was calculated for Dhaka's core (Dhaka Metropolitan Area) versus its peri-urban areas for 2000 and 2022 using this approach (Equation 1).

SUHI = (avg. LST) urban core area - (avg. LST) surrounding area (1)

2.4. LULC Change Detection

Development of SUHI due to increased LST is a key effect of LULC changes in urban areas. Urban areas with built-up surfaces show higher LST (Mondol *et al.*, 2018), while vegetation and water bodies lower LST through cooling and evapotranspiration (Sun *et al.*, 2012). In Dhaka, landfill areas with high reflectivity contribute to increased LST (Hassan *et al.*, 2017).

LULC classifications (Table $\underline{3}$), based on recent Dhaka studies (Parvin and Abudu, $\underline{2017}$), were validated with field data. Due to mixed pixel issues in Landsat images (Weng, $\underline{2012}$), a hybrid classification method was used. This included atmospheric correction, unsupervised classification into 180 classes, and random forest classification with 100 spectral signatures for accurate LULC mapping for 2000 and 2022 (Ishtiaque *et al.*, $\underline{2017}$).

Table 3. LULC Classes Defined in This Study.

Classes	Descriptions
Barren Land	Landfills of both earth and sand, developed land, construction sites.
Built-up Areas	Infrastructure of all kinds—residential, industrial, commercial, mixed use , villages, pavements, settlements, road network and anthropogenic structures
Vegetation	Natural vegetation, trees, forest (mixed), grasslands, parks and gardens, playgrounds, and agricultural lands.
Water-bodies	Rivers, canals, open water (permanent), lakes, ponds, wetlands (permanent/seasonal), low lands and swamps

Accuracy was assessed using an error matrix and Kappa values (Roy and Mahmood, 2016), comparing 200 randomly selected reference pixels for each time-period with land use maps (Shastri et al., 2017) (Table 3). Field surveys in February 2020 provided data for the current year, while Google Earth imagery and a topographical map of 2000 from the Urban Development Directorate served as references for 2000. The accuracy of the land cover maps is approximately 90%, with Kappa values of 0.85 for 2000 and 0.89 for 2022, assessed using Cohen's Kappa Coefficient.

Table 4. Accuracy Assessment of LULC Classification of The Study.

Percentage								
Year	2022		2000					
LULC	Producer Accuracy	User Accuracy	Producer Accuracy	User Accuracy				
Water-bodies	87.50	94.23	91.03	93.42				
Vegetation	90.91	92.59	89.23	85.29				
Built-up Area	98.53	90.54	93.33	89.36				
Potential Built-up Area	85.00	89.47	63.64	87.50				
Overall		92.04		89.55				
Kappa		0.89		0.85				

2.5. Extraction of Physical Index

Since built up area or impervious surface is the major spatial feature of urban area (BBS, 2012), NDBI (Normalized Difference Built-Up Index) was used due to its ability to reveal pixels that represent impervious surfaces. The value range of NDBI is between -1 to +1, negative value representing water-bodies and positive value representing other types of land uses including built up areas or impervious surfaces. The value range of the latter is 0 to 0.2. NDBI was calculated from the surface reflectance of mid infrared and near infrared band using a well-established equation described in several studies (Roy *et al.*, 2016; Zha *et al.*, 2003).

2.6. Population Dynamics Analysis

Population data were collected from the population census and the sample census questionnaire, respectively, conducted by the Bangladesh Bureau of Statistics (BBS). Population data is available in Bangladesh at the Union level. Dhaka's mega-urban region comprises the Dhaka Metropolitan Area, eight municipalities, and 51 Unions. Based on this administration, population data of 60 administrative units (1 DMA+8 municipalities+51 Unions) were collected from the last census of Bangladesh (BBS, 2012). This study used projected population data for 2022 using a modified version of the Malthusian growth model. The malthusian growth model has been expressed in previous studies in detail (Mondol *et al.*, 2018).

2.7. Methodological Framework

Initially, the study identified the intensity of the Surface Urban Heat Island (SUHI) effect by comparing Land Surface Temperature (LST) between the Dhaka Metropolitan Area (DMA) and its surrounding areas. To examine whether Land Use and Land Cover (LULC) changes in DMA contribute to increased LST, bivariate analyses were performed at the Thana level for 2000 and 2022, revealing significant correlations. Regression analyses were then conducted to assess the relationship between mean LST changes (dependent variable) and changes in each LULC class (independent variables) for both years, mitigating multicollinearity effects.

The results indicated a positive correlation between LST and both barren land and built-up areas within DMA. Since SUHI is an urban phenomenon, only the core urban area (DMA) was analysed for its relationship with LULC and LST. Additionally, regression analyses were performed to investigate the impact of urban expansion and population dynamics on SUHI, correlating urban land expansion (dependent variable) with net population change (independent variable). Barren land was considered part of the built-up area in this analysis due to its role in land reclamation and construction projects.

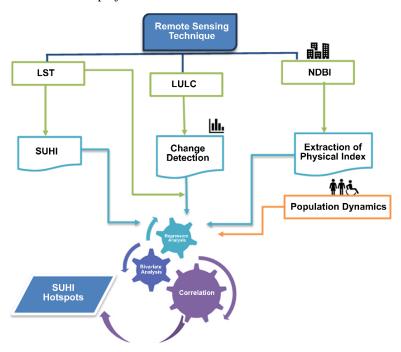


Figure 2. Methodological Framework for Assessing SUHI Hotspots.

In the subsequent phase, SUHI hotspots in peri-urban areas were identified by analysing the relationships between urban expansion, net population change, and LST. Significant positive correlations between these factors and LST were used to determine the intensity of SUHI. Risk ratings for SUHI hotspots were assigned based on three criteria: normalised LST, increase in built-up land (NDBI), and net population change per square kilometre. These criteria were standardised to a common range and weighted equally in a risk assessment model, classifying areas from very low to very high risk. Administrative units with over 50% high to very high-risk areas were designated as SUHI hotspots (Figure 2).

Qualitative validation involved stakeholder feedback from policymakers, experts, and residents and in-depth observations of SUHI hotspots. Attributes such as highway presence, road density, sex ratio, and population density were analysed to understand their roles in urban expansion and SUHI intensity. Historical causes of urban growth were also investigated through discussions with residents to corroborate the findings.

3. Results

3.1. Spatio-temporal Pattern of LST

In 2000, the land surface temperature (LST) across the Dhaka mega-urban region ranged from 11.9°C to 23.7°C. The central portion of the study area predominantly exhibited LST values around 20°C. By 2022, the LST across the region had increased significantly, ranging from 17°C

to 32.6°C. Much of the area now experiences a mean LST exceeding 20°C. In the urban core, particularly within the Dhaka Metropolitan Area (DMA), the mean LST has risen to approximately 25°C, with some eastern regions reaching temperatures of 28°C and above. This increase is attributed to the rapid industrial expansion and extensive barren sandy lands created for development projects (Figure 3). The LST change map was calculated based on the normalised LST (NLST) of 2000 and 2022, which was increased by 0.70, Figure 4.

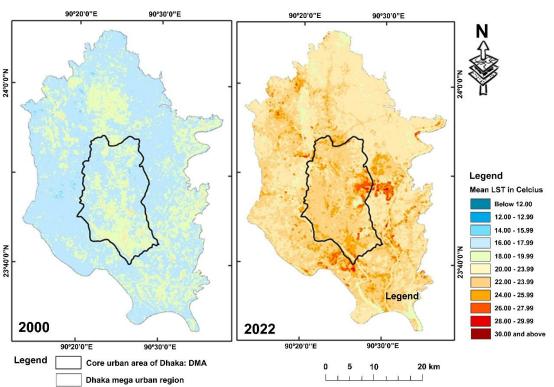


Figure 3. Mean Land Surface Temperature (LST) Scenario in Dhaka Mega Urban Region In 2000-2020.

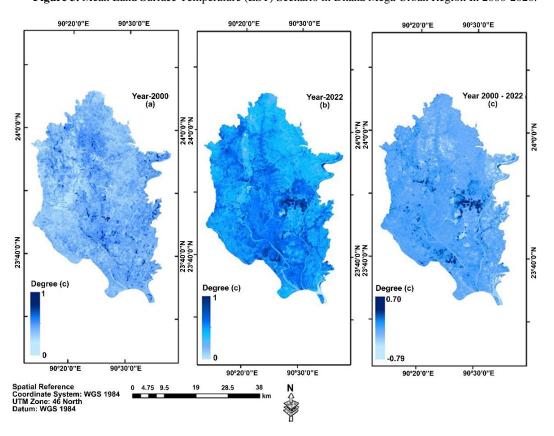


Figure 4. Spatial distribution of changes in calculated normalised LST in 2000-2022 period in study area.

3.2 SUHI identification within Dhaka Mega Urban Region

Dhaka Metropolitan Area (DMA) is historically and administratively the urban core area, whereas the rest of the study area is mainly the peri-urban area. From Table 5, it is evident that DMA acted as a surface urban heat island (SUHI) in 2000, and its intensity increased about 0.49 OC in the 2000-2022 time periods. The LST of both DMA (urban core area) and the rest of the study area (peri-urban area) increased to near about 5 °C in the last 22 years.

Table 5. SUHI Scenario in DAP of Mega-Urban Region of Dhaka in 2000-2020.

Voor	Mean LST (°C)						
Year	Urban core area	Rest of the study area	SUHI Intensity				
2000	18.07	17.84	0.23				
2022	22.97	22.25	0.72				
Temporal Difference (2022-2000)	4.41	4.9	0.49				

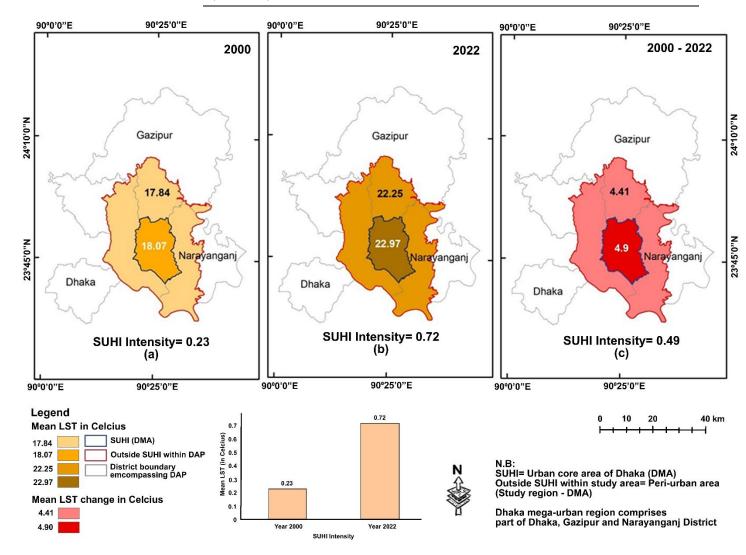


Figure 5. SUHI Scenario in Dhaka Mega-Urban Region in 2000-2022.

3.3. Spatio-temporal Pattern of LULC Change

Spatial arrangement of LULC of the study region portrays that built-up area as well as barren land increased rapidly in the last 22 years, whereas vegetation and water bodies decreased subsequently. More precisely, built-up area and barren land increased by 135% and 110% respectively in the last 22 years (Table 6 and Figure 6). The conversion pattern among LULC classes suggests that other LULC classes, i.e. vegetation, water and barren land, are the primary contributors to built-up area expansion, whereas barren land has been forming with the cost of losing water bodies and vegetation (Table 7).

Table 6. LULC Changes within Dhaka of Mega-Urban Region in 2000-2022.

LULC Class		Area (in sq	. km)	% of the total study area			
LULC Class	2000	2022	2000-2022	2000	2022	2000-2022	
Waterbodies	351.33	194.65	-156.68	22.91	12.69	-44.60	
Vegetation	954.40	817.46	-136.94	62.24	53.30	-14.35	
Built-up area	170.17	400.50	230.33	11.10	26.11	135.35	
Barren land	57.52	121.23	63.71	3.75	7.90	110.77	

 Table 7. Conversion Matrix Among LULC Classes of Dhaka Mega Urban Region in 2000-2022.

			2022			
	Class Name	Water	Vegetation	Built Up	Barren land	Total
_	Water-bodies		79.17	44.52	32.99	156.68
2000	Vegetation	-79.17		175.04	41.07	136.94
•	Built-up area	-44.52	-175.04		-10.81	-230.33
	Barren land	-32.99	-41.07	10.81		-63.71
	Total	-156.68	-136.94	230.33	63.71	0

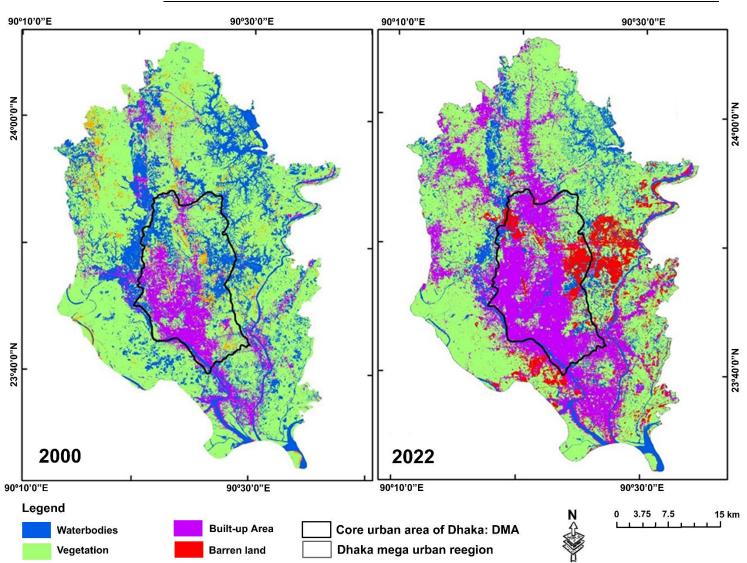


Figure 6. LULC Change in Dhaka Mega Urban Region in 2000-2022.

Figure 6 shows that in the last twenty years, an increasing trend of built-up area has been observed towards the north, northwest, and southeastern parts of the region. Barren land, which was mostly found in the northern part of the region in 2000, shifted towards the central east just near the city in 2022. Barren land in 2000 has already become a built-up area in 2022.

3.4. Linking LST with LULC and Population Dynamics in SUHI Scenario

3.4.1. Urban Built-Up Land Expansion as a Contributing Factor of Increasing LST in SUHI

From the above discussion, it has been observed that the Dhaka mega urban region has been experiencing an increasing trend both in mean LST and built-up land expansion over the last 22 years. Mean LST of all LULC classes was below 19°C in 2000, which increased to around 23°C in 2022. Figure 7 shows the increase of mean LST by LULC classes in 2000-2022 where built-up area shows highest increase of mean LST (4.69°C) because of the compactness of the surface along with build infrastructures compared to other LULC classes i.e. vegetation and water bodies supporting the hypothesis of rapid urbanization being responsible for the increase of land surface temperature. A noticeable fact addressed that all land cover types experienced an increase in LST over the periods (e.g., even for vegetation).

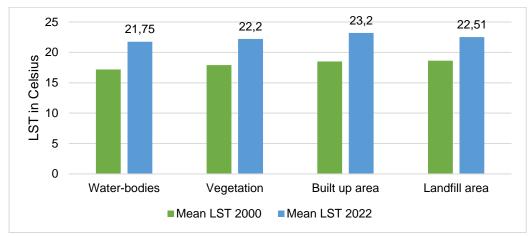
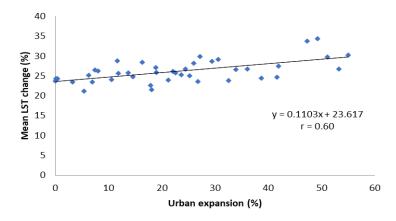



Figure 7. Mean LST Change (2000-2022) by LULC Classes in Dhaka Mega Urban Region.

Since DMA was identified as a surface urban heat island (SUHI) within the Dhaka mega urban region, DMA was chosen as the focus area for exploring the relationship of LST and urban built-up land expansion. In the Dhaka mega urban region, all barren land in 2000 was converted to built-up area in 2022, and new barren land was formed in the expanse of water bodies and vegetation, LULC classes (see Figure 7 and Table 7). So, both built-up area and barren land LULC class have been acting as indicators of urban expansion.

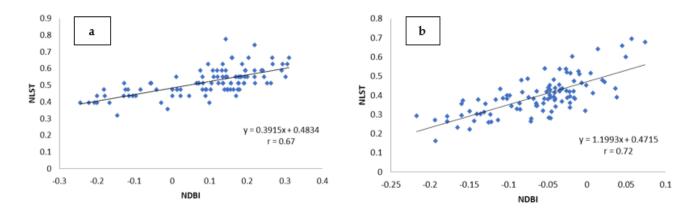


Figure 8. Scatter plot representing linear relationship between mean LST changes with an urban expansion in 2000-2022 period.

Since both built-up area and barren land LULC classes have been acting as indicators of urban expansion, regression analysis between mean LST change and urban expansion (considering both built-up area and barren land) suggests that urban expansion has a positive relationship with LST ($r \ge 0.50$) in SUHI, i.e. DMA Figure 8 during the study period.

Also, regression analysis of normalised LST and NDBI index of each year represents a similar result. Normalised LST was used to minimize seasonal effects commonly attributed to temporal variation of satellite images. As shown in Figure 9, the NDBI is positively correlated with normalised LST throughout the study period, providing evidence of increasing built-up land in a core

urban area (i.e. DMA) being an important factor in aiding LST increase. The regression analysis of normalised LST and NDBI clarifies a significant improvement of the relationship from 2000 (r=0.67) to 2022 (r=0.72) (Figure 9). This result points out the growing influence of urbanisation on land surface temperature. In 2000, the relationship between NDBI and normalized LST was moderate, where the stronger correlation can be observed in 2022, reflecting the rapid urban development contributed to elevated surface temperatures.

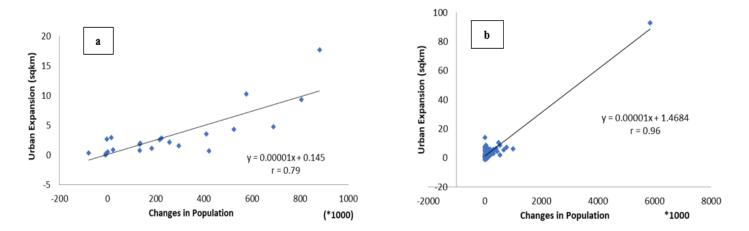
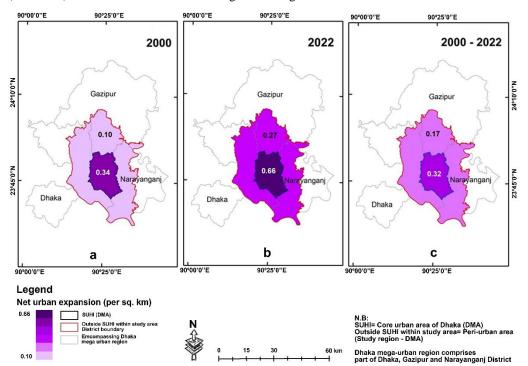


Figure 9. Linear Relationship Between Normalised LST And Physical Indicator NDBI In 2000 (A) And 2022 (B).

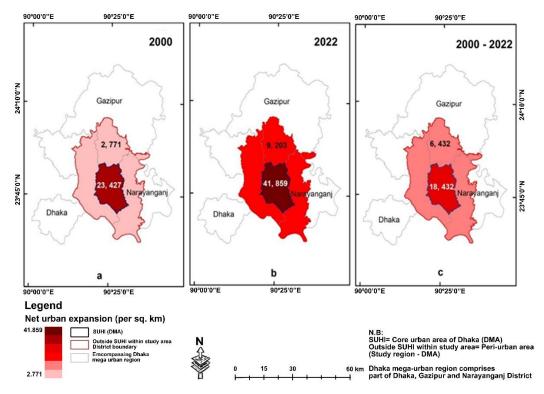
3.4.2. Net Population Increase as A Contributing Factor of Urban Built Up Land Expansion in SUHI and Its Surrounding Peri-Urban Area

It is already evident from Figure $\underline{8}$ and $\underline{9}$ that the increase of mean LST of DMA in 2000-2022 is due to subsequent growth of urban built-up land. Regression analysis between urban expansion and net population change at Thana level within SUHI (i.e. DMA) represents strong positive correlation (79.0%), Figure $\underline{10}$ a, evidence that population dynamics in SUHI (i.e. DMA) has been contributing significantly to expansion of urban built-up land as well as to increase LST over the study period.

To explore the contribution of population dynamics to urban expansion in the Dhaka mega-urban region (i.e., including DMA and peri-urban area within the study area), regression analysis was also done within the study region, as shown in Figure $\underline{10}$ b. This figure depicts urban build-up land expansion having a strong positive correlation with net population change (R=96.0%).


Figure 10. Scatter Plot Representing Linear Relationship of Urban Expansion and Net Population Change in (A) SUHI (DMA) and (B) Outside SUHI (Dhaka Mega Urban Region I.E. DMA and Peri Urban Area Within Study Area).

3.5. Identifying SUHI Hotspots in Peri Urban Area of Dhaka Mega Urban Region Based on Spatial Risk Assessment


It has been evident from the analysis and discussion done for this study that population dynamics is the major factor contributing to urban expansion and land surface temperature. So, urban

expansion is considered to be the primary driver of SUHI, which is further influenced by the increasing trend of population dynamics, which is considered to be the secondary driver.

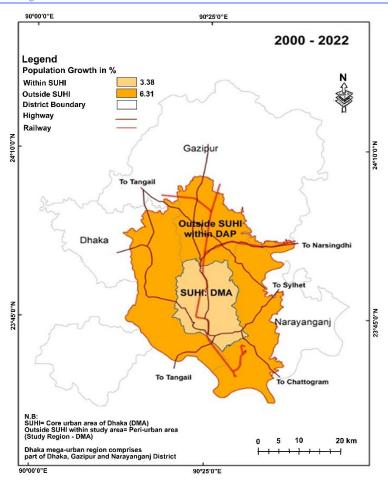

As shown in Figures 11 and 12, urban expansion and net population change have been experiencing an increasing trend over the study period, not only in SUHI (DMA), but also in its surrounding peri-urban area (Study region - DMA). The population growth rate outside SUHI in a peri-urban area of the Dhaka mega urban region is almost double that of in the SUHI. Figure 13 resembles the potentiality of forming new SUHI hotspot in peri-urban area and/or expansion of present SUHI (i.e. DMA) outward within the Dhaka mega urban region.

Figure 11. Net urban expansion (per sq. km) in SUHI and outside SUHI within the Dhaka mega urban region in 2000-2022.

Figure 12. Net Population Increase (Km²) in SUHI And Outside SUHI Within the Dhaka Mega Urban Region in 2000-2022.

Figure 13. Net Population Growth in 2000-2022 in SUHI and Outside SUHI Within Dhaka Mega Urban Region.

The overall risk of the Dhaka mega urban region to SUHI effect is depicted spatially in Figure 14a and b presents that there are 13 unions located in a peri-urban area, which are in very high to highly risk to be SUHI hotspots, Table 8. As shown in Figure 14b, the top four unions identified as SUHI hotspots are located to the south of DMA in Narayanganj Sadar and Keranigang Upazila. The rest of SUHI hotspots are located east of DMA in Savar Upazila, only a few (two unions; Konabari and Tetuljhora) to the north in Gazipur Sadar Upazila.

Table 8. Percentage of the Total Area of Identified SUHI Hotspots Falls into Different Risk Categories.

		% of total					
SI	Union	Very Low	Low	Moder- ate	High	Very High	% of Area to be potential SUHI hotspots
1	Kashipur	0.00	0.02	5.23	54.16	40.58	94.74
2	Fatullah	0.00	0.37	7.11	44.79	47.72	92.51
3	Subhadya	0.00	0.81	21.97	60.49	16.74	77.23
4	Siddirganj Mun.	0.00	2.93	20.22	53.78	23.08	76.86
5	Tetuljhora	0.00	2.01	23.88	60.50	13.61	74.11
6	Kutubpur	0.00	2.91	23.27	56.27	17.55	73.81
7	Savar Mun.	0.00	3.51	23.52	57.83	15.15	72.98
8	Kalindi	0.00	1.01	28.17	70.82	0.00	70.82
9	Aminbazar	0.00	3.19	32.18	64.63	0.00	64.63
10	Dhamsana	0.00	3.57	33.25	48.07	15.12	63.19
11	Tongi Mun.	0.00	12.81	33.74	46.64	6.81	53.45
12	Ashulia	0.00	14.74	31.83	47.20	6.23	53.43
13	Konabari	0.00	7.03	41.40	41.52	10.07	51.59

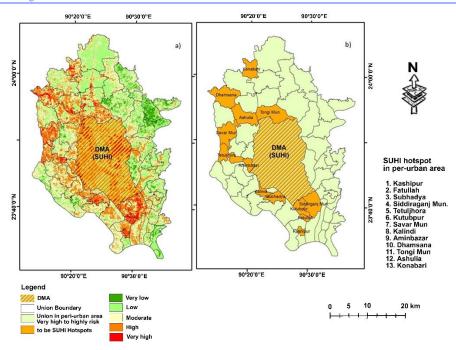


Figure 14. Spatial Risk Map of Dhaka Mega Urban Region to SUHI Effect.

3.6. Validation of identified SUHI hotspots

The result of in-depth personal observation by identifying specific attributes of identified SUHI hotspots from the census and map and verifying the population dynamics-urban expansion-land surface temperature nexus as shown in Table 9 represents that high road density, sex ratio and population density makes area fallen into very high to highly risk to be SUHI hotspots (R=84.2%). This scenario represents that accessibility and connectivity (i.e. presence of highway and high road density) attracts investors to set up industry and business which further promotes in migration of male labours to that area (identified by high sex ratio <100) and subsequent increase of urban population and activity (i.e. population density), so as formation of SUHI.

Table 9. Validation of Identified SUHI Hotspots by Identifying Specific Attributes and Verifying the Population Dynamics-Urban Expansion-Land Surface Temperature Nexus.

	SUHI	% of area	Changing Population Density (PD)	Sex Ratio (SR)	Road Density (km/sq.km) (RD)	Highway encompassing the Union	Regression analysis between pSUHI (as depen-
S1	hotspots	to be poten- tial SUHI	As a proxy of	As a proxy of	As a proxy of		dent variable) and PD1
	(Union)	(pSUHI	Changing urbanization (UNFPA, 2016)	Male dominant in-migration (UN-FPA, 2016)	Accessibility a (UNFPA, 201	and connectivity	, SR2 , RD3 (as independent variable)
1	Kashipur	94.74	54431	108.33	1.74	Yes	
2	Fatullah	92.51	78980	111.16	2.29	Yes	
3	Subhadya	77.23	26688	118.75	2.16	Yes	
4	Siddirganj Mun.	76.86	24328	106.96	1.50	Yes	184.2%
5	Tetuljhora	74.11	12374	119.50	0.95	Yes	Overall level of signifi-
6	Kutubpur	73.81	32993	110.92	1.08	Yes	cance= 0.9% Individual level of signifi-
7	Savar Mun.	72.98	29098	109.30	0.59	Yes	cance:
8	Kalindi	70.82	7755	109.64	2.42	Yes	PD= 6.3%
9	Aminbazar	64.63	6108	119.26	1.60	Yes	SR= 3.7% RD= 10.0%
10	Dhamsana	63.19	31698	111.48	0.75	Yes	ND- 10.0/0
11	Tongi Mun.	53.45	22653	115.43	1.08	Yes	Standardized coefficient
12	Ashulia	53.43	16255	119.28	0.71	yes	PD=40.8% SR=45.7%
13	Konabari	51.59	32125	131.43	1.32	Yes	RD=34.4%

Note: $PD = Population Density (per Km^2)$

SR = Sex Ratio (Male-Female)

 $RD = Road in km per Km^2 area$

4. Discussion

The Dhaka mega-urban region is anticipated to surpass the growth rates of cities such as Shanghai, Beijing, and Mexico City by 2030 (Hassan and Southworth, 2017; UN-Habitat, 2016). As the nation's administrative, financial, and cultural hub, Dhaka has experienced continual urban expansion. Given the rapid growth in Dhaka, it is crucial to assess the potential impacts of this expansion on the peri-urban areas. Whereas studies about the consequence of LULC change on land surface temperature are prodigious, which includes Roy et al. (2016); Omran (2012), here, the study focuses on demarcating the SUHI hotspots in the periphery of Dhaka city. This identification depends upon the interaction among population dynamics, urban expansion, and LST. In contrast, Ren et al. (2007) also agree with the phenomenon of increase in the intensity in SUHI in both the core urban area-DMA, and its outskirt fringe. The maximum values in the observations of LST fall in the built-up areas and in barren lands, which reflects the influence of newly developed residential areas on the urban climate as confirmed by Weng and Yang (2004). On the contrary, within the same period of two decades, the losers were vegetation, water bodies, and barren lands as built-up areas increased by about 136%. This agrees with Tewolde's (2011) and Ahmed et al. (2013) findings. This expansion has resulted in more areas experiencing higher temperatures, highlighting the warming effects of urban microclimates (Ren et al., 2007).

The positive correlation between LST and urban expansion, and between urban expansion and net population increase (Hassan & Nazem, 2015) underscores the impact of population dynamics on urban and peri-urban microclimates. Urban population growth in Dhaka is primarily driven by rural-to-urban migration, as the natural increase rates and reclassification of rural areas are less relevant due to similar total fertility rates in urban and rural areas (DHS, 2014). The influx of rural migrants is identified as a major driver of population change, aligning with Hassan and Southworth's findings (2017) and UNFPA (2016) findings regarding LULC changes and their impact on LST.

The rapid increase in population density due to migration is facilitated by high road density, as shown in Figure 12, with urban expansion occurring along major highways such as Dhaka-Mymensingh and Dhaka-Narayanganj. This expansion has led to significant industrial growth, attracting more people and increasing population density (UNFPA, 2016). Within SUHI hotspots in the peri-urban area, over 90% of the population is engaged in non-agricultural activities due to the concentration of textile and garment industries (BBS, 2012; BBS, 2017). This shift has resulted in land use and cover changes, leading to increased LST (Roy *et al.*, 2016; Ahmed *et al.*, 2013). This is instantiated by the core economic growth factors: the contribution of Dhaka's one-third to GDP (UNFPA, 2016); on the other hand, the industry sector also accounts for 28.77% share during 2015-16 (BBS, 2017). This has been contextualized by the dominant male migration pattern for economic opportunities in the textile and garment industries (Uddin, *et al.*, 2022; Hossain, 2015).

This paper makes the case for urgent targeted interventions in growth management of the urban population and mitigation of the SUHI effect for sustainable development within the mega-urban region of Dhaka, given the recent convergence of Dhaka with nearby cities like Narayanganj and Gazipur (UNFPA, 2016; Hassan *et al.*, 2017).

5. Conclusion

The result of this study found a significant relationship between urban expansion, population dynamics and the land surface temperature increase in peri-urban Dhaka. The expansion of urban areas, influx of rural migrants and concentration of textile and garment industries in SUHI hotspots leads to changes in land use and increased temperatures. The association between normalised LST and NDBI shows a stronger correlation in 2022 than in 2000. This is indicative of the growing influence of urban development on thermal dynamics and the concentration of surface urban heat island (SUHI) hotspots in the core urban area (DMA). Furthermore, the research indicates the spatial distribution of surface urban heat island (SUHI) hotspots, which are primarily located within the core urban area (DMA).

These study results point to more research gaps aside from establishing the relationships between LST increase and either urban expansion or high population density. Areas that require further research involve other causative factors of LST, including topographic attributes such as slope

and elevation. Other areas include seasonal changes in LST and how they might affect the SUHI effect.

The future research also relates to the interaction of SUHI with other drivers of urban growth: biophysical, socio-economic, and institutional aspects. Besides, advanced tools, such as Google Earth Engine, may be used to monitor and analyse urban growth and microclimate in urban areas. This approach will be useful for the researcher, the urban planner, and the policy maker in managing urban development in a sustainable way to advance the cause of the SDGs. This study suggests promoting the sustainable urban planning to manage urban growth and mitigate the SUHI effect. As the city grows faster in this region, the increase of green spaces and vegetation in urban areas can help to reduce the temperature.

Acknowledgements

We acknowledge the anonymous reviewers for their insightful comments.

Author Contributions

Conceptualization: Mahmood, R., Hassan, F. & Kulsum, U.; methodology: Mahmood, R.; investigation: Mahmood, R., Hassan, F. & Kulsum, U.; writing—original draft preparation: Mahmood, R., & Hassan, F.; writing—review and editing: Mahmood, R., Hassan, F. Kulsum, U.; visualization: Mahmood, R., & Hassan, F. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

All authors declare that they have no conflicts of interest.

Data availability

Data is available upon Request.

Funding

This research received no external funding.

References

- Agarwal, R., Sharma, U., & Taxak, A. (2014). Remote sensing Based Assessment of Urban Heat Island Phenomenon in Nagpur Metropolitan Area. *International Journal of Information & Computation Technology*, 4(11), 1069–1074.
- Ahmed, B., & Ahmed, R. (2012). Modeling Urban Land Cover Growth Dynamics Using Multi-Temporal Satellite Images: A Case Study of Dhaka, Bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3–31. doi: 10.3390/ijgi1010003
- Ahmed, B. (2011). Urban land cover change detection analysis and modeling spatiotemporal Growth dynamics using Remote Sensing and GIS Techniques: A case study of Dhaka, Bangladesh (Master's Thesis, Erasmus Mundus Program, Universidade Nova de Lisboa (UNL), Instituto Superior de Estatística e Gestão de Informação (ISEGI), Lisbon, Portugal). Retrieved From https://run.unl.pt/handle/10362/8298
- Ahmed, B., Kamruzzaman, M., Zhu, X., Rahman, M., & Choi, K. (2013). Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. *Remote Sensing*, 5(11), 5969–5998. doi: 10.3390/rs5115969
- Ahmed, F., Bibi, M. H., Monsur, M. H., & Ishiga, H. (2005). Present environment and historic changes from the record of lake sediments, Dhaka City, Bangladesh. *Environmental Geology*, 48(1), 25–36. doi: /10.1007/s00254-005-1248-8
- Artis, D. A., & Carnahan, W. H. (1982). Survey of Emissivity Variability in thermography of Urban Areas. *Remote Sensing of Environment*, 12(4), 313–329. doi: 10.1016/0034-4257(82)90043-8
- Asgarian, A., Amiri, B. J., & Sakieh, Y. (2014). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. *Urban Ecosystems*, 18(1), 209–222. doi: 10.1007/s11252-014-0387-7
- BBS. (2012). Bangladesh Population and Housing Census 2011 (Community Series). Bangladesh Bureau of Statistics, Statistics an Informatics Division, Ministry of Planning. Government of the People's Republic of Bangladesh, Dhaka.
- BBS. (2017). Bangladesh Statistics. Bangladesh Bureau of Statistics, Statistics an Informatics Division, Ministry of Planning. Government of the People's Republic of Bangladesh, Dhaka.
- BBS. (2017). Population Distribution and Internal Migration in Bangladesh. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning. Government of The People's Republic of Bangladesh, Dhaka.
- Brown, S., Versace, V. L., Laurenson, L., Ierodiaconou, D., Fawcett, J., & Salzman, S. (2011). Assessment of Spatiotem-poral Varying Relationships Between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression. *Environmental Modeling & Assessment*, 17(3), 241–254. doi: 10.1007/s10666-011-9289-8
- Chen, X., Zhao, H., Li, P., & Yin, Z. (2006). Remote Sensing Image-Based Analysis of The Relationship between Urban Heat Island and Land Use / Cover Changes. *Remote Sensing of Environment*, 104(2), 133-146. doi: 10.1016/j.rse.2005.11.016
- Chun, B., & Guldmann, J. M. (2018). Impact of greening on the urban heat island: Seasonal variations and mitigation strategies. *Computers, Environment and Urban Systems*, 71, 165–176.
- Dadhich, A., Goyal, R., & Dadhich, P. (2017). An Assessment of Urban Space Expansion and Its Impact on Air. *Journal of Urban and Environmental Engineering*, 11(1), 79–87. doi: 10.4090/juee.2017.v11n1.079087
- Deilmai, B. R., Ahmad, B. B., & Zabihi, H. (2014). Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia. IOP Conference Series: Earth and Environmental Science, 20, 012052. Retrieved From https://iopscience.iop.org/article/10.1088/1755-1315/20/1/012052/pdf
- Deosthali, V. (2000). Impact of rapid urban growth on heat and moisture islands in Pune City, India. *Atmospheric Environment*, 34(17), 2745–2754. doi: 10.1016/S1352-2310(99)00370-2
- Department of the Interior U.S. Geological Survey. (2016). Landsat 8 (L8) Data User Handbook (Vol. 8).
- Dewan, A. M., & Yamaguchi, Y. (2009). Using Remote Sensing and GIS to Detect and Monitor Land Use and Land Cover Change in Dhaka Metropolitan of Bangladesh During 1960-2005. *Environmental Monitoring and Assessment*, 150(1–4), 237–249. doi: 10.1007/s10661-008-0226-5
- Dewan, A. M & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. *Applied Geography*, 29(3), 390-401
- Dewan, A., Kiselev, G., & Botje, D. (2021). Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities. *Applied Geography*, 135, 102533. doi: 10.1016/j.apgeog.2021.102533
- Dewan, A., Kiselev, G., Botje, D., Mahmud, G. I., Bhuian, Md. H., & Hassan, Q. K. (2021). Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustainable Cities and Society, 71, 102926. doi: 10.1016/j.scs.2021.102926
- Feizizadeh, B., & Blaschke, T. (2013). Examining Urban heat Island Relations to Land Use and Air Pollution: Multiple Endmember Spectral Mixture Analysis for Thermal Remote Sensing. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 6(3), 1749–1756. doi: 10.1109/JSTARS.2013.2263425
- Foley, J. A. (2005). Global Consequences of Land Use. Science, 309(5734), 570-574. doi: 10.1126/science.1111772
- Gallo, K. P., & Owen, T. W. (1998). Assessment of urban heat Islands: A multi-sensor perspective for the Dallas-Ft. worth, USA region. Geocarto International, 13(4), 35–41. doi: 10.1080/10106049809354662

- GALLO, K. P., & TARPLEY, J. D. (1996). The comparison of vegetation index and surface temperature composites for urban heat-island analysis. *International Journal of Remote Sensing*, 17(15), 3071–3076. doi: 10.1080/01431169608949128
- Grover, A., & Singh, R. B. (2015). Analysis of Urban Heat Island (UHI) in Relation to Normalized Difference Vegetation Index (NDVI): A Comparative Study of Delhi and Mumbai. *Environments*, 125–138. doi: 10.3390/environments2020125
- Haashemi, S., Weng, Q., Darvishi, A., & Alavipanah, S. K. (2016). Seasonal variations of The Surface Urban Heat Island in A Semi-Arid City. *Remote Sensing*, 8(4). doi: 10.3390/rs8040352
- Haque, M. M., Ahmed, F., Anam, S., & Kabir, M. R. (2012). Future Population Projection of Bangladesh by Growth Rate Modelling Using Logistic Population Model. *Annals of Pure and Applied Mathematics*, 1(2), 192–202.
- Hart, M. A., & Sailor, D. J. (2009). Quantifying the Influence of Land-Use and Surface Characteristics on Spatial Variability in The Urban Heat Island. *Theoretical and Applied Climatology*, 95(3-4), 397–406. doi: 10.1007/s00704-008-0017-5
- Hassan, M. M. (2017). Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sensing Applications: Society and Environment, 7, 69–83. doi: 10.1016/j.rsase.2017.07.001
- Hassan, M. M., & Nazem, M. N. I. (2015). Examination of land use/land cover changes, urban growth dynamics, and environmental sustainability in Chittagong city, Bangladesh. *Environment, Development and Sustainability*, 18(3), 697–716. doi: 10.1007/s10668-015-9672-8
- Hassan, M., & Southworth, J. (2017). Analyzing Land Cover Change and Urban Growth Trajectories of the Mega-Urban Region of Dhaka Using Remotely Sensed Data and an Ensemble Classifier. Sustainability, 10(2), doi: 10.3390/su10010010
- Hongmei Zhao, & Xiaoling Chen. (2005). Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS, '05. doi:10.1109/igarss.2005.1526319
- Huang, F., Zhan, W., Voogt, J., Hu, L., Wang, Z., Quan, J., Ju, W., & Guo, Z. (2016). Temporal upscaling of surface urban heat island by incorporating an annual temperature cycle model: A tale of two cities. *Remote Sensing of Environment*, 186, 1–12.
- Hu, Y., Hou, M., Jia, G., Zhao, C., Zhen, X., & Xu, Y. (2019). Comparison of surface and canopy urban heat islands within megacities of eastern China. *ISPRS Journal of Photogrammetry and Remote Sensing*, 156, 160–168.
- Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2019). Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA. *Remote Sensing of Environment*, 114(3), 504–513. doi: 10.1016/j.rse.2009.10.008
- Ishtiaque, A., Shrestha, M., Chhetri, N. (2017). Rapid urban growth in the Kathmandu Valley, Nepal: Monitoring land use land cover dynamics of a Himalayan City with Landsat imageries. *Environments*. 4 (4), 1–16. doi: 10.3390/environments4040072
- Jesus, J. B. De, & Santana, I. D. M. (2017). Estimation of Land Surface Temperature in Caatinga Area Using Landsat 8 Data. *Journal of Hyperspectral Remote Sensing*, 7(3), 150–157. doi: 10.29150/jhrs.v7.3.p150-157
- Karl, T. R., Diaz, H. F., & Kukla, G. (1988). Urbanization: Its Detection and Effect in the United States Climate Record. Journal of Climate, 1(11), 1099–1123. doi: 10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO;2
- Kant, Y., Azim, S., & Mitra, D. (2018). Analyzing the influence of urban growth on thermal environment through demographic, environmental, and physical parameters in Bangladesh. *Land-atmospheric research applications in South and Southeast Asia*, 613-639.
- Kibert, C.J. (2012). Sustainable Construction: Green Building Design and Delivery; 3rd ed.; John Wiley and Sons, Inc. Hoboken, NJ, USA, p. 236.
- Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. *Proceedings of the National Academy of Sciences*, 108(9), 3465–3472. doi: 10.1073/pnas.1100480108
- Li, L., Zha, Y., & Zhang, J. (2020). Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities. International Journal of Applied Earth Observation and Geoinformation, 90, Article 102131
- Liu, L., & Zhang, Y. (2011). Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. *Remote Sensing*, 3(7), 1535–1552. doi: 10.3390/rs3071535
- Lo, C. P., & Quattrochi, D. A. (2003). Land-Use and Land-Cover Change, Urban Heat Island Phenomenon, and Health Implications. *Photogrammetric Engineering & Remote Sensing*, 69(9), 1053–1063. doi: 10.14358/PERS.69.9.1053
- Lowry, W. P. (1977). Empirical Estimation of Urban Effects on Climate: A Problem Analysis. *Journal of Applied Mete-orology*, 16(2), 129–135. doi: 10.1175/1520- 0450(1977)016<0129:EEOUEO>2.0.CO;2
- Mahmood, R., Ahmed, N., Zhang, L., & Li, G. (2020). Coastal vulnerability assessment of Meghna estuary of Bangladesh using integrated geospatial techniques. *International Journal of Disaster Risk Reduction*, 42, 101374. doi: 10.1016/j.ijdrr.2019.101374
- Manoli, G., Fatichi, S., Schl apfer, M., Yu, K., Crowther, T. W., Meili, N., Burlando, P., Katul, G. G., & Bou-Zeid, E. (2019). Magnitude of urban heat islands largely explained by climate and population. *Nature*, 573(7772), 55–60.
- Matthew, M.W., Adler-Golden, S.M., Berk, A., Felde, G., Anderson, G.P., Gorodetzky, D., Paswaters, S., Shippert, M. (2002). Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data. In: Proceedings of Presented at the Applied Imagery Pattern Recognition Workshop, pp. 157–163. doi: 10.1109/AIPR.2002.1182270.
- Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study Urban Heat Island Abilities and limitations. *Building and Environment*, 45(10), 2192–2201. doi: 10.1016/j.buildenv.2010.04.001
- Mondol, H., Mallick, U. K., & Biswas, M. H. A. (2018). Mathematical Modelling and Predicting the Current Trends of Human Population Growth in Bangladesh. *Modelling, Measurement and Control D.* 39(1), 1–7.
- Montávez, J. P., Rodríguez, A., & Jiménez, J. I. (2000). A Study of the Urban Heat Island of Granada. *International Journal of Climatology*, 20(8), 899–911. doi: 10.1002/1097-0088(20000630)20:8<899::AID-JOC433>3.0.CO;2-I
- NASA. (1998). Landsat 7 Science Data Users Handbook.
- Oke T.R. (1995). The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. In: Cermak J.E., Davenport A.G., Plate E.J., Viegas D.X. (eds) Wind Climate in Cities. NATO ASI Series (Series E: Applied Sciences), 277, 81-107. Springer, Dordrecht

- Omran, F. (2012). Detection of land use and land surface temperature change at different resolution. Soil and water department faculty of agriculture Suez corner university Ismalia, Egypt. *Journal GIS*. 4 (3), 189–203. doi: 10.4236/jgis.2012.43024.
- Parvin, M. (2013). Projecting the Population Size of Dhaka City with Migration using Growth Rate Method. *IOSR Journal of Mathematics*, 8(5), 29–37.
- Parvin, N. S., & Abudu, D. (2017). Estimating Urban Heat Island Intensity using Remote Sensing Techniques in Dhaka City. *International Journal of Scientific & Engineering Research*, 8(4), 289–298. doi: 10.14299/ijser.2017.04.009
- Rabbani, G. (2019). Climate Change Implications for Dhaka City: A Need for Immediate Measure to Reduce Vulnerability. Adaptation to Climate Change- Proceedings of the Global Forum. Local Sustainability, (10), 1–6. doi: 10.1002/9781118568446.eurs0426
- Raj, S., Paul, S. K., Chakraborty, A., & Kuttippurath, J. (2020). Anthropogenic forcing exacerbating the urban heat islands in India. *Journal of environmental management*, 257, 110006.
- Raja, D. R. (2012). Spatial Analysis of Land Surface Temperature in Dhaka Metropolitan Area. Journal of Bangladesh Institute of Planners, 5, 151-167
- RAJUK. (2015). *Dhaka Structure Plan 2016-2035*. Retrieved From http://www.rajukdhaka.gov.bd/rajuk/image/slideshow/Dhaka_Structural_Plan.html
- RAJUK. (2006). Preparation of Detailed Area Plan (DAP) for DMDP.
- Ren, G. Y., Chu, Z. Y., Chen, Z. H., & Ren, Y. Y. (2007). Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. *Geophysical Research Letters*, 34(5). doi: 10.1029/2006gl027927
- Roy, S. & Mahmood, R. (2016). Monitoring shoreline dynamics using landsat and hydrological data: A case study of Sandwip Island of Bangladesh. *Pennsylvania Geographer*, 54, 20-41.
- Rinner, C., & Hussain, M. (2011). Toronto's Urban Heat Island—Exploring the Relationship between Land Use and Surface Temperature. Remote Sensing, 3(6), 125 1265. doi: 10.3390/rs3061251
- Rossi, R.C., and Peterson, L. (2015). Appendix D Urban Heat Island Protocol for Mapping Temperature Projections in Climate Change Vulnerability Assessment (CCAV) Report Part-1.
- Schatz, J., & Kucharik, C. J. (2014). Seasonality of the Urban Heat Island Effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53(10), 2371–2386. doi: 10.1175/jamc-d-14-0107.1
- Schatz, J., & Kucharik, C. J. (2015). Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environmental Research Letters, 10(9), 094024. Retrieved From https://iopscience.iop.org/article/10.1088/1748-9326/10/9/094024/pdf
- Serneels, S., Linderman, M., & Lambin, E. F. (2007). A Multilevel Analysis of the Impact of Land Use on Interannual Land-Cover Change in East Africa. *Ecosystems*, 10(3), 402–418. doi: 10.1007/s10021-007-9026-y
- Shastri, H., Barik, B., Ghosh, S., Venkataraman, C., & Sadavarte, P. (2017). Flip flop of day-night and summer-winter surface urban heat island intensity in India. *Scientific reports*, 7(1), 40178.
- Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from Labdsat TM 5. Remote Sensing of Environment, 90(4), 434–440. doi: 10.1016/j.rse.2004.02.003
- Streutker, D. (2003). Satellite-measured growth of the urban heat island of Houston, Texas. *Remote Sensing of Environment*, 85(3), 282–289. doi: 10.1016/S0034-4257(03)00007-5
- Streutker, D. R. (2017). A Remote Sensing Study of the Urban Heat Island of Hong Kong. *Geomatics Science and Technology*, 05(02), 23–33. doi: 10.12677/gst.2017.52004
- Su, S., Xiao, R., Jiang, Z., & Zhang, Y. (2012). Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. *Applied Geography*, 34, 295–305. doi: 10.1016/j.apgeog.2011.12.001
- Sun, R., Chen, L., Lü, Y. (2012). Cooling effects of wetlands in an urban region: The case of Beijing. *Eco. Indi.*, 20, 57–64. doi: 10.1016/j.ecolind.2012.02.006.
- Tabassum, A., Park, K., Seo, J. M., Han, J. Y., & Baik, J. J. (2024). Characteristics of the urban heat island in Dhaka, Bangladesh, and its interaction with heat waves. *Asia-Pacific Journal of Atmospheric Sciences*, 1-15.
- Tewolde, M. G., & Cabral, P. (2011). Urban Sprawl Analysis and Modeling in Asmara, Eritrea. *Remote Sensing*, 3(10), 2148–2165. doi: 10.3390/rs3102148
- Uddin, A. S., Khan, N., Islam, A. R. M. T., Kamruzzaman, M., & Shahid, S. (2022). Changes in urbanization and urban heat island effect in Dhaka city. *Theoretical and Applied Climatology*, 147(3), 891-907
- UNFPA. (2016). *Urbanization and Migration in Bangladesh*. United Nations Population Fund, Dhaka, Bangladesh
- UNICEF. (2012). The State of the World's Children 2012: Children in an increasingly urban world. *In Demographic Yearbook* 2005, 4. doi: 10.1007/978-1-4020-4385-7_3
- Voogt, J.A., Oke, T.R. (2003). Thermal remote sensing of urban climates. *Remote Sensing of Environment*, 86 (3), 370–384. doi: 10.1016/S0034-4257(03)00079-8.
- Wang, J. W., Chow, W. T., & Wang, Y. C. (2020). A global regression method for thermal sharpening of urban land surface temperatures from MODIS and Landsat. *International Journal of Remote Sensing*, 41(8), 2986–3009.
- Weng, Q. (2001). A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. *International Journal of Remote Sensing*, 22(10), 1999–2014. doi: 10.1080/713860788
- Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. *Remote Sensing of Environment*, 117, 34–49. doi:10.1016/j.rse.2011.02.030
- Weng, Q., & Yang, S. (2004). Managing the adverse thermal effects of urban development in a densely populated Chinese city. *Journal of Environmental Management*, 70(2), 145–156. doi: 10.1016/j.jenvman.2003.11.006
- Weng, Q., Lu, D., & Liang, B. (2006). Urban Surface Biophysical Descriptors and Land Surface Temperature Variations. Photogrammetric Engineering & Remote Sensing, 72(11), 1275–1286. doi: 10.14358/PERS.72.11.1275
- Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483. doi: 10.1016/j.rse.2003.11.005
- WHO. (2005). Health & Environment. World Health Organization, Geneva, Switzerland
- Witting, L. (1997). A General Theory of Evolution: By Means of Selection by Density Dependent Competitive Interaction.

 Peregrine Publisher. Arhus, Denmark.
- Xiong, Y., Huang, S., Chen, F., Ye, H., Wang, C., & Zhu, C. (2012). The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China. *Remote Sensing*, 4(7), 2033–2056. doi: 10.3390/rs4072033
- Yao, R., Wang, L., Huang, X., Niu, Z., Liu, F., & Wang, Q. (2017). Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. *Science of the Total Environment*, 609, 742-754.

- Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. *Remote Sensing of Environment*, 106(3), 375– 386. doi: 10.1029/2006JG000217
- United Nations, Department of Economic and Social Affairs, Population Division (2015). World Urbanization Prospects:

 The 2014 Revision, (ST/ESA/SER.A/366). Retrieved From https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf
- UN-Habitat. (2016). Urbanization and Development—Emerging Futures. World Cities Report 2016. Retrieved From http://wcr.unhabitat.org/wp-content/uploads/2017/02/WCR- 2016-Full- Report.pdf
- World Bank (2012). Bangladesh-Towards Accelerated, Inclusive and Sustainable Growth: Opportunities and Challenges:
 Overview; Volume II. Retrieved From http://documents.worldbank.org/curated/en/132321468014348379/Overview
- Zha, Y., Gao, J., Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. *International Journal of Remote Sensing*. 24 (3), 583–594. doi:10.1080/01431160304987
- Zhi-qiang, L., Qi-gang, Z., (2011). Utility of Landsat image in the study of land cover and land surface temperature change. 3rd International Conference on Environmental Science and Information Application Technology (ESIAT 2011). Procedia Environ. Sci. 10, 1287–1292. doi: 10.1016/j.proenv.2011.09.206.
- Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. *Scientific reports*, 7(1), 4791.
- Hassan, M.M., Nazem, M.N.I., (2016). Examination of land use/land cover changes, urban growth dynamics, and environmental sustainability in Chittagong city, Bangladesh. *Environ. Dev. Sustain.* 18, 697–716. doi: 10.1007/s10668-015-9672-8.
- Sarwar, M.I., Billa, M., Paul, A., (2016). Urban land use change analysis using RS and GIS in Sulakbahar ward in Chittagong city, *Bangladesh. Int. J. Geomat. Geosci.* 7, 1–10.