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Abstract 

Climate predictions spanning 10-year periods, known as Decadal Climate Predictions (DCPs), have become 

an important aspect of the latest Coupled Model Intercomparison Project (CMIP6). These DCPs have the 

capability to capture the El Niño-Southern Oscillation (ENSO) phenomena, which affects heatwave fre-

quency in Southeast Asia over years to decades. This research assesses the ability of six General Circulation 

Model (GCM) DCPs to predict surface temperature over the Southeast Asian region, using the dcpp-A 

hindcast as the main product. The metrics of Anomaly Correlation Coefficient (ACC) and Mean Error (ME) 

are employed to assess the model outputs, with 51 hindcast datasets spanning initial years from 1960 to 2010 

and ERA5 reanalysis data serving as the reference. The evaluation reveals that DCP model skill varies across 

lead times and subregions, with no single model consistently outperforming the others. The highest correla-

tion values are observed during the September-October-November (SON) season, and the ENSEMBLE 

model demonstrates the ability to increase correlation values compared to the individual DCP models. How-

ever, the ENSEMBLE approach is unable to effectively reduce ME values due to the contrasting errors 

among individual models. PBIAS metric aligns with the ME, consistently identifying similar areas of under-

estimation (mainland) and overestimation (maritime continent) across the models. Despite these challenges, 

the evaluation results highlight the potential of DCPs in predicting surface temperature variability for the 

Southeast Asian region over decadal periods, particularly in capturing ENSO-related signals. Further im-

provements in model initializations, internal variability representation, and bias reduction are necessary to 

enhance the utility of CMIP6 decadal predictions for heatwave preparedness and mitigation strategies in this 

vulnerable region. 
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1. Introduction 

Southeast Asia has a tropical climate characterized by relatively small variations in surface tem-

peratures throughout the year. However, Southeast Asia's mainland is experiencing an increasing 

trend of extreme temperature events, causing human discomfort and health concerns (Thirumalai 

et al., 2017). Observational data shows that all heatwave-related characteristics, including fre-

quency, intensity, and duration, display rising trends in the majority of Southeast Asia (Li et al., 

2022), although the magnitude and statistical significance of these trends vary across different 

regions (Guo et al., 2017). There is substantial evidence linking high temperatures to significant 

health burdens (Arsad et al., 2022), with heatwaves posing a greater mortality risk in moderately 

cold and moderately hot areas compared to extremely cold or hot regions (Guo et al., 2017).  

Furthermore, in mainland Southeast Asia, it has been discovered that the El Niño-Southern Os-

cillation climate variability mode is tightly related to heatwave events (Lin et al., 2018). During 

El Niño years, an increase in heatwave frequency, duration, and amplitude is found. Meanwhile, 

during the La Niña years, there is a decrease in these characteristics. These ENSO events may be 

predicted by decadal climate prediction (DCP), which covers a multiannual to decades long pre-

diction period to support mitigation or planning efforts to reduce the death toll from heatwave 

events. During El Niño years, an increase in heatwave frequency, duration, and amplitude is ob-

served, while La Niña years tend to exhibit a decrease in these characteristics. The ability to pre-

dict ENSO events through DCP, which covers multiannual to decadeslong time scales, is crucial 

for supporting mitigation strategies and planning efforts to minimize the mortality and health con-

sequences of heatwave occurrences in the region. 

DCP, a new type of forecast, is categorized as a short-term climate prediction. The previous Cou-

pled Model Intercomparison Project (CMIP5) protocol for coordinated climate change experi-

ments strongly emphasized decadal predictability and prediction. This emphasis on decadal fore-

casting has transitioned into a significant aspect of the current Coupled Model Intercomparison 

Project (CMIP6) (Boer et al., 2016). DCP is divided into three components. The primary compo-

nent, dcpp-A hindcast, encompasses a retrospective forecast for ten years ahead of time, with the 

first initialization of hindcast from 1960 to the present. It provides enough dataset numbers for 
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the evaluation study. Forecast products are the focus of the dcpp-B component. The objective of 

this component is to satisfy societal needs by developing a nearly operational process for fore-

casting, aggregating, and combining data for decadal climate prediction. The component adopts 

CMIP5, other models, and hindcast data sets to produce its real-time decadal forecasts. Compo-

nent C is the final component and focuses on studies of the ability to forecast climate patterns and 

variability over a given decade, as well as specific cases and coordinated processes related to 

climate variability. 

DCP is an emerging field of forecasting that attempts to fill the gap between short-term seasonal 

predictions and long-term projections of climate. Given the relatively new nature of this approach, 

it is crucial to assess the performance of DCP models to determine their capability to attain spe-

cific forecasting objectives. While previous global verification studies have demonstrated the skill 

and potential of DCP models (Corti et al., 2012; Döscher et al., 2022; Kadow et al., 2016; Nicolì 

et al., 2023), their reliability in predicting surface temperatures specifically for the Southeast Asia 

region remains largely unexplored. Consequently, this study’s primary purpose is to comprehen-

sively evaluate the reliability of DCP models in forecasting surface temperature variability on 

decadal periods across Southeast Asia. This assessment is essential for determining the suitability 

and limitations of these models in supporting climate adaptation strategies and decision-making 

processes within this climatically diverse and vulnerable region. 

2. Research Methods  

2.1. Study Area  

Southeast Asia is the study region (Figure 1). The region consists of the maritime continent of 

Indonesia, Timor-Leste, The Philippines, Papua New Guinea, and the mainland of Southeast Asia 

(Myanmar, Cambodia, Lao, and Thailand), including the Malay Peninsula. The area spans 89,26 

E-146,96 E and 27,26 N-15,14 S (CORDEX, 2015). Further analysis also divides the region into 

the mainland subregion (brown dash line) and maritime continent (blue dash line). The mainland 

subregion is from 93°E to 107°E and 22°N to 12°N while the maritime continent subregion spread 

from 95°E to 140°E and 8°N to 12°S. 

 

Figure 1. Southeast Asia as the region of the evaluation study. 
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2.2. Data and Method  

The surface temperature of a 2-meter height from six CMIP6 DCPP-A Hindcast will be evaluated 

using reanalysis data of ERA5 (Hersbach et al., 2020), as a benchmark reference. The analysis 

utilizes each model's first ensemble member (r1i1p1f1) to ensure a consistent and reliable com-

parison. These data were then re-gridded to have equal spatial resolution. Each model has a ten-

year prediction, with 1960 as the first initialization year. The prediction starts from 1961 to 2011 

to meet the last ERA5 data of reference, 2020. Therefore, each model has 51 datasets of decadal 

climate prediction experiments. The requisite data were accessed and downloaded from the fol-

lowing website: https://esgf-node.llnl.gov/search/cmip6/. The measurement of the surface tem-

perature prediction models will use the Anomaly Correlation Coefficient (ACC), a dimensionless 

metric, to measure and assess the phase agreement between anomalies of retrospective forecast 

and observation, ranging from -1 to 1. Two bias verification metrics Mean Error (ME) and Percent 

Bias (PBIAS) will incorporate the ACC. The ACC is given below Equation 1. 

𝐴𝐶𝐶 =
∑ (𝑌𝑖

′ − 𝑌𝑖̅)(𝑋𝑖
′ − 𝑋𝑖̅)

𝑁
𝑖=1

√∑ (𝑌𝑖
′ − 𝑌𝑖̅)2(𝑋𝑖

′ − 𝑋𝑖̅)2𝑁
𝑖=1

 
(1) 

where 𝑌𝑖̅ denotes forecast average value, 𝑋𝑖̅ denotes observation average value and (𝑌𝑖
′ −  𝑌𝑖̅)

2 

means the squared standard deviations of the forecast anomalies, while (𝑋𝑖
′ − 𝑋𝑖̅)

2 means the 

squared standard deviations of analysis anomalies from the climate, respectively. The statistical 

significance of the ACC is ascertained through the implementation of a two-tailed t-statistic Equa-

tion 2 (𝛼 = 0.05, 𝑛 = 51). 

𝑡 =
𝐴𝐶𝐶√𝑛 − 2

√1 − 𝐴𝐶𝐶2
 

(2) 

ME and PBIAS measure the models' tendencies to underestimate or overestimate. ME provides a 

deterministic quantification of the average magnitude of forecast errors while PBIAS illustrates 

the diverging ratio of the model's hindcast relative to the observed data (Mengistu et al., 2021; 

Viana et al., 2021). These two bias metrics complement each other. Let 𝑌𝑖 is the model forecast 

(or hindcast) and 𝑋𝑖 is the observation data. Negative values indicate model underestimation, 

while positive values indicate overestimation in Equations 3 and 4.  

 𝑀𝐸 =
1

𝑁
∑ (𝑌𝑖 − 𝑋𝑖)

𝑁
1  (3) 

𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑(𝑌𝑖 − 𝑋𝑖)

∑ 𝑋𝑖
 

(4) 

The decadal climate prediction of ten years is then divided into three parts: the period called the 

first half decadal (FHDecad) for prediction year 1 to 5 average, the second half decadal (SHDecad) 

for prediction year 6 to 10 average, and the decadal (Decad) for ten years prediction average (year 

1 to 10). The investigation will examine how the model's performance varies by season. The sea-

son division will be December to February (DJF), March to May (MAM), June to August (JJA), 

and September to November (SON). Table 1 lists the models that were used in this investigation. 

Apart from the six models, the ENSEMBLE model is the average of all studied models. 

Tabel 1. CMIP6 DCPP-A Hindcast GCM. 

Model Institution Spatial resolution 

CMCC-CM2-SR5 (Nicolì et al., 2023)  CMCC (Canada) 0,9 x 1,25 

MPI-ESM1-2-HR (Müller et al., 2018)  DWD (Germany) 0,9 x 0,9 

IPSL-CM6A-LR (Boucher et al., 2020)  IPSL (France) 1,25 x 2,5 

MIROC6 (Tatebe et al., 2019) MIROC (Japan) 1,4 x 1,4 

NorCPM1 (Bethke et al., 2021) NCC (Norway) 1,9 x 2,5 

FGOALS-f3-L (Hu et al., 2023) CAS (China) 1,0 x 1,0 

3. Results and Discussion 

The annual time series of mean surface temperature hindcasts for Southeast Asia from each cli-

mate model, along with the corresponding ERA5 reanalysis data, are presented in Figure 2. The 

figure displays the temperature anomaly values for three distinct periods: the FHDecad, the 

SHDecad, and the Decad period. Consistent with previous studies examining global mean surface 

temperature trends (Corti et al., 2012; Hu et al., 2023; Nicolì et al., 2023), the model hindcasts 
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indicate a similar increasing pattern in surface temperatures for the Southeast Asia region over 

the analysed period. This similarity suggests that the region is experiencing temperature changes 

in line with the broader global warming trend.  

The average annual anomaly hindcast in all models ranges from -0.61°K to 1.25°K for FHDecad 

and -0.55°K to 1.25°K for SHDecad. As for the Decad period, the range is from -0.58°K to 

1.17°K. Although the Southeast Asia region is following the trend of global climate change, the 

retrospective predictions can capture the effect of volcanic forcing. The temperature anomaly de-

creased in value between 1982 and 1991 due to the cooling effect caused by the El Chichón and 

Pinatubo volcanic eruptions, as indicated by NorCPM1 (Bethke et al., 2021), IPSL-CM6A-LR 

(Boucher et al., 2020), MIROC6 (Kataoka et al., 2020), and CMCC-CM2-SR5 models (Nicolì et 

al., 2023). The graph also reveals that CMCC-CM2-SR5, MIROC6, and MPI-ESM1-2-HR mod-

els tend to overpredict surface temperatures, resulting in positive anomalies, while the FGOALS-

f3-L, IPSL-CM6A-LR, and NorCPM1 models typically underpredict, leading to negative anom-

alies. 

 

Figure 2. Time series graph of regional average surface temperature anomaly of Southeast Asia. (a) 

FHDecad average shown in, (b) is for the SHDecad average, and (c) is for the Decad average. The vertical 

dash line (grey) indicates 1982 and 1991. 

3.1. Metrics of Verification 

The direct evaluation of the models' proficiency utilized the ERA5 reanalysis data as a baseline 

reference. The relevant climatological period range was considered when calculating anomalies 

for the hindcast and reference data. Employing the ACC metric, an evaluation was conducted to 

determine the decadal climate prediction models' ability to capture the climatological pattern of 

the region. Furthermore, the ME metric will indicate part of the region is inclined towards warm 

or cold bias. At the same time, PBIAS will measure the relative degree to which the model's 

predictions diverge from the reference climate condition.  

Southeast Asian climate models generally show positive ACC values (Figure 3). However, nega-

tive values are observed in mainland areas, particularly during winter (DJF) and spring (MAM) 

seasons and in some oceanic regions. Among the models, IPSL-CM6A-LR demonstrates superior 

performance with higher significant ACC values. In contrast, MIROC6 and NorCPM1 exhibit the 

lowest ACC values. Significant ACC values are rarely found in mainland areas across all models. 

Additionally, models show agreement in positive ACC during the fall (SON) season, with the 

highest values of positive ACC. 

During SHDecad, the ACC exhibits a similar pattern to FHDecad. However, lower ACC values 

are observed in FGOALS-f3-L, CMCC-CM2-SR5, and MIROC6 (especially for MAM and JJA 

seasons), as well as IPSL-CM6A-LR (Figure 4). While NorCPM1 displays slightly higher values 

for this period, MPI-ESM1-2-HR shows a notable increase in ACC value. 

In the Decad period category (figure not shown), the ACC values of the models are in the middle 

of FHDecad and SHDecad values range. The spatial pattern of ACC values in this period is similar 

to FHDecad and SHDecad. Notably, the ENSEMBLE model, except for a few areas of the mari-

time continent, increases the correlation value for each season in the region across the three time 

period categories. Additionally, it is crucial to note that the ACC value is more prevalent in the 

oceanic part than in the region’s terrestrial area. 
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Figure 3. Anomaly Correlation Coefficient (ACC) for FHDecad period from DCP and ENSEMBLE of DCP 

models. The dots in the figure signify that the experimental results across all datasets satisfy the statistical 

significance criteria with 95% confidence. The ACC maximum and average values are shown below the 

subplots and the fraction of the significant grid area. 

 

 



Forum Geografi, 38(3), 2024; DOI: 10.23917/forgeo.v38i3.5402  

Kasihairani et al.  Page 418   

 

Figure 4. Anomaly Correlation Coefficient (ACC) for SHDecad period from DCP and ENSEMBLE of DCP 

models. The dots in the figure signify that the experimental results across all datasets satisfy the statistical 

significance criteria with 95% confidence. The ACC maximum and average values are shown below of the 

subplots, along with the fraction of the significant grid area. 
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Figure 5. Mean Error value for Decad period from DCP and ENSEMBLE of DCP models. FHDecad and 

SHDecad are not shown, as their pattern resemble each other. 

The value pattern of the ME metric exhibits similarity across all time categories (FHDecad, 

SHDecad, and Decad), underscoring the importance of understanding how each model's hindcast 

responds to different surface features of land and ocean in the region. Figure 5, the FGOALS-f3-

L model's ME value varies over terrestrial areas but remains invariable above the ocean, display-

ing a cold bias. Similarly, the NorCPM1 model exhibits a clear hot bias over the maritime conti-

nent area. Conversely, the MPI-ESM1-2-HR model's pattern is almost the opposite of FGOALS-

f3-L and NorCPM1, showing a cold bias for the terrestrial area of the region (except for the central 

mainland area in the MAM season). At the same time, the temperature hindcast above the ocean 

uniformly exhibits a hot bias.  
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The CMCC-CM2-SR5, MIROC6, and IPSL-CM6A-LR models share a similar pattern above the 

ocean part of the region, where they exhibit a hot bias on the equatorial region and a cold bias in 

the upper equatorial region. Notably, the CMCC-CM2-SR5 model tends to display a cold bias for 

the eastern part of the mainland, while the western part and maritime continent predominantly 

have a hot bias. The MIROC6 ME value varies across the region, and the IPSL-CM6A-LR model 

tends to have a cold bias over the terrestrial area of the region. The fact that one model has a 

relatively large error and another has a relatively small error prevents the ENSEMBLE model 

from concluding that it has effectively reduced the ME value. On the other hand, it can detect the 

distinct pattern of mean error values between the region's upper and equatorial sections. 

 

Figure 6. Anomaly Correlation Coefficient (ACC) heatmap for the two subregions (a) mainland and (b) 

maritime continent. 

The PBIAS metric values align closely with the patterns observed in the ME metric. Both metrics 

consistently identify similar areas where each hindcast model either underestimates or overesti-

mates. Notably, the PBIAS values remain within a narrow range, not exceeding ±2% for any of 

the models. 

The spatial analysis shows that the models have different abilities to predict the two distinct areas, 

the mainland of Southeast Asia and the maritime continent. Therefore, subsequent examination is 

carried out by dividing the evaluation value metric into two subregions: the mainland area and the 

maritime continent area. The mainland subregion is from 93°E to 107°E and 22°N to 12°N while 
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the maritime continent subregion spread from 95°E to 140°E and 8°N to 12°S. Each model's pre-

diction performance for the two subregions can be observed from the heatmap in Figures 6 and 7. 

ACC values in the mainland subregion are more modest compared to those of the maritime con-

tinent. Autumn (SON) consistently shows the highest ACC values across models and periods for 

both subregions. The maritime continent exhibits higher and more consistent ACC values over 

time, with slight improvements in SHDecad. Among individual models, IPSL-CM6A-LR demon-

strates the highest performance. Notably, the ENSEMBLE model successfully increases ACC 

values in both subregions. 

 

Figure 7. ME heatmap for the two subregions (a) mainland and (b) maritime continent. Unit is in Kelvin. 

The ME metric reveals contrasting values for Southeast Asia’s mainland and maritime continent 

subregions (Figure 7). The hindcast datasets tend to predict the area to have a colder temperature 

than the climatology on the mainland. Opposite to that, in the maritime continent, the models tend 

to predict warmer conditions compared to the climatology persistently. Winter is the season with 

the highest ME value, and the ME value for both subregions is marginally higher in the FHDecad 

period. The model with the highest error for the mainland area is NorCPM1, especially during the 

DJF season when its error reaches more than 4°K cooler than its climatology reference. While the 

model of MPI-ESM1-2-HR particularly during the MAM season exhibits a warm bias, MIROC6 

tends to have a warm bias during spring and summer, and CMCC-CM2-SR5 extends it to autumn. 
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Figure 8. PBIAS heatmap for the two subregions (a) mainland and (b) maritime continent. Unit in percent 

(%). Negative values represent underestimation, and positive values represent overestimation.  

The CMCC-CM2-SR5 and MPI-ESM1-2-HR models display the most pronounced errors when 

considering the maritime continent subregion. However, the average ME in the maritime conti-

nent subregion ranges only from 0.31°K to 1.20°K. The FGOALS-f3-L and NorCPM1 models 

have a relatively minor cold bias from the climatology reference. In this subregion, the models 

tend to have more significant biases during the JJA and SON seasons. PBIAS values align with 

the ME verification metric results. Spatially, PBIAS exhibits the same pattern as ME (maps not 

shown), indicating areas of underestimation or overestimation in past predictions. Each model 

consistently underestimates or overestimates across the analysed periods. 

PBIAS values in the two subregions range from -1.43% to 0.51% (Figure 8), falling within the 

"very good" category. The mainland shows more prominent PBIAS values than the maritime con-

tinent, especially during the DJF season. Interestingly, the NorCPM1 model, with an ME of -4.23, 

has a PBIAS of only -1.43%. Similar results are observed for IPSL-CM6A-LR (ME=-2.08, 

PBIAS=-0.71) and FGOALS-f3-L (ME=-2.97, PBIAS=-1.01). The fact that a 2-4°K error trans-

lates to only about 1% bias suggests that the average temperatures in the hindcast datasets are 

quite low. Although models capture temperature patterns well, as evidenced by small PBIAS val-

ues, a 2-4°K underestimation is significant for surface temperature prediction related to human 

health, particularly for the region of Southeast Asia (Sun et al., 2022). 

Furthermore, the analysis examining the influence of initialization on prediction skill reveals that 

the ACC values of models FGOALS-f3-L, CMCC-CM2-SR5, and MIROC6 (for MAM and JJA 
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seasons) are higher during FHDecad than SHDecad. In contrast, IPSL-CM6A-LR, MPI-ESM1-

2-HR, and NorCPM1 demonstrate improved performance in SHDecad. ME metric indicates 

higher error values during FHDecad in mainland subregions and a slight decrease in the maritime 

continent during SHDecad. A consistent cool bias throughout the period across models in the 

mainland and warm bias in the maritime continent suggests systematic issues in how each model's 

physical parameterizations or processes respond to these distinct geographical subregions. The 

PBIAS remains within a very good range throughout the entire period for all models despite these 

regional biases. 

3.2. Regional Predictability of Decadal Climate Prediction Models 

There are two sources of forecast predictability in climate models: internal variability and external 

forcing. The external forcing components stem from factors such as fluctuations in solar irradi-

ance, aerosols from anthropogenic activity and volcanoes, concentration alterations of greenhouse 

gases, and other external influences. On the other hand, the estimation of climate predictability 

depends on how climate models respond to these factors and the regions where accurate forecasts 

emerge on relevant timescales (Meehl et al., 2014).  

Notably, the maritime continent subregion exhibits the highest average ACC value over the entire 

decadal period. In Southeast Asia, the ENSO stands out as the most significant source of internal 

climate variability, crucial in driving the increasing trend of heatwave events (Lin et al., 2018). 

Accurately capturing the ENSO signal is essential for climate models aiming to provide reliable  

projections for this area. A model's predictive capability in Southeast Asia hinges heavily on its 

ability to appropriately simulate key oceanic features in the Pacific basin, not only sea surface 

temperatures (SST) but also ocean heat content, as well as the associated regional variability pat-

terns linked to ENSO dynamics. The proficiency of climate models in representing ENSO-driven 

internal variability is a critical determinant of their forecast skill for the Southeast Asia region. 

Considering FGOALS-f3-L and CMCC-CM2-SR5 models exhibit significant predictability for 

ocean heat content in regions closely linked to ENSO dynamics, including the tropical Pacific and 

the subtropical North Atlantic (Hu et al., 2023; Nicolì et al., 2023), they display large errors in the 

equatorial region. These errors could impact their ability to capture ENSO variability accurately, 

which is crucial for reliable projections in Southeast Asia. Thus, despite their strengths in specific 

ocean basins, the limitations in simulating equatorial ocean conditions may hinder the perfor-

mance of these models in representing ENSO-driven climate variability and its impacts on the 

Southeast Asia region. 

The metrics of ACC for both subregions indicate that models have a relatively similar range of 

values throughout the decadal period (Figure 6). While ACC values over the maritime continent 

exhibit greater stability, models FGOALS-f3-L, CMCC-CM2-SR5, and MIROC6 show dimin-

ished ability to replicate climatology patterns in the mainland subregion during the latter half of 

the decadal period (SHDecad) compared to the earlier half (FHDecad).   

The decrease in performance can be attributed to the models' diminishing ability to represent the 

ENSO signal beyond the FHDecad accurately. For instance, the CMCC-CM2-SR5 model's ability 

to forecast ENSO is limited beyond one year (Nicolì et al., 2023), while the MIROC6 SST 

hindcast shows a delayed response to ENSO evolution until the second forecast year and overes-

timates the Niño 3.4 index at longer leads (Kataoka et al., 2020). In contrast to the models showing 

declining performance, the MPI-ESM1-2-HR and NorCPM1 models demonstrate more consistent 

predictive skill throughout the decadal period. The MPI-ESM1-2-HR model, however, tends to 

overestimate ENSO behaviour (Boucher et al., 2020) and NorCPM1 skill degrades for the eastern 

Pacific area at longer lead times (Bethke et al., 2021). Despite their individual limitations, both 

MPI-ESM1-2-HR and NorCPM1 models exhibit better overall performance in maintaining their 

predictive skill across the entire decadal period compared to the other models discussed. 

Although ENSO is a crucial internal variability factor for Southeast Asia, climate models also 

recognize broader timescale climate patterns in the Pacific basin, such as the Decadal Variability 

of Pacific (PDV) and Multidecadal Variability of Atlantic (AMV), which exhibit distinct telecon-

nections to the region (Boucher et al., 2020). However, it is worth noting that extreme tempera-

tures in Southeast Asia are not significantly related to these multidecadal variabilities (Fan et al., 

2022). Nonetheless, the ability of models to replicate variability patterns in the Pacific region, 

including ENSO and other decadal and multidecadal climate variables, is crucial for their overall 

skill in simulating the Southeast Asian climate accurately. 

The maritime continent verification metrics display better values than the mainland of Southeast 

Asia (Figures 6 and 7). Prior research in the region also suggests that models simulate the surface 
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temperature in the maritime continent subregion more accurately than in the mainland subregion 

(Kamworapan & Surussavadee, 2019). This improved performance for the maritime continent can 

be attributed to its proximity to the Indian Ocean, where models exhibit relatively higher decadal 

predictive skills than other ocean basins (Guemas et al., 2013). This conclusion is further sup-

ported by the narrow seasonal variability of surface temperature in the maritime continent region.  

4. Conclusion 

The assessment of decadal surface temperature predictions provides critical insights for mitigating 

heatwave events in Southeast Asia. This study evaluated six hindcast models initialized with ob-

servational data to examine initialization effects across different prediction timeframes: FHDecad, 

SHDecad, and Decad. Through comprehensive analysis using ACC, ME, and PBIAS metrics, our 

findings revealed distinct subregional patterns between mainland and maritime continent. 

The results demonstrated superior predictive skill during the first half of the decade (FHDecad), 

particularly during the SON season, with stronger surface temperature correlations over oceanic 

regions. This enhanced performance in FHDecad underscores the positive impact of initialization 

on predictive capabilities. However, we observed a general deterioration in predictive skill over 

longer lead times, likely due to challenges in representing ocean features and internal variability. 

Notably, some models maintained or showed improved performance in the latter half of the dec-

ade, although this phenomenon warrants careful interpretation regarding its physical basis. 

CMIP6 dcpp-A hindcast models demonstrated enhanced predictability of sea surface temperature 

and ocean heat content in key regions. While the models successfully captured decadal Pacific 

variabilities and showed promise in replicating ENSO variability patterns, their reliability remains 

limited in the FHDecad period. Despite achieving favorable ACC values for Southeast Asia, sev-

eral challenges persist. Future work should focus on refining initialization techniques, improving 

the representation of internal variability, and reducing systematic biases to enhance the reliability 

of heatwave projections in this climatically vulnerable region. 
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